
fpsyg-11-01987 August 4, 2020 Time: 15:47 # 1

ORIGINAL RESEARCH
published: 06 August 2020

doi: 10.3389/fpsyg.2020.01987

Edited by:
Pietro Cipresso,

Italian Auxological Institute (IRCCS),
Italy

Reviewed by:
Carlos Alberto De Bragança

Pereira,
University of São Paulo, Brazil

Philip L. H. Yu,
The University of Hong Kong,

Hong Kong
Peida Zhan,

Zhejiang Normal University, China

*Correspondence:
Kwanghee Jung

kwanghee.jung@ttu.edu
Jungkyu Park
jkp@knu.ac.kr

Specialty section:
This article was submitted to

Quantitative Psychology
and Measurement,

a section of the journal
Frontiers in Psychology

Received: 03 July 2019
Accepted: 17 July 2020

Published: 06 August 2020

Citation:
Lee J, Jung K and Park J (2020)

Detecting Conditional Dependence
Using Flexible Bayesian Latent Class

Analysis. Front. Psychol. 11:1987.
doi: 10.3389/fpsyg.2020.01987

Detecting Conditional Dependence
Using Flexible Bayesian Latent Class
Analysis
Jaehoon Lee1, Kwanghee Jung1* and Jungkyu Park2*

1 Department of Educational Psychology and Leadership, Texas Tech University, Lubbock, TX, United States, 2 Department
of Psychology, Kyungpook National University, Daegu, South Korea

A fundamental assumption underlying latent class analysis (LCA) is that class indicators
are conditionally independent of each other, given latent class membership. Bayesian
LCA enables researchers to detect and accommodate violations of this assumption by
estimating any number of correlations among indicators with proper prior distributions.
However, little is known about how the choice of prior may affect the performance of
Bayesian LCA. This article presents a Monte Carlo simulation study that investigates
(1) the utility of priors in a range of prior variances (i.e., strongly non-informative to
strongly informative priors) in terms of Type I error and power for detecting conditional
dependence and (2) the influence of imposing approximate independence on model fit
of Bayesian LCA. Simulation results favored the use of a weakly informative prior with
large variance–model fit (posterior predictive p–value) was always satisfactory when the
class indicators were either independent or dependent. Based on the current findings
and the additional literature, this article offers methodological guidelines and suggestions
for applied researchers.

Keywords: conditional dependence, Bayesian latent class analysis, approximate independence, prior variance,
model fit

INTRODUCTION

Latent class analysis (LCA; Lazarsfeld and Henry, 1968) is a probability model–based tool that
analyzes categorically scored data by introducing a latent variable. As the name suggests, the latent
variable (usually) consists of a small number of levels, called “latent classes” that characterize
the categories of a theoretical construct. The primary aim of LCA is to identify class members
that are homogenous within the same class but distinct between different classes in terms of
responses to a set of observed variables (i.e., latent class indicators). Once identified, the latent
classes are compared with each other for auxiliary variables such as covariates and distal outcomes
presumed to be antecedents or consequences of the classification (Asparouhov and Muthén, 2014;
Vermunt, 2010).

LCA has been extended to accommodate various types of observed data–for example, latent
profile analysis with continuous indicators, multilevel mixture models for clustered data, growth
mixture models and latent transition models for longitudinal observations, and survival mixture
models with time–censored indicators. Owing to such flexibility in data distribution that can
be modeled, LCA and other mixture approaches recently have been increasingly adopted in a
variety of disciplines, including cognitive diagnostic testing (Rupp et al., 2010) health and medicine
(Schlattmann, 2010) genetics (McLachlan et al., 2004) machine learning (Yang and Ahuja, 2001)
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and economics (Geweke and Amisano, 2011). More recently,
methodological advances have made it feasible to estimate LCA
models within the Bayesian framework; see Li et al. (2018) and
Asparouhov and Muthén (2010).

