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Within the framework of item response theory, a new and flexible general three-parameter

logistic model with response time (G3PLT) is proposed. The advantage of this model is

that it can combine time effect, ability, and item difficulty to influence the correct-response

probability. In contrast to the traditional response time models used in educational

psychology, the new model incorporates the influence of the time effect on the

correct-response probability directly, rather than linking them through a hierarchical

method via latent and speed parameters as in van der Linden’s model. In addition,

the Metropolis–Hastings within Gibbs sampling algorithm is employed to estimate the

model parameters. Based on Markov chain Monte Carlo output, two Bayesian model

assessment methods are used to assess the goodness of fit between models. Finally,

two simulation studies and a real data analysis are performed to further illustrate the

advantages of the new model over the traditional three-parameter logistic model.

Keywords: Bayesian inference, deviance information criterion (DIC), item response theory (IRT), logarithm of the

pseudomarginal likelihood (LPML), Markov chain Monte Carlo (MCMC), three-parameter logistic model

1. INTRODUCTION AND MOTIVATION

Computerized assessment has become a widely accepted method of testing owing to the fact
that the results produced by examinees can be quickly and accurately evaluated by virtue of the
computational power that is now available. In addition, with the help of computer technology, the
response times of examinees are easier to collect than in the case of traditional paper-and-pencil
tests. The collected response times provide a valuable source of information on examinees and test
items. For example, response times can be used to improve the accuracy of ability estimates (van
der Linden, 2007; Klein Entink et al., 2009a; van der Linden and Glas, 2010; Wang et al., 2013,
2018a; Wang and Xu, 2015; Fox and Marianti, 2016; Bolsinova and Tijmstra, 2018; De Boeck and
Jeon, 2019), to detect rapid guessing and cheating behavior (van der Linden and Guo, 2008; van der
Linden, 2009; Wang and Xu, 2015; Pokropek, 2016; Qian et al., 2016; Skorupski and Wainer, 2017;
Wang et al., 2018a,b; Lu et al., 2019; Sinharay and Johnson, 2019; Zopluoglu, 2019), to evaluate the
speededness of tests (Schnipke and Scrams, 1997; van der Linden et al., 2007), and to design more
efficient tests (Bridgeman and Cline, 2004; Chang, 2004; Choe et al., 2018).

1.1. Advantages of Our Model Over Traditional Response Time
Models in Educational Psychology Research
Although response times in both educational and psychological research have been studied widely
and in depth, there are still some deficiencies in the existing literature. Here, we compare existing
response time models with our new model and analyze the advantages of our model from
multiple aspects.
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FIGURE 1 | The 3-D diagram of ability, time, and correct response probability.

Thissen (1983) proposed a joint model of response time
and accuracy to describe the speed-accuracy relationship. In
his model, the speed-accuracy trade-off is reflected by letting
response accuracy depend on the time devoted to an item:
spending more time on an item increases the probability of
a correct response. Thissen’s joint model can be expressed as
follows:

logTij = u+ ηi + ςj − ρ(ajθi − bj)+ εij,

where Tij is the response time of the ith examinee answering
the jth item, u is a general intercept parameter, ηi and ςj can
be interpreted, respectively as the speed of examinee i and the
amount of time required by item j, ρ is a regression parameter,
aj and bj are, respectively the item discrimination and difficulty
parameters, θi is the ability parameter for the ith examinee, and
εij ∼ N(0, σ 2). The speed–accuracy trade–off is represented
by the term ajθi − bj when ρ < 0. When ρ > 0, the
speed-accuracy relation is reversed. However, the way in which
this model incorporates personal-level and item-level parameters
means that it is unable to fully reflect the direct impact of
the response time on the correct-response probability. Our new
model solves this problem. The response time and the ability
and item difficulty parameters are combined in an item response
model that reflects the way in which the interactions among
the three factors influences the correct-response probability. To
provide an intuitive explanation, we use a three-dimensional
diagram (Figure 1) to illustrate the effect of the ability and
response time on the correct-response probability. A similar
modeling method was proposed by Verhelst et al. (1997).

Roskam (1987, 1997) proposed a Rasch response time model
integrating response time and correctness. According to this
model, the probability of a correct response for the ith examinee
answering the jth item can be written as

p(Yij = 1 | Tij, i, j) =
θiTij

θiTij + δj
=

exp(ξi + τij − κj)

1+ exp(ξi + τij − κj)
,

where Yij denotes the response of the ith examinee answering
the jth item, θi is the ability parameter for the ith examinee. δj
is the item difficulty parameter for the jth item, and ξi, τij, and
κj are the logarithms of θi, Tij, and δj, respectively. We can see
that when Tij goes to infinity, the correct-response probability
p(Yij = 1 | Tij, i, j) approaches 1, no matter how difficult the
item is. In fact, this type of model can only be applied to speeded
tests, because a basic characteristic of such tests is that test items
are quite easy, so, with unlimited time available, the answers are
almost always correct. However, our new model is designed for
a power test. This means that even if the examinees are given
enough time, they cannot be sure to answer an item correctly,
but rather they answer the item correctly with the probability of
a three-parameter logistic (3PL) model.

Although there is some similarity between our model and the
item response model proposed byWang and Hanson (2005) with
regard to the incorporation of response time into the traditional
3PL model, there are some major differences in concept and
construction. Wang and Hanson give the probability of a correct
response to item j by examinee i as

p(Yij = 1 | aj, bj, cj, dj, θi, ηi,Tij) = cj

+
1− cj

1+ exp[−1.7aj(θi − bj − ηidj/Tij)]
,

where aj, bj, and cj are, respectively the item discrimination,
difficulty, and guessing parameters for the jth item, as in the
regular 3PL model. θi and ηi are, respectively the ability and
slowness parameters for the ith examinee, and dj is the slowness
parameter for the jth item. The item and personal slowness
parameters determine the rate of increase in the probability of
a correct answer as a function of response time. We will now
analyze the differences between the two models.

