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Deception via honeypots, computers that pretend to be real, may provide effective
ways of countering cyberattacks in computer networks. Although prior research has
investigated the effectiveness of timing and amount of deception via deception-
based games, it is unclear as to how the size of the network (i.e., the number of
computer systems in the network) influences adversarial decisions. In this research,
using a deception game (DG), we evaluate the influence of network size on adversary’s
cyberattack decisions. The DG has two sequential stages, probe and attack, and it
is defined as DG (n, k, γ), where n is the number of servers, k is the number of
honeypots, and γ is the number of probes that the adversary makes before attacking
the network. In the probe stage, participants may probe a few web servers or may
not probe the network. In the attack stage, participants may attack any one of the web
servers or decide not to attack the network. In a laboratory experiment, participants were
randomly assigned to a repeated DG across three different between-subject conditions:
small (20 participants), medium (20 participants), and large (20 participants). The small,
medium, and large conditions used DG (2, 1, 1), DG (6, 3, 3), and DG (12, 6, 6) games,
respectively (thus, the proportion of honeypots was kept constant at 50% in all three
conditions). Results revealed that in the small network, the proportions of honeypot
and no-attack actions were 0.20 and 0.52, whereas in the medium (large) network,
the proportions of honeypot and no-attack actions were 0.50 (0.50) and 0.06 (0.03),
respectively. There was also an effect of probing actions on attack actions across all
three network sizes. We highlight the implications of our results for networks of different
sizes involving deception via honeypots.

Keywords: honeypot, cybersecurity, cyber deception, deception game, adversary, defender, probes, attacks

INTRODUCTION

Cyberattacks, organized attempts to disable computers, steal data, or compromise websites, have
been steadily increasing (Trustwave, 2019). For example, there was a rise of 56% in detected web-
based cyberattacks on enterprise networks in 2018 compared to 2017 (Symantec, 2019). Some of the
detected web-based attacks in 2018 included SQL injection, path traversal, and cross-site scripting,
which accounted for more than 50% of cyberattacks on corporate resources (PosTech, 2020).

Due to the prevalence of different kinds of cyberattacks and the associated cyber-defense costs
(Hope, 2020), one may need to develop and evaluate technologies that provide security against
cyberattacks (Sayegh, 2020). Currently, there are a few solutions that could help us in countering
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attacks (Matthews, 2019). For example, networks could contain
intrusion detection systems (IDSs), which warn defenders about
potential cyberattacks (Bace and Mell, 2001; Aggarwal et al.,
2018; Aggarwal and Dutt, 2020). Although robust, IDSs may
suffer from false alarms (indicating a cyber-threat when one
is not present) and misses (missing to show a cyber-threat
when it is present) (Mell et al., 2003). These false alarms
and misses could lead to loss of revenue and significant
damages to cyberinfrastructure, respectively (Shang, 2018a).
Prior research has also proposed that hybrid censoring and
filtering strategies may enable bounded non-rational network
agents to reach consensus behavior (Shang, 2018b, 2019). Overall,
such consensus could be useful in detecting cyberattacks before
they become damaging (Shang, 2018b).

Beyond IDSs and filtering strategies, another solution that
has been shown to be effective against cyberattacks is deception
(Cohen, 2006; Aggarwal et al., 2016a; Almeshekah and Spafford,
2016; Dutt et al., 2016). In fact, deception via honeypots (systems
that pretend to be real) has been a prominent technique for
the detection, prevention, and response to cyberattacks (Garg
and Grosu, 2007; Rowe and Custy, 2007; Heckman et al., 2013;
Aggarwal et al., 2016a,b; Almeshekah and Spafford, 2016). In the
real world, such honeypots may be created via port hardening
or by putting fake content in computer systems (Shimeall and
Spring, 2013). Deception via honeypots has also been used in
cutting-edge technologies like the Internet of things (IoT) to
defend against modern cyberattacks (La et al., 2016).