Assumption of Conditional
Independence in LCA
Another key advantage of using LCA is that it does not require the
rigid assumptions of traditional classification methods (Muthén,
2002; Muthén and Shedden, 1999; Magidson and Vermunt,
2004). Still, LCA assumes that class indicators are conditionally
independent of each other, given class membership–i.e., class
indicators are uncorrelated within each class. This implies that
the associations among the indicators are accounted for only
by the latent classes and there are no other latent variables
influencing the indicators. A violation of this local independence
assumption (i.e., conditional dependence) can lead to severe
bias in estimating LCA parameters that include classification
error, class probabilities, and posterior classification probabilities
(Vacek, 1985; Torrance-Rynard and Walter, 1998; Albert and
Dodd, 2004). An additional drawback that is common with
conditional dependence is model misfit. That is, unmodeled
dependence among indicators can induce poor model fit and
incorrect values of information criteria [e.g., Akaike information
criterion (AIC), Bayesian information criterion (BIC)], resulting
in spurious latent classes (usually with an overestimated
number of classes).

Current Methods for Handling
Conditional Dependence
When conditional dependence is suspected, a viable option
is to model the dependence “directly” (Uebersax, 1999;
Hagenaars, 1988). The correlation between each pair of
indicators is freely estimated; and a significant improvement
in model fit supports relaxing the conditional independence
assumption on locally dependent indicator pairs. Still, there is
a caveat to this approach. Freeing the constrained parameters
(correlations) often makes the model non–identifiable or results
in highly unstable parameter estimates, because the dependencies
captured by the latent classes are difficult to separate from
nuisance local dependencies. An alternative option to deal
with conditional dependence is employing a latent variable(s).
Factor mixture modeling, for example, models conditional
dependence by allowing for the indicators to be loaded on
a continuous latent variable in addition to their loading on
the discrete latent variable representing/forming classes (Lubke
and Muthén, 2007). This approach is yet limited because in
many applications indicators do not necessarily represent an
interrelated dimension(s) of a generic construct and thus models
can suffer from estimation challenges. Other applications of
modeling conditional dependence can be found in Qu et al.
(1996), Wang and Wilson (2005), Im (2017), Hansen et al. (2016),
and Zhan et al. (2018).

Beyond handling conditional dependence, researchers may
want to monitor and detect the sources of conditional
dependence. Magidson and Vermunt (2004) proposed bivariate

residual (BVR)–a high value of BVR for a pair of indicators
reveals model misfit due to (residual) conditional dependence
between the indicators. A drawback of BVR is that its distribution
is unknown. Oberski et al. (2013) recommended using BVR
with a bootstrapping procedure which approximates a chi–square
distribution. They also showed that Lagrange multiplier test,
also called modification index, performs well in identifying the
sources of conditional dependence, showing adequate power and
controlled Type I error.

New Method: Assumption of Conditional
Independence in Bayesian LCA
In Bayesian statistics, the researcher’s belief about the value of
a parameter is formulated into a distribution, which is called
prior distribution (often simply called prior). Data also inform
about the parameter value, yielding a conditional distribution
of the data given the parameter, which is called likelihood.
The likelihood modifies the prior distribution into a posterior
distribution (often simply called posterior). Finally, a parameter
estimate is inferred through a sampling of ‘plausible’ values
from the posterior.

A prior having small variance (i.e., a narrow prior distribution)
represents the researcher’s small uncertainty about the parameter
value. This small–variance (“informative”) prior makes relatively
more contribution to constructing the posterior than does the
likelihood. On the other hand, a prior having a large variance
(i.e., a wide prior distribution) represents large uncertainty about
the parameter value, and the large–variance (“non–informative”)
prior yields relatively less influence on the formation of the
posterior than does the likelihood (Muthén and Asparouhov,
2012; MacCallum et al., 2012). Thus, the model would fit the data
very closely if non–informative priors were specified for all model
parameters, but the parameter estimates might be scientifically
untenable (Gelman, 2002).