From the perspective ofmodel construction, the response time
and the item and personal parameters are all incorporated into
the same exponential function in Wang and Hanson’s model,
namely, exp[−1.7aj(θi−bj−ηidj/Tij)], whereas in our model, the
parameters and time effect appear in two different exponential
functions (see the following section for a detailed description
of the model): exp[−1.7aj(θi − bj)] + exp(−t∗ij). Our model

considers not only the influence of the personal and item factors
on the correct-response probability, but also that of the time
effect. In Wang and Hanson’s model, two slowness parameters
associated with persons and items are introduced on the basis of
the traditional 3PL model, which increases the complexity of the
model. The model can be identified only by imposing stronger
constraints on the model parameters. The accuracy of parameter
estimation may be reduced owing to the increase in the number
of model parameters. However, in our model, no such additional
parameters related to items and persons are introduced, and
therefore the model is more concise and easy to understand.
In terms of model identifiability, our model is similar to the
traditional 3PLmodel in that no additional restrictions need to be
imposed.More importantly, parameter estimation becomesmore
accurate because of the addition of time information. Besides
the personal ability parameter, a personal slowness parameter
is included Wang and Hanson’s model. In fact, their model is
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a multidimensional item response theory model incorporating
response time. In their model, it is assumed that these two
personal parameters are independent, but this assumption may
not necessarily be true in practice. For example, the lower a
person’s ability, the slower is their response. That is to say,
there is a negative correlation between the ability parameter and
the slowness parameter. More research is needed to verify this.
Like other models based on the traditional 3PL model (see the
next subsection), Wang and Hanson’s model cannot distinguish
between different abilities under different time intensities when
examinees have the same response framework. However, our new
model can deal with this problem very well.

In addition, our model introduces the concept of a time
weight. Depending on the importance of a test (e.g., whether
it is a high-stakes or a low-stakes test), the effect of the time
constraint on the whole test is characterized by a time weight.
This is something that cannot be dealt with by Wang and
Hanson’s model.

van der Linden (2007) proposed a hierarchical framework
in which responses and response times are modeled separately
at the measurement model level, while at a higher level, the
ability and speed parameters are included in a population model
to account for the correlation between them. In his approach,
the latent speed parameter directly affects the response time,
while the speed parameters and ability parameters are linked
by the hierarchical model. It is known that in item response
theory models, ability has a direct impact on the correct-
response probability. Thus, we can see that the correct-response
probability is related to the response time via the personal
parameters (speed and ability). Van der Linden’s hierarchical
modeling method is unrealistic in that it includes the response
time and the ability parameters in the item response model,
whereas our model represents the relationships among response
time, ability, and correct-response probability more simply
and directly. Several other models have a similar structure to
van der Linden’s hierarchical model, including those of Fox
et al. (2007), Klein Entink et al. (2009a,b), van der Linden
and Glas (2010), Marianti et al. (2014), Wang and Xu (2015),
Wang et al. (2018a), Fox and Marianti (2016), and Lu et al.
(2019).

1.2. Advantages of Our Model Compared
With the Traditional 3PL Model
Item response theory (IRT) models have been extensively used
in educational testing and psychological measurement (Lord
and Novick, 1968; van der Linden and Hambleton, 1997;
Embretson and Reise, 2000; Baker and Kim, 2004). The most
popular IRT model that includes guessing is the 3PL model
(Birnbaum, 1968), which has been discussed in many papers
and books (see e.g., Hambleton et al., 1991; van der Linden
and Hambleton, 1997; Baker and Kim, 2004; von Davier, 2009;
Han, 2012). However, several studies have revealed that the 3PL
model has technical and theoretical limitations (Swaminathan
and Gifford, 1979; Zhu et al., 2018). In this paper, we focus
on another defect of the traditional 3PL model, namely, that
it cannot distinguish between different abilities under different

TABLE 1 | The setting of the true values of discrimination, difficulty, and guessing

parameters.

Item Discrimination Difficulty Guessing

1 0.8 −1 0

2 1 0 0.05

3 1.2 1 0.1

time intensities when the examinees have the same response
framework. Here, we give a simulation example to illustrate the
shortcomings of the traditional 3PL model and the advantages
of our model (which is a general three-parameter logistic model
with response time: G3PLT). We assume that 24 examinees
answer three items and that the examinees can be divided into
three groups of eight, with the examinees in each group having
response frameworks (1, 0, 0), (0, 1, 0), and (1, 1, 0), respectively.
Here, 0 indicates that the item is answered correctly and 1
indicating that it is answered incorrectly. The item parameters
of the three items are calibrated in advance and known. The
discrimination, difficulty, and guessing parameters are set as
in Table 1.

To consider the influence of different time effects on the
ability of the examinees, eight time transformation values are
considered: −0.2, 0.2, 0.5, 1, 2, 3, and 8. The specific settings
for the time transformation values can be found in section 2.
Table 2 shows the estimated ability values from the 3PL model
and from our model under different response frameworks, with
the maximum likelihood method being used to estimate the
ability parameter.

The following conclusions can be drawn from Table 2.

1. The estimated ability under the G3PLT model with the same
response framework will gradually increase as the transformed
time decreases from 8 to −0.2. This indicates that the
examinees may have different proficiencies in responding to
items. Less time is taken if the examinee has greater ability.
The time effect captures exactly the information that the
traditional 3PL model cannot provide. Specifically, the 3PL
model cannot distinguish between abilities when there are
different response times under the same response framework.