Some researchers have proposed games to study the role
of deception in cybersecurity mathematically (Garg and Grosu,
2007; Kiekintveld et al., 2015; Aggarwal et al., 2017). However,
more recently, researchers have investigated human decisions in
the presence of deception in abstract Stackelberg security games
(Cranford et al., 2018) as well as applied games like HackIT
(Aggarwal et al., 2019, 2020). Here, researchers have relied upon
behavioral game theory (Camerer, 2003) and cognitive theories
like instance-based learning theory (IBLT) (Gonzalez et al.,
2003; Gonzalez and Dutt, 2011, 2012; Dutt and Gonzalez, 2012;
Dutt et al., 2013) to understand human decisions in different
cyberattack scenarios (Aggarwal et al., 2020).

Human decisions in different cyberattack scenarios may be
influenced by a host of different factors, including variety and
complexity of cyberattacks, network topology, and the number
and diversity of zero-day vulnerabilities (Garcia-Teodoro et al.,
2009; Wang et al., 2010; Lenin et al., 2014). One factor that
has been less investigated and that is likely to influence human
decisions in cyberattack scenarios is the network size (i.e., the
number of computer systems in the network; Bagchi and Tang,
2004; Wang et al., 2010). For example, Bagchi and Tang (2004)
demonstrated via computational modeling that network size
was an influencing factor in different kinds of cyberattacks.
Similarly, as per Bagchi and Tang (2004) and Wang et al. (2010),
as the size of the network increases, one expects growth in
the proportion of cyberattacks. Although prior research has
investigated the influence of network size on cyberattacks via
computational modeling, very little is known on how the size
of the network influences human adversarial decisions in games
involving deception.

Thus, the primary objective of this research is to understand
the influence of network size on human adversarial decisions
in games involving deception. Specifically, we develop a novel
cybersecurity game involving deception via honeypots, and we
vary the number of computer systems in a simulated network
in the game across different experimental conditions. In the
deception game (DG), adversaries can first probe some of the
computer systems and then decide what systems to attack for
real. In a network of different sizes, the proportion of honeypots
remains constant. The outcomes of this research may help
cybersecurity professionals in understanding the robustness of
the honeypot network architectures of varying sizes against
modern cyberattacks.

In what follows, first, we detail a DG and how the network
size was varied in this game. Next, we state our expectations
on the influence of network size on decisions in DG using
IBLT. Furthermore, we test these expectations in an experiment
involving human participants. Finally, we evaluate the results
from the experiment and highlight their implications for using
deception in the real world.

THE DG

The DG is a sequential, single-player game, i.e., a game between
an adversary and a network (Garg and Grosu, 2007; Aggarwal
et al., 2016a,b). The game is formally denoted as DG (n, k, γ),
where n is the total number of web servers, k is the number
of honeypots, and γ is the number of probes after which
the adversary makes his final decision to attack the network
or not and γ should be less than or equal to k (Garg and
Grosu, 2007). There are two kinds of web servers in the game,
regular and honeypot. Regular web servers are the real web
servers, which contain valuable information, whereas honeypots
are fake servers, which pretend to be regular with the aim
of trapping adversaries to extract meaningful information. The
objective of the adversary is to attack the regular web server and
gain maximum points.

The game is played for multiple rounds. In each round
of this game, we have two stages, the probe stage and attack
stage. In the probe stage, an adversary could probe web servers
multiple times. Probing means clicking on the button which
denotes a web server in the game’s interface. For each probe,
the adversary gets a response from the system about the system
being a regular (real) web server or a honeypot (fake) web
server. This feedback may or may not be accurate depending
on the absence or presence of deception, respectively. Thus, this
scenario may not allow the adversary to learn across a number
of rounds of play. Furthermore, the game dynamics may likely
mimic the real world, where adversaries may only have limited
information about the nature of the infrastructure they are trying
to compromise. Overall, the purpose of deception is to fool the
adversary by making her believe in false information about the
state of the servers. If deception is present in a round, then the
network response is opposite the actual state of web servers. Thus,
if the adversary probes a regular web server, then the network’s
response is “honeypot,” and if the adversary probes a honeypot,
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then the network’s response is “regular.” If deception is not
present in a round, then the network’s response will be the same
as the actual state of web servers. Thus, if the adversary probes a
regular web server, the network’s response is “regular,” and if the
adversary probes a honeypot web server, the network’s response
is “honeypot.” In the probe stage, the adversary has an additional
option not to probe any web server. Deception and unreliability
in feedback of the probe stage might increase no-attack actions,
as the unreliable feedback of the probe stage will likely make the
adversary avoid risk for regular/honeypot attack actions.