Recent methodological advances have made it possible to
incorporate latent variable modeling in the framework of
Bayesian statistics (O’sullivan, 2013; Silva and Ghahramani,
2009). Bayesian estimation in latent variable modeling is
advocated particularly for avoiding the likely problem of a
non–identifiable model or an improper solution in maximum–
likelihood estimation. For instance, the researcher may replace
the parameter specification of “exact zeros” with “approximate
zeros” by imposing informative priors on the parameters that
would have been fixed to 0 for hypothesis testing or scale
setting in ML estimation (Muthén and Asparouhov, 2012).
In Muthén and Asparouhov (2012) illustration of Bayesian
structural equation modeling (BSEM), priors for factor loadings
are specified to be normal with zero mean and infinity variance
(i.e., non–informative priors), while priors for cross–loadings are
specified to follow a normal distribution having zero mean and
0.01 variance (i.e., informative priors)–95% of the cross–loading
values are between –0.2 and 0.2 in the prior distribution. A few
real–data applications and Monte Carlo simulations showed
that the “approximate zeros” strategy performs well for both
measurement and structural models that involve cross–loadings,
residual correlations, or latent regressions with respect to model
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fit testing, coverage for key parameters, and power to detect
model misspecifications (Muthén and Asparouhov, 2012).

The idea of this “approximate zeros” approach is applicable
for detecting and accommodating violations of the conditional
independence assumption in LCA. Rather than fixing to 0, the
researcher may freely estimate all or some tetrachoric (for binary
class indicators) or polychoric (for polytomous class indicators)
correlations among the indicators using informative priors with
zero mean and small variance (i.e., approximate independence;
Asparouhov and Muthén, 2011). Asparouhov and Muthén (2010,
2011) suggested Bayesian LCA that relaxes the conditional
independence assumption to an assumption of approximate
independence. This flexible Bayesian LCA can avoid a false
class formation that is often caused by ignoring conditional
dependence, or equivalently, neglecting (i.e., fixing) nonzero
correlations among indicators.

To illustrate this method, a model was fitted to the data
from Midlife in the United States (MIDUS), 2004—-2006, a
national survey of 4,963 Americans aged 35 to 86. The class
indicators were 10 binary items (yes/no) asking the main reasons
for discrimination respondents experienced: age, gender, race,
ethnicity or nationality, religion, height or weight, some other
aspect of appearance, physical disability, sexual orientation, and
some other reason (B1SP3A–B1SP3J). The model specified two
classes and approximate independence between each pair of the
indicators by imposing a prior on the tetrachoric correlation. The
model fit was adequate, and the classification quality was excellent
with an entropy value of 1 (35% of the sample in the first class and
65% in the second class). More important, the correlations among
the indicators deviated from zero ranging from –0.28 to 0.42 and
they were higher in the first class (M = 0.19, SD = 0.14) than in the
second class (M = –0.05, SD = 0.15). These results suggest that the
model of approximate independence could detect and properly
model the fair amounts of conditional dependence. The Mplus
input for this analysis is shown in Appendix (B1SP3A-B1SP3J are
renamed to U1-U10 for illustrative purpose).

More research is warranted to investigate the performance
of this method as a tool for detecting conditional dependence
and acknowledge potential consequences of incorporating
approximate independence into LCA models. Another scientific
inquiry is evaluating model fit of Bayesian LCA under the
assumption of approximate independence. Asparouhov and
Muthén (2011) argued that posterior predictive checking is
needed to evaluate the fit of flexible Bayesian LCA models. In
Bayesian statistics, one possible measure of model-data fit is
posterior predictive p-value (PPP). The process of deriving PPP
is quite technical (Gelman et al., 1996) but the key application
is simple-a PPP around 0.50 suggests an excellent fit. Although
there is no theoretical cutoff of alarming poor fit, Muthén and
Asparouhov (2012) suggested that a PPP around 0.10, 0.05, or
0.01 would indicate a significantly ill-fitting model.

Purpose of Study
Although the literature has suggested flexible Bayesian LCA as
an alternative approach to detect and accommodate conditional
dependence between indicators, there is no specific guideline
about to what degree a prior should be informative to properly

model the conditional dependence (Ulbricht et al., 2018). To
the authors’ knowledge, only a strongly informative prior was
empirically studied under limited conditions (Asparouhov and
Muthén, 2011). Thus, this article presents a simulation study
of which aim is to examine (1) the utility of priors in flexible
Bayesian LCA with a wide range of variances (i.e., strongly non-
informative to strongly informative priors) in terms of Type
I error and power for detecting conditional dependence; and
(2) the influence of imposing approximate independence on fit
(PPP) of Bayesian LCA. The current investigation focuses on
the simple case of binary indicators measured in cross-sectional
research-that is, flexible Bayesian LCA as a beginning attempt
to understand the performance of LCA under the assumption of
approximate independence.