2. As an illustration, we consider the case where the transformed
time is −0.2. The ability estimates under the three response
frameworks (1, 0, 0), (0, 1, 0), and (1, 1, 0) are−0.8863, 0.1408,
and 1.3109, respectively. We find that the more difficult the
item and the greater the number of items answered correctly,
the higher are the ability estimates. Without considering the
time effect, the ability estimates based on the 3PLmodel under
the three response frameworks are −0.9339, −0.7207, and
0.6659, respectively.

3. Under the three response frameworks, the ability estimates
obtained from the G3PLT model and the 3PL model are
almost the same when the transformed time reaches 8. This
indicates that even if the examinees are allowed enough time,
they cannot be certain of answering an item correctly, but can
do so only with the correct-response probability given by the
3PL model.
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TABLE 2 | The comparisons of ability estimates under the frameworks of 3PL

model and G3PLT model.

Fitting Response Transformated Estimation of

Examinees model framework time t* ability

1 (1, 0, 0) −0.2 −0.8863

2 (1, 0, 0) 0 −0.8970

3 (1, 0, 0) 0.2 −0.9052

4 G3PLT (1, 0, 0) 0.5 −0.9142

5 (1, 0, 0) 1 −0.9232

6 (1, 0, 0) 2 −0.9305

7 (1, 0, 0) 3 −0.9327

8 (1, 0, 0) 8 −0.9339

− 3PL (1, 0, 0) − −0.9339

9 (0, 1, 0) −0.2 0.1408

10 (0, 1, 0) 0 0.0614

11 (0, 1, 0) 0.2 −0.0139

12 G3PLT (0, 1, 0) 0.5 −0.1233

13 (0, 1, 0) 1 −0.2945

14 (0, 1, 0) 2 −0.5397

15 (0, 1, 0) 3 −0.6515

16 (0, 1, 0) 8 −0.7202

− 3PL (0, 1, 0) − −0.7207

17 (1, 1, 0) −0.2 1.3109

18 (1, 1, 0) 0 1.0990

19 (1, 1, 0) 0.2 0.9791

20 G3PLT (1, 1, 0) 0.5 0.8706

21 (1, 1, 0) 1 0.7752

22 (1, 1, 0) 2 0.7016

23 (1, 1, 0) 3 0.6785

24 (1, 1, 0) 8 0.6660

− 3PL (1, 1, 0) − 0.6659

We now give another example to further explain the advantages
of the G3PLT model. Under the condition that the correct-
response probability is the same, we consider the response times
of examinees i and j when they answer the same item, and we
find that these are 1 and 2 min, respectively. In general, we think
that the examinee with shorter response times has a higher ability.
Thus, here the ability of examinee i should be higher than that
of examinee j. However, since the 3PL model does not consider
response time, the difference in ability cannot be distinguished.
This problem can be solved by using the G3PLT model. Because
this model takes into account the information provided by
response time, it can estimate the ability of examinees more
objectively and accurately. As shown in Figure 2, for the same
item, L1 represents the item characteristic curve corresponding to
the case where examinees need a long response time (t∗1 = 4.41),
and L2 represents the item characteristic curve corresponding to
the case where examinees need a short response time (t∗1 = 1.94).
When p = 0.86 is given as the correct-response probability, the
estimated ability under L1 is 0, while the estimated ability under
L2 is 0.88. Therefore, according to the evaluation results from
the G3PLT model, the examinees with shorter times should have

FIGURE 2 | The item characteristic curve based on different time intensities.

higher abilities, whereas the 3PL model is unable to distinguish
between the two cases. In addition, it can be seen from the figure
that when the ability is fixed at 0, the probabilities of a correct
response under the two characteristic curves L1 and L2 are 0.86
and 0.52, respectively. This indicates that under the same ability
condition, the correct-response probability of the examinees with
short response times is lower than that of the examinees with long
response times.

The remainder of this paper is organized as follows.
Section 2 presents a detailed introduction to the proposed
G3PLT model. Section 3 provides a computational strategy based
on a Metropolis–Hastings within Gibbs sampling algorithm
to meet computational challenges for the proposed model.
Two Bayesian model comparison criteria are also discussed
in section 3. In section 4, simulation studies are conducted
to examine the performance of parameter recovery using
the Bayesian algorithm and to assess model fit using the
deviance information criterion (DIC) and the logarithm of
the pseudomarginal likelihood (LPML). A real data analysis
based on the Program for International Student Assessment
(PISA) is presented in section 5. We conclude with a
brief discussion and suggestions for further research in
section 6.

2. THE MODEL AND ITS IDENTIFICATION

2.1. The General Three-Parameter Logistic
Model With Response Time (G3PLT)
Let the examinees be indexed by i = 1, 2, . . . ,N and the items
by j = 1, 2, . . . , J. Let θ denote the parameters representing the
effects of the abilities of the examinees, and let aj, bj, and cj denote
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the item effects, which are generally interpreted, respectively as
discrimination power, difficulty, and success probability in the
case of random guessing. If Yij denotes the response of the
ith examinee answering the jth item, then the corresponding
correct-response probability can be expressed as

pij = p(Yij = 1 | aj, bj, cj, θi, t
∗
ij)

= cj +
1− cj

1+ exp[−Daj(θi − bj)]+ exp(−t∗ij)
, (2.1)

whereD is a constant equal to 1.7. The influence of the time effect
on the probability is described by the term exp(−t∗ij).