Once the adversary has made γ number of independent probes
(or decides not to probe any web server), the game enters the
attack stage. In the attack stage, the adversary decides to attack
one of the web servers once. Attacking means clicking on the
button which denotes a web server. The adversary may also
decide not to attack any web server in the attack stage. Based
upon the decisions made during the probe and attack stages, the
adversary may win or lose points. Table 1 shows the payoff matrix
for the adversary based upon the decisions in the probe and attack
stages in the DG.

As shown in Table 1, in each round, if the adversary
probes/attacks a regular web server, then the adversary is awarded
positive points. If the adversary probes/attacks a honeypot web
server, then the adversary is awarded negative points. If the
adversary does not probe/attack any web server in any of the
rounds, he neither loses nor gains any points. Thus, if the
adversary probes a regular web server, he gains +5 points, whereas
on probing a honeypot web server, he loses -5 points. If the
adversary attacks a regular web server, he gains +10 points,
whereas he loses -10 points on probing a honeypot web server.
After completion of the attack stage, the total score of a round is
calculated; and at the end of the multiple rounds, the cumulative
score is calculated. The values of the payoff in Table 1 were
motivated from prior literature (Aggarwal et al., 2016a,b).

INFLUENCE OF NETWORK SIZE ON
ADVERSARY’S DECISION

In our experiment, there were three different versions of the DG
to simulate networks of different sizes. Motivated from networks
in the real world, the versions of the game included DG (2, 1, 1)
(small), DG (6, 3, 3) (medium), and DG (12, 6, 6) (large). We kept
the proportion of honeypots to the total number of web servers
constant (at 50%) across the three versions of the game. Also, the
number and sequence of deception and non-deception rounds
were kept the same for all three versions of the DG.

TABLE 1 | Adversary’s payoff during the probe stage and attack stage in the DG.

Stage Adversary’s Action Adversary’s Payoff

Probe Regular web server +5 points

Honeypot web server −5 points

Do not probe 0 points

Attack Regular Web server +10 points

Honeypot web server −10 points

Do not attack 0 points

Though the proportion of honeypots is the same across all
three network sizes, we expect adversaries to probe and attack
regular and honeypot web servers much less in the small-sized
network compared to medium- or large-sized networks. One
could explain this expectation based upon cognitive theories like
IBLT (Gonzalez et al., 2003; Gonzalez and Dutt, 2011, 2012;
Dutt and Gonzalez, 2012; Dutt et al., 2013). As per IBLT, human
decisions may be driven by the exploration of available options
during information search (probing) and their exploitation
during real decisions (attack). Decision making during different
probe and attack stages will be likely determined in a bounded-
rational manner by reliance on recency and frequency of decision
and their outcomes (i.e., human decisions will be driven by
forgetting of distant instances and recall of only recent instances).
When the network size is small, the decisions during probe and
attack stages in DG involve a choice between two web servers,
where one of them is a honeypot. Given the smaller number
of web servers, it may be easier for bounded-rational decision
makers to recall the mapping of web servers being regular or
honeypot from memory. That is because fewer instances will be
created in memory corresponding to the different web servers,
and their activations will be high in memory due to smaller delays
in their exploration during probing. However, in the medium-
and large-sized networks, due to the presence of multiple web
servers, bounded-rational decision makers may not be able to
easily recall the mapping of web servers as regular or honeypot
from memory. That is because multiple instances, one per web
server, will be created in memory, and the activation of these
instances will likely not be high in memory due to the long
delays in their exploration during probing. Overall, the difficulty
in the recall of distant instances in medium- and large-sized
networks may cause more exploration of web servers during
the probe stage and the attack stage in these configurations
compared to that in the small-sized network. Thus, based upon
IBLT, one expects that the proportion of probe and attack actions
on regular and honeypot web servers will be more in medium-
and large-sized networks compared to the proportion of probe
and attack actions in the small-sized network. Furthermore,
as instances corresponding to no-probe and no-attack actions
will be more activated in memory in the small-sized network
compared to medium- and large-sized networks, we expect a
larger proportion of these no-probe and no-attack actions in
the small-sized network compared to medium- and large-sized
networks. That is because no-probe and no-attack instances in
memory will be easier to recall in a small-sized network compared
to medium-sized or large-sized networks. Next, we test these
expectations based upon IBLT in an experiment involving human
decision makers making decisions in DG.