MATERIALS AND METHODS

This section illustrates the model specifications of LCA; and
describes the simulated conditions and Monte Carlo procedure
utilized to examine the performance of Bayesian LCA under the
approximate independence assumption.

Bayesian LCA Models
Let Y be a full response vector for a set of J indicators, where
j = 1,. . ., J; and let X be a discrete latent variable consisting of M
latent classes. A particular class is denoted by m. The probability
of a particular response pattern on J indicators can be defined as
follows:

P(Y) =

M∑
m=1

P(X = m)f (Y|X = m) (1)

Let yj denote a response on indicator j; then conditional density
for indicator j (f (yj|X = m)) is statistically independent of
each other, given latent class membership m. Therefore, the
conditional independence assumption can be represented as

P(Y) =

M∑
m=1

P(X = m)

J∏
j=1

f (yj|X = m) (2)

The conditional density f (yj|X = m)depends on the assumed
distribution of responses. Suppose the response vector Y =
(y1, y2, . . . , yJ)Tconsists of J binary variables. Then themth latent
class density is given by f (yj|X = m) = ρ

yj
mj(1− ρmj)

1−yj , where
ρmj denotes the probability of endorsing item j for given latent
class membership m (f (yj = 1|X = m)).

This standard LCA model can be formulated in terms of
a multivariate probit model with a continuous latent response
variable y∗j for indicator j:

y∗j |X ∼ N(µjm, 1), (3)

whereyj = 0, theny∗j < 0; thus ρmj = 0, then P(y∗j < 0|X = m) =

8(µjm). A multivariate form of this model can be expressed as

y∗j |X ∼ N(µjm, 1), (4)
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where Y∗ = (y∗1, y
∗
2, . . . , y

∗
J )

T , µm = (µ1m, µ2m, . . . ,µJm)T and
I is a correlation matrix that all the off-diagonal elements are
equal to 0. The conditional dependence model with correlated
indicators is to replace Eq. 4 with

Y∗|X ∼ N(µm, 6m), (5)

where 6m represents an unrestricted correlation matrix. The
off-diagonal elements in 6m are called a tetrachoric correlation
for binary indicators that can be varied across classes. When
indicators have more than two categories, the correlation is called
a polychoric correlation. These correlations can be estimated
by maximizing the log-likelihood of the multivariate normal
distribution. The parameters of the conditional dependence
LCA model can be estimated using the Markov chain
Monte Carlo (MCMC) algorithm. The details about MCMC
estimation with prior information on each parameter are
provided by Asparouhov and Muthén (2011).

Population Model (Data Generation)
Two classes (Class 1 and Class 2) of equal size were simulated
in the population model with 10 binary class indicators. The
simulation conditions examined by Asparouhov and Muthén
(2011) were included in the current study for the sake of
comparability, along with some additional conditions. To vary
the level of conditional dependence among the indicators, data
were generated such that the tetrachoric correlation matrix in
Class 1 had all zero values (no dependence); or three nonzero
values ρ1,12 = ρ1,39 = ρ1,57 = 0.20, 0.50, or 0.80 (small, medium,
and large, respectively) and zero values for all other elements.
Here, ρm,jk is the correlation between indicator j and indicator
k in class m. The tetrachoric correlation matrix in Class 2 had
all zero values; or all zero values except for ρ2,46 = 0.20, 0.50,
or 0.80. The size of the nonzero correlations, if present, were
matched to be equal between the two classes. In addition, the
indicator thresholds µm,k were set to be equal within each class
but opposite in sign between the two classes-µ1,k = 1.00 and
µ2,k = −1.00, which yields a reasonable class separation at two
standard deviations (Lubke and Muthén, 2007). Sample size was
also simulated as N = 50, 75, 100, 500 in increments of 25, and
N = 1,000.