2.2. Time Transformation Function
It is obvious that when the response time of each item is very
short, the correct-response probability of an item is reduced.
In addition, we know that it is impossible for an examinee to
answer an item 100% correctly even if they are given enough
time to think about the item, and this can be attributed to
limitations of the examinee’s ability. When examinees are given
enough time to answer each item, our model will reduce to the
traditional 3PL model, and each item is answered correctly with
the corresponding 3PL model correct-response probability. To
make the model fully represent the requirement that the correct-
response probability varies with time and to eliminate the effects
of different average response times for each item in different tests,
we consider the following time transformation:

t∗ij = f (tij) =
log tij − µt

σt
+W, (2.2)

where µt is the logarithm of the average time spent by all
examinees in answering all items, and σt is the corresponding
standard deviation.W denotes the time weight, which is equal to
zero or a positive integer. From the simulation study and real data
analysis, we find that the G3PLT model reduces to the traditional
3PL model when the time weight increases to 8, and therefore we
restrict the weight to values in the range 0–8. An increase in the
time weight indicates that the time factor of the test has a small
influence on the correct-response probability of the examinee.

Proposition 1. Suppose that the correct-response probability
p(Yij = 1 | aj, bj, cj, θi, t

∗
ij)is given by Equation (2.1). Then, we

have the following results:

1. As the transformed time t∗ij → +∞, the G3PLT model reduces

to the 3PL model. That is,

pij → cj +
1− cj

1+ exp[−Daj(θi − bj)]
. (2.3)

In other words, it is impossible for the examinee to answer the
item 100% correctly even if they are given enough time to think
about the item, which can be attributed to the limitations of the
examinee’s ability.

2. As the transformed time t∗ij → −∞ (the original time tij → 0),

the correct-response probability of the G3PLT model tends to
zero. That is,

pij = cj +
1− cj

1+ exp[−Daj(θi − bj)+ exp(−t∗ij)]
↓ 0. (2.4)

When there is not enough time to answer items (e.g., at the
end of the examination), any item answered by the examinee
must be one that requires only a very short time to finish.
As the response time continues to shorten, the correct-response
probability is reduced.

3. The G3PLT model can be reduced to a G2PLT model by
constraining the lower asymptote parameter cj to be zero, and
a G1PLT model can be obtained by further constraining aj to be
the same across all items.

2.3. Asymptotic Properties of the Model
Let pj be the correct-response rate for the jth item. When the
transformed time t∗ij → +∞, the model in Equation (2.1) can

be written as

lim
t∗ij→+∞

{
cj +

1− cj

1+ exp[−Daj(θi − bj)]+ exp(−t∗ij)

}

= cj +
1− cj

1+ exp[−Daj(θi − bj)]
= pj. (2.5)

The ability can be obtained as

θi = bj −
1

Daj
log

(
1− pj

pj − cj

)
. (2.6)

Next, we will use a specific example to explain the meaning of
Equations (2.5) and 2.6. Assuming that pj = 0.5, aj = 1.5, bj = 1,
and cj = 0.1, we obtain θi = 0.8 from Equation (2.6). This
result indicates that even if examinee i has sufficient response
time to finish item j, the examinee’s ability should be at least
0.8 (the intersection of the vertical asymptote and the x-axis
in Figure 3) if the correct response probability reaches 0.5;
otherwise, no matter how long a response time is allowed, the
examinee’s correct-response probability cannot reach 0.5. This is
like a primary school pupil attempting to solve a college math
problem, because the pupil’s ability is so low that no matter how
much time he is given, he cannot get a correct answer to item j
other than by guessing. Moreover, when the ability θi → +∞,
the model in Equation (2.1) can be written as

lim
θi→+∞

{
cj +

1− cj

1+ exp[−Daj(θi − bj)]+ exp(−t∗ij)

}

= cj +
1− cj

1+ exp(−t∗ij)
= pj. (2.7)

The transformed time t∗ij can be obtained as

t∗ij = − log

(
1− pj

pj − cj

)
. (2.8)
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FIGURE 3 | The equiprobability curve based on the ability and time.

We again assume that pj = 0.5, aj = 1.5, bj = 1,
and cj = 0.1. From (2.8), the transformed time t∗ij is about

−0.2. This result indicates that even if the examinee i has a
strong ability, the transformed time required to answer item j
should not be less than −0.2 (the intersection of the horizontal
asymptote and the y-axis in Figure 3) if the correct-response
probability reaches 0.5; otherwise, no matter how strong the
ability of the examinee, it is impossible to reach a correct-
response probability of 0.5. This is like a college student solving
a primary school math problem. Although the college student’s
ability is very strong, she cannot finish the item in a very
short time. In addition, the correct-response probability of the
examinees is the same for two points on the equiprobability
curve. For example, for the two examinees F1 and F2 with the
same correct-response probability 0.7 in Figure 3, the examinee
F1 with low ability (1) takes a long time (2.35), while the
response time (1.67) of the examinee F2 with high ability (2) is
short to obtain the same correct-response probability. Similarly,
the equiprobability curve based on item difficulty and time is
shown in Figure 4. The correct-response probability is the same
for two points on the equiprobability curve. The item with
high difficulty takes a long time, while the response time of
the item with low difficulty is short, giving the same correct-
response probability.

2.4. Model Identification
To ensure identification of the G3PLT model, either the scale of
latent traits or the scale of item parameters has to be restricted
(Birnbaum, 1968; Lord, 1980; van der Linden and Hambleton,
1997). In this paper, we set the mean and variance of the latent

FIGURE 4 | The equiprobability curve based on the item difficulty and time.

traits to zero and one, respectively (Bock and Aitkin, 1981). The
mean of the latent trait is fixed to remove the trade-off between
θi and bj in location, and the variance of the latent trait is fixed to
remove the trade-off among θi, bj, and aj in scale.