EXPERIMENT

In this section, we detail the experiment we carried out with
human participants performing as adversaries across all rounds
in the DG. The game was used to calculate the effectiveness of
honeypots in different-sized networks.
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Methods
Experiment Design
Participants performing as an adversary (“hacker”) were
randomly assigned to one of three between-subjects network
size conditions (N = 20 participants per condition): DG (2,
1, 1) (small), DG (6, 3, 3) (medium), and DG (12, 6, 6)
(large). Each condition in DG was 29 rounds long, where
there were 14 deception rounds and 15 non-deception rounds
(participants did not know what rounds were deception rounds
and what rounds were non-deception rounds). The sequence
of the deception and non-deception rounds was randomized
once and then kept the same across all three conditions (see
the Supplementary Material for the sequence of deception
and non-deception rounds). In a round, the assignment of
honeypots and regular web servers to buttons was done
randomly. In the small network, the DG involved two web
servers, where one of them was randomly assigned as a
honeypot, and the adversary could probe one of the web
servers in the probe stage (the adversary may also decide not
to probe any of the web servers). In the medium network,
the DG involved six web servers, where three web servers
were randomly selected to be honeypots, and the adversary
could probe web servers three times in the probe stage (the
adversary may also decide not to probe any of the web
servers). In the large network, the DG involved 12 web
servers, where six web servers were randomly selected to be
honeypots, and the adversary could probe the web servers six
times in the probe stage (the adversary may also decide not
to probe any of the web servers). Across all network sizes,
after completion of the probe stage, the adversary entered
the attack stage. If the adversary decided not to probe a
web server anytime during the probe stage, then the probe
stage ended, and the adversary entered the attack stage.
In the attack stage, the adversary either decided to attack
one of the web servers or decided not to attack any of
them. In each condition, dependent measures included regular
probe/attack proportions, honeypot probe/attack proportions,
and no-web server probe/attack proportions. For computing
these proportions, each regular probe/attack action by a
participant in a round was coded as rp/ra, each honeypot
probe/attack action by a participant in a round was coded as
hp/ha, and no-web server probe/attack action was coded as
np/na. Later, we computed the proportions as rp/Tp, ra/Ta,
hp/Tp, ha/Ta, np/Tp, and na/Ta, where Tp and Ta were the total
number of decisions during probe and attack stages, respectively,
in a condition. Later, these proportions were averaged across all
participants in a condition.

Stimuli
Figure 1 shows the interface shown to participants in the
probe stage of the DG with six web servers. As shown in the
figure, participants were informed about the task with short
instructions regarding the different types of web servers. Once
the participant probed one of the web servers by clicking
the corresponding button, she received the response from the
web server (see Figure 2). Once the participant had probed
for a fixed number of times, she proceeded to the attack

stage (see Figure 3). After attacking one of the web servers
in the network, the participant’s score was calculated for the
round based on his actions in the probe and attack stages (see
Figure 4).

Participants
This study was conducted after approval of the Ethics
Committee at the Indian Institute of Technology Mandi
(IITM/DST-ICPS/VD/251) with written consent from all
participants. Participation was voluntary, and all participants
gave written consent before starting their study. Participants
were anonymously recruited for the cybersecurity study through
the Amazon Mechanical Turk, a crowdsourcing website (Mason
and Suri, 2012). Eighty-six percent of participants were male,
and the rest were females. The age of participants ranged
between 19 and 48 years (median = 31 years, mean = 32, and
standard deviation = 6 years). Around 92% of participants
possessed a college degree, while the remaining 8% were
currently pursuing a college degree. Also, 60% of the participants
had science, technology, engineering, and mathematics as a
major. Participants were paid a participation fee INR 50 (USD
0.7) after they completed their study. The top three scorers
of the game were chosen for the lucky draw contest, and one
of these participants was randomly selected for a gift voucher
of INR 500 (USD 7.14). The score was computed based upon
points earned in the game during the probe and attack stages
across 29 rounds.