Analysis Model
The analysis model specified a weakly informative prior for
the indicator thresholds µm,k (∼ N [0, 5]) and for the class
threshold qm (∼ Dirichlet distribution D [10, 10]). They are
the default priors in Mplus 8 and not the focus of the current
study. Another default prior, inverse Wishart distribution IW
(I, f ), where I is identity matrix and f is degrees of freedom
(df ), was specified for the tetrachoric correlations among the
class indicators. To vary the variance of the priors, f was set
to be 11, 52, 108, 408, or 4,000. In this way, the correlations
were modeled as following a symmetric beta distribution on
the interval [–1, 1] with mean zero and variance of 0.33, 0.02,
0.01, 0.003, or 0.00003-consequently, 95% confidence limits of
the correlations approximately equal to ±1.13, ±0.30, ±0.20,
±0.10, or ±0.01, respectively (Barnard et al., 2000; Gill, 2008;

Asparouhov and Muthén, 2011). The prior having the largest
variance (0.33) was strongly non-informative because it indeed
corresponds to a uniform distribution on the interval [–1, 1]. The
prior having the second largest variance (0.02) was considered
weakly non-informative, and the other three priors with relatively
small variance were considered strongly informative (0.00003),
informative (0.003), and weakly informative (0.01).

Monte Carlo Specifications
Two hundred samples were drawn from each of 400 simulation
conditions (20 sample sizes × 4 levels of correlations among
the indicators × 5 prior variances), yielding a total of 80,000
replications. In Bayesian estimation, two independent Markov
chains created approximations to the posterior distributions,
with a maximum of 50,000 iterations for each chain. The first
half of each chain was discarded as being part of the burn-
in phase. Convergence was assessed for each parameter using
the Gelman-Rubin criterion (Gelman and Rubin, 1992) the
convergence rate was 100% in all simulated conditions. The
medians of the posterior distributions were reported as Bayesian
point estimates, which is the default setting in Mplus 8. Model
fit (PPP) was calculated based on the chi-square discrepancy
function (Scheines et al., 1999; Asparouhov and Muthén, 2010).

RESULTS

This section presents the results of the simulation study regarding
(1) the effects of the condition factors (sample size, correlation
size, prior variance) on Type I error and power of flexible
Bayesian LCA for detecting conditional dependence; (2) the
effects of the condition factors on fit (PPP) of the model; and (3)
bias in Bayesian estimates of indicator correlations.

Type I Error and Power for Testing
Conditional Dependence
Figure 1 depicts how often (zero or nonzero) correlations were
detected to be significantly different from zero at the nominal
alpha level of 0.05-“% significant.” It should be noted that this
figure summarizes the outcomes on a particular pair of indicators
(the first and second indicators at Class 1), but the results are
almost identical to those from other indicator pairs. Type I error,
false positive on a true zero correlation, was well controlled in the
flexible Bayesian LCA model. In fact, the average % significant,
represented by the blue lines in Figure 1, was below 5% for any
prior variance and for any sample size (see the bottom panel).

Power for detecting a nonzero correlation increased with the
use of less informative priors (see the top three panels). As
would be anticipated, a true nonzero correlation (ρ1,12 = 0.20,
0.50, or 0.80) was seldom estimated to be significantly different
from zero if the strongly informative prior was imposed on this
parameter. Also, power for detecting a true small correlation
(ρ1,12 = 0.20) was always less than satisfactory (i.e., <80%)
regardless of prior variance (see the bottom second panel).
When the correlation was moderate (ρ1,12 = 0.50), a (either
weakly or strongly) non-informative prior and a sample size of
at least 500 were required to yield acceptable power. For the

Frontiers in Psychology | www.frontiersin.org 4 August 2020 | Volume 11 | Article 1987

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-11-01987 August 4, 2020 Time: 15:47 # 5

Lee et al. Flexible Bayesian Latent Class Analysis

FIGURE 1 | Accuracy of testing zero and nonzero correlations by correlation size, sample size, and prior variance. The blue dots represent average % significant and
the blue line represents smoothed conditional means of % significant. The green line indicates % significant of 0.80, a satisfactory power to detect a true nonzero
correlation (top three panels). Note that the conditional means greater than 1 are not plausible values and merely indicate prediction artifact.

prior that allows for 95% of estimates to be within +0.10 and –
0.10 (i.e., an informative prior), power was adequate (≥80%)
when and only when a true large correlation (ρ1,12 = 0.80) was
estimated from a sample greater than N = 500. For the priors
having larger variance (weakly informative, non-informative, and
strongly non-informative priors), power for detecting a true large
correlation (ρ1,12 = 0.80) was satisfactory if the sample size
was at least 300.