3. BAYESIAN INFERENCE

3.1. Prior and Posterior Distributions
In a Bayesian framework, the posterior distribution of the
model parameters is obtained based on the observed data
likelihood (sample information) and prior distributions (prior
information). In general, these two kinds of information have
an important influence on the posterior distribution. However,
in large-scale educational assessment, the number of examinees
is often very large. Therefore, the likelihood information plays a
dominant role, and the selection of different priors (informative
or non-informative) has no significant influence on the posterior
inference (van der Linden, 2007; Wang et al., 2018a). Based on
previous results (Wang et al., 2018a), we adopt the informative
prior distribution to analyze the following simulation studies
and real data. The specific settings are as follows. For the latent
ability, we assume a standardized normal prior, i.e., θi ∼ N(0, 1)
for i = 1, . . . ,N. The prior distribution for the discrimination
parameter aj is a lognormal distribution, i.e., aj ∼ logN(0, 1) for
j = 1, . . . , J. The prior distribution for the difficulty parameter
bj is a standardized normal distribution, i.e., bj ∼ N(0, 1) for
j = 1, . . . , J. For the guessing parameter, we assume a Beta
distribution, i.e., cj ∼ Beta(2, 10) for j = 1, . . . , J. Then, the
joint posterior distribution of the parameters given the data is as
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follows:

p(θ , a, b, c | Y ,T) ∝




N∏

i=1

J∏

j=1

p(Yij | θi, aj, bj, cj,Tij)




N∏

i=1

p(θi)

×

J∏

j=1

p(aj)p(b)p(cj). (3.1)

3.2. Bayesian Estimation
Bayesian methods have been widely applied to estimate
parameters in complex IRT models (see e.g., Albert, 1992; Patz
and Junker, 1999a,b; Béguin and Glas, 2001; Rupp et al., 2004).
In this study, the Metropolis-Hastings within Gibbs algorithm
(Metropolis et al., 1953; Hastings, 1970; Tierney, 1994; Chib and
Greenberg, 1995; Chen et al., 2000) is used to draw samples
from the full conditional posterior distributions because the
parameters of interest do not have conjugate priors within the
framework of the IRT model.

Detailed MCMC Sampling Process
Step 1: Sample the ability parameter θi for the ith examinee. We
independently draw θ∗i from the normal proposal distribution,

i.e., θ∗i ∼ N(θ
(r−1)
i , v2θ ). The prior of θi is assumed to follow a

normal distribution with mean µθ and variance σ 2
θ , i.e., θi ∼

N(µθ , σ
2
θ ). Therefore, the acceptance probability is given by

α(θ
(r−1)
i , θ∗i ) (3.2)

= min

{
1,

p(Y i | θ∗i , a
(r−1), b(r−1), c(r−1),Ti)pprior(θ

∗
i | µθ , σ

2
θ )

p(Y i | θ
(r−1)
i , a(r−1), b(r−1), c(r−1),Ti)pprior(θ

(r−1)
i | µθ , σ

2
θ )

}
.

Otherwise, the value of the preceding iteration is

retained, i.e., θi = θ
(r−1)
i . Here, Y i = (Yi1,Yti2, . . . ,YiJ),

Ti = (Yi1,Yti2, . . . ,YiJ), a = (a1, a2, . . . , aJ), b = (b1, b2, . . . , bJ),
and c = (c1, c2, . . . , cJ). In Equation (3.3), p(Y i | θi, a, b,Ti) =∏J

j=1(pij)
yij (1− pij)

1−yij , where pij is given in Equation (2.1).

Step 2: Sample the difficulty parameter bj for the jth item. We
independently draw b∗j from the normal proposal distribution,

i.e., b∗j ∼ N(b
(r−1)
j , v2j ). The prior of bj is assumed to follow a

normal distribution with mean µb and variance σ 2
b
, i.e., bj ∼

N(µb, σ
2
b
). The acceptance probability is given by

α(b
(r−1)
j , b∗j ) (3.3)

= min



1,

p(Y j | θ
(r), a

(r−1)
j , b∗j , c

(r−1)
j ,Tj)pprior(b

∗
j | µb, σ

2
b
)

p(Y j | θ
(r), a

(r−1)
j , b

(r−1)
j , c

(r−1)
j ,Tj)pprior(b

(r−1)
j | µb, σ

2
b
)



 .

Otherwise, the value of the preceding iteration is retained,

i.e., bj = b
(r−1)
j . Here, Y j = (Y1j,Y2j, . . . ,YNj),

Tj = (T1j,T2j, . . . ,TNj), and θ = (θ1, θ2, . . . , θN). In
Equation (3.3), p(Y j | θ , aj, bj, cj,Tj) =

∏n
i=1(pij)

yij (1− pij)
1−yij .

Step 3: Sample the discrimination parameter aj for the jth
item. We independently draw a∗j from the log-normal proposal

distribution, i.e., a∗j ∼ logN(log a
(r−1)
j , v2a). In addition, pprior(aj)

is a lognormal prior distribution, i.e., aj ∼ logN(µa, σ
2
a ). The

acceptance probability is given by

α(a
(r−1)
j , a∗j ) (3.4)

= min



1,

p(Y j | θ
(r), a∗j , b

(r)
j , c

(r−1)
j ,Tj)pprior(a

∗
j | µa, σ

2
a )a

∗
j

p(Y j | θ
(r), a

(r−1)
j , b

(r)
j , c

(r−1)
j ,Tj)pprior(a

(r−1)
j | µa, σ 2

a )a
(r−1)
j



 .