Procedure
Participants performing as adversaries were given instructions
about their goal in DG. Participants were told that there
might be deception present in DG with both regular and
honeypot servers; however, participants were not told which
exact web servers were regular and which were honeypots.
Participants were asked to maximize their score across several
rounds involving the probe and attack stages in DG, but the
endpoint in the study was not disclosed to participants. Each
round has two stages: the probe stage and the attack stage.
An adversary could probe multiple web servers in the DG
for medium and large networks, whereas she could probe
only one web server in a small network. In all network size
conditions, adversaries could attack only one of the web servers
in the attack stage. Once the study was completed, participants
were thanked and paid for their participation. A copy of
the instructions from one of the conditions is provided as
Supplementary Material.

Data Analyses
We used analysis of variance (ANOVA), a statistical technique,
to test differences between two or more means across different
network size conditions (Field, 2013). Also, as sample sizes
were equal across different conditions, we used the Tukey
post hoc test (Field, 2013). The alpha level or the p-value (the
probability of rejecting the null hypothesis when it is true) was
set at 0.05, and power (the probability of rejecting the null
hypothesis when it is false) was set at 0.80. We performed
one-way ANOVAs to investigate the influence of network size
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FIGURE 1 | Probe stage of the deception game with six web servers.

FIGURE 2 | Probe stage of the deception game with six web servers after the participant probes for the first time.

on regular attack, honeypot attack, and no-attack decisions
during the probe and attack stages. Also, we performed two-
way mixed-factorial ANOVAs with network size as a between-
subjects factor and sequential probe-attack trials as a within-
subjects factor. Based upon the Q–Q plots (between expected
quantiles and normal quantiles), different dependent variables
(regular probe/attack decisions, honeypot probe/attack decisions,
and no-probe/attack decisions) were found to be normally

distributed. Similarly, Levene’s test showed that the variances
were homogeneous for different decisions during both the probe
and attack stages: honeypot web server probe [F(2,57) = 0.641,
p = 0.53], regular web server probe [F(2,57) = 1.22, p = 0.30],
no web server probe [F(2,57) = 0.382, p = 0.68], regular web
server attack [F(2,57) = 2.11, p = 0.13], honeypot web server
attack [F(2,57) = 1.19, p = 0.31], and no web server attack
[F(2,57) = 3.70, p = 0.07].
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FIGURE 3 | Attack stage of the deception game with six web servers.

FIGURE 4 | Result of a completed round, where a participant gets to know his score based upon his actions in the probe and attack stages.

RESULTS

Descriptive Statistics
In our experiment, we had three different dependent variables in
the probe and attack stages in the DG. In the probe stage, we had a
regular web server probe, honeypot web server probe, and no web
server probe. Similarly, in the attack stage, we had a honeypot web
server attack, regular web server attack, and no web server attack.
Table 2 describes the descriptive statistics for different dependent
variables in the experiment across all conditions.

Influence of Network Size on Decisions
During the Probe Stage
We performed one-way ANOVA to investigate the influence of
network size on decisions during the probe stage. The network
size significantly influenced the proportion of honeypot web
server probes [F(2,59) = 35.86, p < 0.001, η2 = 0.56], regular
web server probes [F(2,59) = 18.31, p < 0.001, η2 = 0.39], and
no web server probes [F(2,59) = 34.39, p < 0.001, η2 = 0.55],
where p-value tests the statistical significance in the hypothesis
test and η2 denotes the measure of the effect size. Figure 5 shows
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TABLE 2 | Descriptive statistics for different dependent variables in the
experiment.

Stage Dependent Variable Mean Std. Deviation Minimum Maximum

Probe Honeypot web server probe 0.38 0.18 0.03 0.56

Regular web server probe 0.39 0.13 0.06 0.57

No web server probe 0.23 0.27 0.00 0.91

Attack Honeypot web server
attack

0.40 0.18 0.07 0.66

Regular web server attack 0.40 0.12 0.17 0.69

No web server attack 0.20 0.25 0.00 0.69

the proportion of honeypot, regular, and no web server probes
across different network sizes.