Model Fit of Flexible Bayesian LCA
Analysis of variance was conducted to identify which condition
factors considerably influenced PPP. The estimated effect sizes
(η2) of the three condition factors and their interactions are
provided in Table 1. Sample size had a negligible effect on
PPP (η2 = 0.020), which is similar to the findings for Bayesian
confirmatory factor analysis in Muthén and Asparouhov (2012).
PPP was largely influenced by the size of correlations (i.e., the
magnitude of conditional dependence) among the indicators
(η2 = 0.388), as well as by the choice of prior variance for
these parameters (η2 = 0.104). Small to moderate effects were
observed for the interactions between the condition factors
(η2 = 0.014–0.057).

TABLE 1 | Effects of simulation condition factors on posterior predictive P-value.

Condition factor η2

Sample size (N) 0.020

Correlation size (C) 0.388

Prior variance (P) 0.104

N × C 0.042

N × P 0.022

C × P 0.057

N × C × P 0.014

Figure 2 describes the (large) effects of correlation size
and prior variance in a series of plots, in which the y-axis
represents PPP and the x-axis represents sample size. Recall
that the tetrachoric correlations between the indicators were
simulated to be 0, 0.20, 0.50, or 0.80-no, small, medium, and
large, respectively (in Figure 2, from the bottom to top panels).
Also, recall that the prior (symmetric beta) distributions for
these parameters were specified to have mean zero and variance
of 0.00003, 0.003, 0.01, 0.02, or 0.33-strongly informative,
informative, weakly informative, weakly non-informative, and
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FIGURE 2 | Posterior predictive P-value by sample size, correlation size, and prior variance. The gray dots represent estimated PPP and the blue line represents
smoothed conditional means of PPP. The green line indicates PPP of 0.50, an excellent fit.

strongly non-informative, respectively (in Figure 2, the panels
from left to right). The average PPP, represented by the blue
lines in Figure 2, was close to its expected value of 0.50 when
the actual value of the correlations was zero-that is, when the
indicators were conditionally independent within each class-
regardless of different choices for prior variance. Deviations
from 0.50 appeared with the use of less informative priors (i.e.,
larger prior variances), though the discrepancy was negligible
(see the bottom panel). Similar results were found in the case of
small correlations, or equivalently, small conditional dependence
(ρm,jk = 0.20; see the second bottom panel). In contrast, the
average PPP decreased farther from 0.50 with the correlations
greater than small (ρm,jk = 0.50–0.80; see the top two panels),
and more quickly when a more informative prior was chosen
for the correlations-that is, interaction between correlation size
and prior variance. Still, model fit was good if the strongly
non-informative prior was specified for moderate and large
correlations (in fact, correlations in any size).

The interactions of sample size with correlation size and prior
variance are also exhibited in Figure 2. When the correlations
between the indicators were less than moderate (ρm,jk = 0–0.20;
see the bottom two panels), sample size had no impact on
model fit. When the correlations were rather moderate or large

(ρm,jk = 0.50–0.80; see the top two panels), PPP decreased as
sample size increased; such deterioration in model fit became
greater as the prior was more informative. In general, PPP was
less variable as compared to the findings for Bayesian CFA
(Muthén and Asparouhov, 2012).

Bias in Bayesian Estimates Due to the
Presence of Conditional Dependence
Table 2 shows the Bayesian estimates of indicator correlations
in Class 1 from the fitted flexible Bayesian LCA models. Recall
that the correlation between the first and second indicators was
simulated to beρ1,12 = 0, 0.20, 0.50, or 0.80, while the correlations
between the first and third indicators and between the third and
eighth indicators were always zero in the population (ρ1,13 =

ρ1,38 = 0). These three indicators were purposefully selected to
scrutinize the influence of conditional dependence on estimating
correlations among other pairs of indicators. Similar to the
findings for cross-loadings in Bayesian CFA (Asparouhov and
Muthén, 2011) the estimate of a true zero correlation (i.e.,
conditional independence) was negatively biased by the presence
of a true nonzero correlation(s) (i.e., conditional dependence).
For example, both ρ̂1,13 and ρ̂1,38 deviated farther from their

Frontiers in Psychology | www.frontiersin.org 6 August 2020 | Volume 11 | Article 1987

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-11-01987 August 4, 2020 Time: 15:47 # 7

Lee et al. Flexible Bayesian Latent Class Analysis

TABLE 2 | Bayesian estimates of true zero correlations between class indicators.