Otherwise, the value of the preceding iteration is retained,

i.e., aj = a
(r)
j . In Equation (3.4), (Y j | θ , aj, bj, cj,Tj) =∏n

i=1(pij)
yij (1− pij)

1−yij .

Step 4: Sample the guessing parameter cj for the jth item. We
independently draw c∗j from the uniform proposal distribution,

i.e., c∗j ∼ U(c
(r−1)
j −0.01, c

(r−1)
j +0.01). The prior of cj is assumed

to follow a Beta distribution, i.e., cj ∼ Beta(υ1, υ2). Therefore, the
acceptance probability is given by

α(c
(r−1)
j , c∗j ) (3.5)

= min



1,

p(Y j | θ
(r), a

(r)
j , b

(r)
j , c∗j ,Tj)pprior(c

∗
j | υ1,υ2)

p(Y j | θ
(r), a

(r)
j , b

(r)
j , c

(r−1)
j ,Tj)pprior(c

(r−1)
j | υ1,υ2)



 .

Otherwise, the value of the preceding iteration is retained,

i.e., cj = c
(r)
j . In Equation (3.5), p(Y j | θ , aj, bj, cj,Tj) =∏n

i=1(pij)
yij (1− pij)

1−yij .

3.3. Bayesian Model Assessment
Spiegelhalter et al. (2002) proposed the deviance information
criterion (DIC) for model comparison when the number of
parameters is not clearly defined. The DIC is an integrated
measure of model fit and complexity. It is defined as the sum of
a deviance measure and a penalty term for the effective number
of parameters based on a measure of model complexity. We
write � = (�ij, i = 1, . . . ,N, j = 1, . . . , J), where �ij =

(θi, aj, bj, cj)
′. Let {�(1), . . . ,�(R)}, where �

(r) = (�
(r)
ij , i =

1, . . . ,N, j = 1, . . . , J), �
(r)
ij = (θ

(r)
i , a

(r)
j , b

(r)
j , c

(r)
j )′ for i =

1, . . . ,N, j = 1, . . . , J, and r = 1, . . . ,R, denote an Markov chain
Monte Carlo (MCMC) sample from the posterior distribution in
Equation (3.1). The joint likelihood function of the responses can
be written as

L(Y | �,T) =

N∏

i=1

J∏

j=1

f (yij | θi, aj, bj, cj, tij), (3.6)

where f (yij | θi, aj, bj, cj, tij) is the response probability of the
G3PLT model. The logarithm of the joint likelihood function in
Equation (3.6) evaluated at �(r) is given by

log L(Y | �
(r),T) =

N∑

i=1

J∑

j=1

log f (yij | θ
(r)
i , a

(r)
j , b

(r)
j , c

(r)
j , tij).

(3.7)
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The joint log-likelihoods for the responses, log f (yij |

θ
(r)
i , a

(r)
j , b

(r)
j , c

(r)
j , tij), i = 1, . . . ,N and j = 1, . . . , J, are

readily available from MCMC sampling outputs, and therefore

log f (yij | θ
(r)
i , a

(r)
j , b

(r)
j , c

(r)
j , tij) in Equation (3.7) is easy to

compute. The effective number of parameters in the models is
defined by

pD = Dev(�)− Dev(�̂), (3.8)

where Dev(�) is a Monte Carlo estimate of the posterior
expectation of the deviance function Dev(�) = −2 log L(Y |

�,T), and the termDev(�̂) is computed by plugging the mean of
the simulated values of � into Dev(·), where �̂ =

∑R
r=1 �

(r)/R.
More specifically,

Dev(�) = −
2

R

R∑

r=1

log L(Y | �
(r)),

Dev(�̂) = −2 log L(Y | �̂).

(3.9)

The DIC can now be formulated as follows:

DIC = D̂ev(�)+2pD = D̂ev(�)+2
[
Dev(�)−D̂ev(�)

]
, (3.10)

A model with a smaller DIC value fits the data better.
Anothermethod is to use the logarithm of the pseudomarginal

likelihood (LPML) (Geisser and Eddy, 1979; Ibrahim et al., 2001)
to compare different models. This is also based on the log-
likelihood functions evaluated at the posterior samples of model
parameters. The detailed calculation process is as follows.

We letUij,max = max1≤r≤R[− log f (yij | θ
(r)
i , a

(r)
j , b

(r)
j , c

(r)
j , tij)],

and aMonte Carlo estimate of the conditional predictive ordinate
(CPO) (Gelfand et al., 1992; Chen et al., 2000) is then given by

log ̂(CPOij) = −Uij,max (3.11)

− log

{
1

R

R∑

r=1

exp[− log f (yij | θ
(r)
i , a

(r)
j , b

(r)
j , c

(r)
j , tij)− Uij,max]

}
.

Note that the maximum value adjustment used in log ̂(CPOij)
plays an important role in numerical stabilization in the

computation of exp[− log f (yij | θ
(r)
i , a

(r)
j , b

(r)
j , c

(r)
j , tij) − Uij,max]

in Equation (3.11). A summary statistic of the ĈPOij is the sum
of their logarithms, which is called the LPML and is given by

LPML =

N∑

i=1

J∑

j=1

log ̂(CPOij). (3.12)

A model with a larger LPML has a better fit to the data.

3.4. Accuracy Evaluation of Parameter
Estimation
To implement the MCMC sampling algorithm, chains of length
10,000 with an initial burn-in period 5,000 are chosen. In the
following simulation study, 200 replications are used. Five indices

are used to assess the accuracy of the parameter estimates. Let ϑ

be the parameter of interest. Assume that M = 200 data sets are
generated. Also, let ϑ̂ (m) and SD(m)(ϑ) denote the posterior mean
and the posterior standard deviation of ϑ obtained from themth
simulated data set form = 1, . . . ,M.