As shown in Figure 5, the proportion of honeypot web server
probes was 0.22 in the small network; however, the proportions
of honeypot web server probes were 0.45 and 0.47 in the
medium and large networks, respectively. The Tukey post hoc
tests revealed that the proportion of honeypot web server probes
in the small network was significantly smaller compared to
the proportions of honeypot web server probes in the medium
network (p < 0.001) and large network (p < 0.001). However, as
per the Tukey post hoc tests, there were no significant differences
between the proportions of honeypot web server probes in the
medium and large networks (p = 0.83). These results are as per
our expectations.

As shown in Figure 5, the proportion of regular web server
probes was 0.27 in the small network; however, the proportions of

regular web server probes were 0.45 and 0.45 in the medium and
large networks, respectively. The Tukey post hoc tests revealed
that the proportion of regular web server probes in the small
network was significantly smaller compared to the proportions
of regular web server probes in the medium network (p < 0.001)
and large network (p< 0.001). However, as per the Tukey post hoc
tests, there was no significant difference between the proportions
of regular web server probes in the medium and large networks
(p = 0.99). These results are as per our expectations.

As shown in Figure 5, the proportion of no web server
probes was 0.51 in the small network; however, the proportions
of no web server probes were 0.10 and 0.08 in the medium
and large networks, respectively. The Tukey post hoc tests
revealed that the proportion of no web server probes in
the small network was significantly smaller compared to the
proportions of no web server probes in the medium network
(p < 0.001) and large network (p < 0.001). However, as per
the Tukey post hoc tests, there was no significant difference
between the proportions of no web server probes in the
medium and large networks (p = 0.92). These results are as per
our expectations.

Influence of Network Size on Decisions
During Attack Stage
We performed one-way ANOVAs to investigate the influence of
network size on decisions during the attack stage. The network
size significantly influenced the proportion of honeypot web
server attacks [F(2,59) = 51.77, p < 0.001, η2 = 0.65], regular

FIGURE 5 | The proportion of honeypot probe, regular probe, and no-probe decisions across different network sizes.
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FIGURE 6 | The proportion of honeypot attack, regular attack, and no-attack decisions across different network sizes.

web server attacks [F(2,59) = 23.32, p < 0.001, η2 = 0.45], and
no web server attacks [F(2,59) = 111.68, p < 0.001, η2 = 0.78].
Figure 6 shows the proportion of honeypot, regular, and no web
server attacks across different network sizes.

As shown in Figure 6, the proportion of honeypot web server
attacks was 0.20 in the small network; however, the proportions
of honeypot web server attacks were 0.49 and 0.50 in the
medium and large networks, respectively. The Tukey post hoc
tests revealed that the proportion of honeypot web server attacks
in the small network was significantly smaller compared to the
proportions of honeypot web server attacks in the medium
network (p < 0.001) and large network (p < 0.001). However, as
per the Tukey post hoc tests, there were no significant differences
between the proportion of honeypot web server attacks in the
medium and large networks (p = 0.97). These results are as per
our expectations.

As shown in Figure 6, the proportion of regular web server
attacks was 0.28 in the small network; however, the proportions of
regular web server attacks were 0.45 and 0.47 in the medium and
large networks, respectively. The Tukey post hoc tests revealed
that the proportion of regular web server attacks in the small
network was significantly smaller compared to the proportions
of regular web server attacks in the medium network (p < 0.001)
and large network (p< 0.001). However, as per the Tukey post hoc
tests, there was no significant difference between the proportion
of regular web server attacks in the medium and large networks
(p = 0.80). These results are as per our expectations.

As shown in Figure 6, the proportion of no web server attacks
was 0.52 in the small network; however, the proportions of no
web server attacks were 0.06 and 0.03 in the medium and large
networks, respectively. The Tukey post hoc tests revealed that
the proportion of no web server attacks in the small network

was significantly smaller compared to the proportions of no web
server attacks in the medium network (p < 0.001) and large
network (p < 0.001). However, as per the Tukey post hoc tests,
there was no significant difference between the proportion of no
web server attacks in the medium and large networks (p = 0.73).
These results are as per our expectations.