ρ1,12 Prior ρ̂1,12 ρ̂1,13 ρ̂1,38

0.20 Strongly informative 0.0002 0.0000 0.0000

Informative 0.0134 −0.0006 0.0008

Weakly informative 0.0385 −0.0022 0.0019

Weakly non-informative 0.0594 −0.0036 0.0027

Strongly non-informative 0.1012 −0.0077 0.0052

0.50 Strongly informative 0.0004 0.0000 0.0000

Informative 0.0370 −0.0006 0.0000

Weakly informative 0.1023 −0.0024 −0.0002

Weakly non-informative 0.1544 −0.0040 −0.0008

Strongly non-informative 0.2543 −0.0073 −0.0023

0.80 Strongly informative 0.0009 0.0000 0.0000

Informative 0.0711 −0.0025 −0.0009

Weakly informative 0.1892 −0.0083 −0.0034

Weakly non-informative 0.2769 −0.0139 −0.0061

Strongly non-informative 0.4361 −0.0233 −0.0116

population value (0) in the negative direction as ρ1,12 increased.
Such bias became greater (i) when a less informative prior was
specified for these parameters and (ii) when one (or both) of the
two indicators had a nonzero correlation with other indicator(s)
within the same class. Still, Type I error was well controlled-a true
zero correlation (ρ1,13 = ρ1,38 = 0) was estimated as significantly
different from zero in less than 5% of chances.

DISCUSSION

The central assumption of LCA is the conditional independence
of indicators, given latent class membership. The current
literature has shown that Bayesian LCA under the assumption
of approximate independence provides an accessible alternative
way of detecting violations of the conditional independence
assumption (Asparouhov and Muthén, 2011). Unfortunately,
little is known about how the performance of Bayesian LCA
would be changed by a different choice of prior, even though
the prior is the key element of Bayesian analysis. The current
study, therefore, explores the utility of priors in a range of prior
variances in terms of Type I error and power for detecting
conditional dependence, model fit (PPP), and parameter bias.
In doing so, the authors believe this article contributes to the
methodology and applied communities by offering modeling
guidance to be considered when researchers choose Bayesian
LCA as a tool for analyzing highly correlated data.

Summary of Findings and Implications
The findings of the current simulation study show that Bayesian
LCA could adequately control for the Type I error of falsely
finding a true zero correlation as significantly different from
zero. In fact, it is a somewhat rigorous test with Type I error
smaller than 5% for all conditions examined. Power for detecting
a nonzero correlation increased if a non-informative, rather than
informative, prior was chosen. If the researcher secured a sample
that included 300 or more, power for testing a large correlation

would be satisfactory with any choice from weakly informative
to strongly non-informative priors. For all priors examined, a
true small correlation (i.e., 0.20) was significant in less than
half of the replications. This finding implies that even when a
correlation is estimated to have a positive value, the modeling
may not produce enough power to establish significance for
that correlation. Thus, a non-significant correlation should not
be automatically discounted as being zero. Instead, the size of
the estimated value should also be taken into account (Ulbricht
et al., 2018). Unfortunately, another layer of complexity is
that the Bayesian estimate may be biased downwardly by the
presence of other nonzero correlations among the indicators, as
observed in the current simulation. In many research settings,
the true distribution of parameters is usually unknown and
thus, researchers should be cautious about choosing extremely
informative priors in either direction.