The bias for the parameter ϑ is defined as

Bias(ϑ) =
1

M

M∑

m=1

(ϑ̂ (m) − ϑ), (3.13)

and the mean squared error (MSE) for ϑ is defined as

MSE(ϑ) =
1

M

M∑

m=1

(ϑ̂ (m) − ϑ)2. (3.14)

The simulation SE is the square root of the sample variance of the
posterior estimates over different simulated data sets. It is defined
as

Simulation SE(ϑ) =

√√√√√ 1

M

M∑

m=1

(
ϑ̂ (m) −

1

M

M∑

ℓ=1

ϑ̂ (ℓ)

)2

, (3.15)

and the average of posterior standard deviation is defined as

SD(ϑ) =
1

M

M∑

m=1

SD(m)(ϑ). (3.16)

The coverage probability based on the 95% highest probability
density (HPD) intervals is defined as

CP(ϑ) (3.17)

=
# of 95% (HPD) intervals containing ϑ inM simulated data sets

M
.

4. SIMULATION STUDY

4.1. Simulation 1
We conduct a simulation study to evaluate the recovery
performance of the combined MCMC sampling algorithm based
on different simulation conditions.

Simulation Design
The following manipulated conditions are considered: (a) test
length J = 20 or 60 and (b) number of examinees N = 500,
1, 000, or 2, 000. Fully crossing different levels of these two factors
yields six conditions (two test lengths × three sample sizes).
Next, the true values of the parameters are given. True item
discrimination parameters aj are generated from a truncated
normal distribution, i.e., aj ∼ N(1, 0.2)I(aj > 0), j = 1, 2, . . . ,N,
where the indicator function I(A) takes a value of 1 if A is true
and a value of 0 if A is false. The item difficulty parameters bj
are generated from a standardized normal distribution. The item
guessing parameters cj are generated from a Beta distribution,
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i.e., cj ∼ Beta(2, 10). In addition, the ability parameters of the
examinees, θi, are also generated from a standardized normal
distribution. In each simulation condition, 200 replications
(replicas) are considered. Next, we generate the response time
data for each examinee based on the following facts:

1. The difficulty of each item has a direct impact on the response
time. That is to say, the time spent on simple items is shorter,
and the time spent on difficult items is longer.

2. In addition, the ability of each examinee also has a direct
impact on the response time. That is to say, examinees with
higher ability spend less time on an item.

3. Depending on the importance of the test (high-stakes test or
low-stakes test), the effect of the time constraint on the whole
test should be characterized by the time weighting.

In Wang and Xu (2015, p. 459), the average logarithms of the
response times for each item based on the solution behavior
follow a normal distribution. That is, log tj ∼ N(0.5, 0.25), j =
1, 2, . . . , J, where the average time tj spent on item j is about
1.64872 (= e0.5) min. We take the standardized transformation
t∗j = f (tj) = (log tj − 0.5)/0.5, so that t∗j ∼ N(0, 1), where

−∞ < t∗j < +∞.

Next, we consider the premise that the easier an item, the
shorter is the response time. The true values of the difficulty
parameter and the transformed time t∗j for each item are arranged

in order from small to large, i.e., b1 < b2 < · · · < bJ−1 < bJ
and t∗1 < t∗2 < · · · < t∗J−1 < t∗J . The corresponding item–time
pairs can be written as (b1, t

∗
1 ) < (b2, t

∗
2 ) < · · · < (bJ−1, t

∗
J−1) <

(bJ , t
∗
J ). The response time of each examinee is generated from

a normal distribution, i.e., t∗ij ∼ N(t∗j , 0.5), where j = 1, . . . , J.

Moreover, for a given item j, the premise that examinees with
higher ability spend less time on the item needs to be satisfied.
Therefore, we arrange θ1j > θ2j > · · · > θN−1,j > θN,j, and
t∗1j < t∗2j < · · · < t∗N−1,j < t∗N,j. The corresponding ability–

time pairs can be obtained by arranging the true values of the
ability parameter and the transformed time t∗ij , i.e., (θij, t

∗
ij). The

time weights range from 0 to 8. The higher the value of the
time weight, the weaker is the influence of the time factor of
the test on the correct-response probability of the examinee. In
this simulation study, we assume that the time factor of the test
has an important influence on the correct-response probability
of the examinee. Therefore, we set the time weight to 1 in this
simulation. Based on the true values of the parameters and the
response time data, the response data can be simulated using the
G3PLT model given by Equation (2.1).

Convergence Diagnostics
To evaluate the convergence of the parameter estimations, we
only consider convergence in the case of minimum sample sizes.
That is, the test length is fixed at 20, and the number of examinees
is 500. Two methods are used to check the convergence of our
algorithm. One is the “eyeball” method to monitor convergence
by visually inspecting the history plots of the generated sequences
(Zhang et al., 2007; Hung and Wang, 2012), and the other is the
Gelman–Rubin method (Gelman and Rubin, 1992; Brooks and
Gelman, 1998) for checking the convergence of the parameters.

The convergence of the Bayesian algorithm is checked by
monitoring the trace plots of the parameters for consecutive
sequences of 10,000 iterations. The trace plots show that all
parameter estimates stabilize after 5,000 iterations and then
converge quickly. Thus, we set the first 5,000 iterations as
the burn-in period. As an illustration, four chains started
at overdispersed starting values are run for each replication.
The trace plots of three randomly selected items are shown
in Figure 5. In addition, we find that the potential scale
reduction factor (PSRF) (Brooks and Gelman, 1998) values for
all parameters are less than 1.2, which ensures that all chains
converge as expected.