Influence of Network Size and Sequential
Probe/Attack Trials on Decisions
We performed mixed-factorial ANOVAs with network size as a
between-subjects factor and sequential probe/attack trials as a
within-subjects factor. The network size significantly interacted
with sequential probe/attack trials for the following decisions:
honeypot server probed and no server attacked [F(2,57) = 91.92,
p < 0.001, η2 = 0.76]; regular server probed and honeypot server
attacked [F(2,57) = 6.40, p < 0.001, η2 = 0.18]; regular server
probed and no server attacked [F(2,57) = 81.23, p < 0.001,
η2 = 0.74]; no server probed and regular server attacked
[F(2,57) = 49.29, p < 0.001, η2 = 0.63]; no server probed and
honeypot server attacked [F(2,57) = 54.15, p < 0.001, η2 = 0.66].

Figure 7 shows the interaction between network size and
honeypot server probed and no server attacked decisions. For
a small network, the proportion of honeypot server probed was
0.22, and the proportion of no server attacked decisions was 0.52.
However, for medium and large networks, the proportions of
honeypot server probed were 0.45 and 0.47, and the proportions
of no server attacked decisions were 0.06 and 0.03, respectively.

Figure 8 shows the interaction between network size and
regular server probed and honeypot server attacked decisions.
For a small network, the proportion of regular server probed
was 0.27, and the proportion of honeypot server attacked
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FIGURE 7 | The proportions of honeypot server probed and no server attacked decisions in different network sizes.

FIGURE 8 | The proportion of regular server probed and honeypot server attacked decisions in different network sizes.

decisions was 0.20. However, for medium and large networks, the
proportions of regular server probed were 0.45 and 0.45, and the
proportions of honeypot server attacked decisions were 0.49 and
0.50, respectively.

Figure 9 shows the interaction between network size and
regular server probed and no server attacked decisions. For
a small network, the proportion of regular server probed
was 0.27, and the proportion of no server attacked decisions
was 0.52. However, for medium and large networks, the

proportions of regular server probed were 0.45 and 0.45, and
the proportions of no server attacked decisions were 0.06 and
0.03, respectively.

Figure 10 shows the interaction between network size and
no server probed and regular server attacked decisions. For
a small network, the proportion of no server probed was
0.51, and the proportion of regular server attacked decisions
was 0.28. However, for medium and large networks, the
proportions of no server probed were 0.10 and 0.08, and the
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FIGURE 9 | The proportions of regular server probed and no server attacked decisions in different network sizes.

FIGURE 10 | The proportions of no server probed and regular server attacked decisions in different network sizes.

proportions of regular server attacked decisions were 0.45 and
0.47, respectively.

Figure 11 shows the interaction between network size and
no server probed and the honeypot server attacked decisions.
For a small network, the proportion of no server probed was
0.51, and the proportion of honeypot server attacked decisions
was 0.20. However, for medium and large network sizes, the
proportions of no server probed were 0.10 and 0.08, and the

proportions of honeypot server attacked decisions were 0.49 and
0.50, respectively.

DISCUSSION AND CONCLUSION

Deception via honeypots can act as an essential tool to defend
cyberattacks (Cohen, 2006; Rowe and Custy, 2007). Although
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FIGURE 11 | The proportions of no server probed and honeypot server attacked decisions in different network sizes.

prior research has developed and used games to understand
the role of deception in cybersecurity, researchers had yet to
investigate how the network’s size (i.e., the number of computers
on the network) influences the adversary’s probe and attack
decisions in the presence of deception via honeypots. To
address this gap in the literature, in this paper, we investigated
the influence of network size on adversary’s decisions in a
DG involving honeypot web servers. Results revealed that the
proportions of honeypot probe and attack actions and the
proportions of regular probe and attack actions were more
in medium- and large-sized networks compared to small-sized
networks. Also, there was an influence of probing actions on
attack actions across all three network sizes. These results can
be explained based upon the IBLT, a theory of decisions from
experience (Gonzalez et al., 2003; Gonzalez and Dutt, 2011, 2012;
Dutt et al., 2013).

First, results revealed that the proportions of honeypot and
regular probes and attacks were more in medium- and large-sized
networks compared to small-sized networks. When the network
size is small, the decisions during probe and attack stages in DG
involve a choice between two web servers, where one of them is a
honeypot. Given the smaller number of web servers, as per IBLT,
it may be easier for bounded-rational participants to recall the
mapping of web servers being regular or honeypot from memory.
That is because about two instances are created in memory when
there are two web servers, and the activation of these instances
is likely to be much higher in memory due to smaller delays
in their exploration during probing. However, in medium- and
large-sized networks, due to the presence of multiple web servers,
bounded-rational participants may not be able to easily recall the
mapping of web servers as regular or honeypot from memory.
That is because multiple instances, one per web server, would

be created in memory, and the activation of these instances will
likely decay in memory due to the long delays in their exploration
during probing. Overall, as per IBLT, the difficulty in the recall
of distant instances in medium- and large-sized networks may
cause more exploration of web servers during the probe stage and
the attack stage in these configurations compared to that in the
small-sized network.