This study also found that model fit (PPP) of Bayesian LCA
is susceptible to the magnitude of conditional dependence and
the prior variance specified for the corresponding parameters
(correlations). It is not surprising that in our simulation,
approximate independence models fit well when the actual
value of indicator correlations was equal to the prior mean
(0). Rather, it is interesting that when the actual correlation
value was different from the prior mean, model fit decreased
as a more informative prior (i.e., smaller prior variance) was
imposed on the correlations. A smaller variance may not let
correlations escape from their zero prior mean, producing a
worse PPP value. In a similar vein, model fit was acceptable when
a non-informative prior was specified with a large prior variance
regardless of the degree of dependence.

One should determine priors ahead of data collection in
accordance with his/her substantive theory and/or previous
findings from similar populations. In the context of cluster
analysis, the researcher may consider either informative or
non-informative priors when conditional independence has
been confirmed a priori so that indicator correlations are
nuisance parameters. More often, the nature of cluster analysis
is rather exploratory (Lanza and Cooper, 2016) looking for
or testing for correlated indicators. In such a case, the
researcher may begin with non-informative priors reflecting
large uncertainty on the parameter values. Otherwise, a range
of priors will be equally inspired. Nevertheless, our simulation
suggests that less informative priors, even strongly non-
informative priors, would be a promising choice for running
flexible Bayesian LCA.

Limitations and Future Research
Although a few important findings and implications were
discussed in this article, the current simulation study has
two notable limitations that need to be addressed in future
research. First, one must assess the validity of the findings
because any variation in Bayesian application may affect
the trustworthiness of the simulation results. For instance,
other BSEM fit measures-e.g., deviance information criteria
(Spiegelhalter et al., 2002) widely applicable information criterion
(Watanabe, 2010) and leave-one-out cross-validation statistics
(Gelfand, 1996) and available significance tests for conditional
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independence (Andrade et al., 2014) should be considered to
confirm the performance of flexible Bayesian LCA.

Second, caution should be paid to generalizing the findings
beyond the conditions included in the study. The simulation
considered only two latent classes and a relatively small number
(10) of binary indicators. The number of latent classes and the
number of their indicators are not expected to considerably
affect Type I error and power of the analysis and bias in
parameter estimation but may have an impact on model fit
(PPP). In addition, only the default priors set by Mplus 8 were
analyzed in this study. Asymmetric, rather than symmetric,
binomial distribution may be a better prior for correlations
among class indicators because correlations are bounded by two
values (–1 and 1). Mode or mean of posterior distribution, rather
than median, can serve as a better point estimate for correlations
particularly when the distribution is not normal. Because the

exact distribution of a posterior is typically not known, it is
recommended to plot the posterior distribution and choose the
measure that best represents the sample. Taken together, further
simulation work is encouraged to continue to increase the utility
of Bayesian LCA for various models and data environments.
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APPENDIX

TITLE: Bayesian latent class analysis model of approximate independence

DATA: FILE = example.dat;
!Names data set.

VARIABLE: NAMES = u1-u10;
!Assigns names to the variables in the data set
CATEGORICAL = u1-u10;
!Specifies which dependent variables are treated as binary or ordered categorical variables in the model and its estimation. In this example,
all dependent variables are binary.
MISSING = .;
!Specifies the values or symbols in the data set that are treated as missing or invalid. In this example, dot (.) is the missing value flag.
CLASSES = C(2);!Assigns names to the categorical latent variables in the model and specifies the number of latent classes for each
categorical latent variable. In this example, the latent variable C has two classes.

ANALYSIS: ESTIMATOR = BAYES;
!Activates the Bayesian estimator.
CHAINS = 2;
!Specifies using two Markov Chains for conducting the analysis.
PROCESSORS = 2;
!For use in multi-core systems, assigns two processors with one per chain;
TYPE = MIXTURE;
!Carries out a mixture analysis.

MODEL: %OVERALL%
%C#1%
!In the first class,
[u1$1-u10$1*1]; !Specifies starting values (in this example, 1) for the thresholds of the dependent variables
u1-u10 WITH u1-u10*0 (p1-p45);
!Assigns labels to the correlations among the dependent variables
%C#2%
[u1$1-u10$1*1];
u1-u10 WITH u1-u10*0 (p46-p90);

MODEL PRIORS: p1-p90 ∼ IW(0, 11);
!Assigns priors (in this example, inverse Wishart distributions) to the correlations among the dependent variables.
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