Second, the proportions of no-probe and no-attack actions
were more in small-sized networks compared to medium- and
large-sized networks. As per IBLT, a likely reason for these results
is the differential activation of instances in memory for the no-
probe and no-attack actions across the different-sized networks.
As there would be fewer instances created in memory in small-
sized networks compared to medium- and large-sized networks,
these smaller numbers of memory instances corresponding to
no-probe and no-attack actions are likely to be more activated
in the small-sized network compared to medium- and large-
sized networks. Overall, due to their higher activations, the
no-probe and no-attack instances in memory will be easier to
recall in a small-sized network compared to medium- or large-
sized networks.

Third, we investigated the influence of network size and
sequential probe/attack trials in DG. First, probing a honeypot
caused an increase (decrease) in no server attacked actions in
small (medium or large) networks. Second, probing a regular
server caused a decrease (increase) in honeypot server attacked
actions and an increase (decrease) in no server attack actions
in small (medium or large) networks. Third, not probing a
server caused a decrease (increase) in regular and honeypot
server attacks in small (medium or large) networks. All these
results can be explained based upon the differences in the
activation and number of instances in memory in small-sized
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networks compared to large-sized networks. For example, as
there were fewer and more activated instances likely created
in memory of participants playing in small-sized networks
compared to medium- and large-sized networks, the decisions
of participants in small-sized networks were more logical and
deterministic compared to those playing in medium- and
large-sized networks. Due to these differences, perhaps, it was
reasonable for participants playing in a small-sized network to
show the above-stated results. At the same time, due to larger and
weakly activated instances in memory of those playing medium-
and large-sized networks, their decisions seemed to be less logical
and more exploratory.

In this research, we performed a laboratory experiment using
a canonical game, and our conclusions should be seen with this
assumption in mind. However, our results have some important
implications for the real world. First, our results reveal that
making networks larger has an effect of increasing the proportion
of regular probes and regular attacks. Thus, it may be advisable
to break larger networks into smaller subnetworks, where these
subnetworks may only possess a subset of computers (Achleitner
et al., 2017). Furthermore, if these smaller subnetworks possess
a number of honeypots, then these honeypots will likely cause
adversaries to encounter them and not to attack the network.
Also, a decrease in probes in these subnetworks may likely cause
a decrease in the number of regular attacks.

One limitation of our research is that our results are derived
from a lab-based experiment. It could be that the conditions
stipulated in the lab are likely to be different from those simulated
in the real world. However, as we tried to replicate the dynamics
of cyberattacks in the DG game, i.e., search followed by an
attack, some of the conclusions derived from our experiment are
likely to be valid for the real world. Furthermore, the size of the
networks chosen across different conditions in the experiment
was done to investigate the effect of increasing the number
of web servers. However, these network sizes are likely to be
different from those encountered in the real world. There may
be some networks where the number of web servers is in the
range as those chosen by us in the experiment. For such networks,
some of the conclusions in this study may be useful. Finally,
motivated by the real world, we assumed that adversaries did
not possess knowledge about what web servers were honeypots
and whether deception was present in a particular round. If the
presence of deception and honeypots is known to adversaries,
then it is likely that adversaries may take advantage of this
knowledge and end up attacking a larger proportion of regular
web servers.

Currently, we investigated the influence of network size in
DG, where the proportion of honeypots was kept constant
in the game. Another possibility is to vary the proportion of
honeypots in the game with different network sizes and evaluate
the combined influence of these variations on adversarial probe

and attack actions. A second possibility is to test how the variation
in the cost of probes and attack actions influences these actions.
Still, a third possibility is to test a team of adversaries playing
in networks of different sizes and with different proportions of
honeypots. Some of these ideas form the immediate next steps in
our program on behavioral cybersecurity.
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