Recovery of Item Parameters
The average bias, MSE, SD, SE, and CP for discrimination,
difficulty, and guessing parameters based on six different
simulation conditions are shown in Table 3. The following
conclusions can be drawn.

1. Given the total test length, when the number of individuals
increases from 500 to 2,000, the average MSE, SD, and SE for
the discrimination, difficulty, and guessing parameters show
a decreasing trend. For example, for a total test length of
20 items, when the number of examinees increases from 500
to 2,000, the average MSE of all discrimination parameters
decreases from 0.0088 to 0.0072, the average SE of all
discrimination parameters decreases from 0.0022 to 0.0014,
and the average SD of all discrimination parameters decreases
from 0.0085 to 0.0066. The average MSE of all difficulty
parameters decreases from 0.0436 to 0.0213, the average SE
of all difficulty parameters decreases from 0.0272 to 0.0122,
and the average SD of all difficulty parameters decreases from
0.0362 to 0.0143. The average MSE of all guessing parameters
decreases from 0.0019 to 0.0013, the average SE of all guessing
parameters decreases from 0.0007 to 0.0006, and the average
SD of all guessing parameters decreases from 0.0013 to 0.0008.

2. The average SDs of the item parameters are larger than
their average SEs. This indicates that the fluctuations of
the posterior means of item parameters between different
replications are small compared with their fluctuations within
each replication.

3. Under the six simulated conditions, the average CPs of the
discrimination, difficulty, and guessing parameters are about
0.950.

4. When the number of examinees is held fixed but the number
of items increases from 20 to 40, the average MSE, SD, and SE
show that the recovery results for the discrimination, difficulty
and guessing parameters do not change much, which indicates
that the Bayesian algorithm is stable and there is no reduction
in accuracy due to an increase in the number of items.

In summary, the Bayesian algorithm provides accurate estimates
of the item parameters for various numbers of examinees and
items. Therefore, it can be used as a guide to practice.

Recovery of Ability Parameters
Next, we evaluate the recovery of latent ability from the plots of
the true values and the estimates in Figure 6. For a fixed number
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FIGURE 5 | The trace plots of three randomly selected items for the simulation study 1.

of examinees (500 or 1,000), when the number of items increases
from 20 to 60, the ability estimates become more accurate, with
the true values and the estimates basically lying on the diagonal
line. Note that the estimated abilities are the average of 200
replication estimates. Because of the increase in the number of
items, the probability of the situation in which all items are
answered correctly by the high-ability examinees and incorrectly
by the low-ability examinees, leading to a large deviation of the
ability estimators, is reduced. Therefore, the estimated values and
the true values of the ability at the end of the curve are closer

to the diagonal line when the number of items is 60. In summary,
the Bayesian sampling algorithm also provides accurate estimates
of the ability parameters in term of the plots of the true values and
the estimates.

4.2. Simulation 2
In this simulation study, we use the DIC and LPML model
assessment criteria to evaluate model fitting. Two issues need
further study. The first is whether the two criteria can accurately
identify the true model that generates data from numerous fitting
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models. The second concerns the influence of different time
weights in the G3PLT model on model fitting.

Simulation Design
In this simulation, the number of examinees is N = 1, 000 and
the test length is fixed at 20. Six item response models will be
considered: the traditional 3PLmodel and the G3PLTmodel with
time weights W = 0, 2, 4, 6, and 8. Thus, we evaluate the model
fitting in the following five cases:

• Case 1. Truemodel: G3PLTmodel with timeweight 0 vs. Fitted
model: 3PL model, G3PLT model with time weight 0.

• Case 2. Truemodel: G3PLTmodel with timeweight 2 vs. Fitted
model: 3PL model, G3PLT model with time weight 2.

• Case 3. Truemodel: G3PLTmodel with timeweight 4 vs. Fitted
model: 3PL model, G3PLT model with time weight 4.

• Case 4. Truemodel: G3PLTmodel with timeweight 6 vs. Fitted
model: 3PL model, G3PLT model with time weight 6.

• Case 5. Truemodel: G3PLTmodel with timeweight 8 vs. Fitted
model: 3PL model, G3PLT model with time weight 8.

The true values and prior distributions for the parameters are
the same as in Simulation 1. To implement the MCMC sampling
algorithm, chains of length 10,000 with an initial burn-in period
5,000 are chosen. The results of Bayesian model assessment based
on the 200 replications are shown in Table 4. Note that the
following results for DIC and LPML are based on the average of
200 replications.

From Table 4, we find that when the G3PLT model with time
weight 0 (G3PLT0) is the true model, the G3PLT0 model is
chosen as the better-fitting model according to the results for
DIC and LPML, which is what we expect to see. The medians of
DIC and LPML are respectively 25 324.43 and −13231.77. The
differences between the G3PLT0 model and 3PL model in the
medians of DIC and LPML are −33.72 and 199.23, respectively.
Similarly, when the G3PLT model with time weight 2 (G3PLT2)
is the true model, the G3PLT2 model is also chosen as the
better-fitting model according to the results for DIC and LPML.
The medians of DIC and LPML are respectively 22 777.38 and
−12221.93. The differences between the G3PLT2 model and 3PL
model in the medians of DIC and LPML are −74.07 and 21.75,
respectively. However, when the time weight increases from 4 to
8, the medians of DIC for the 3PL model and G3PLT model are
basically the same. This shows that the 3PL model is basically the
same as the G3PLT model with time weights 4, 6, and 8, which
is attributed to the fact that the G3PLT model reduces to the
traditional 3PL model when the time weight increases from 4 to
8. Based on the results for LPML, we find that the power of LPML
to distinguish between the true G3PLT4 (6, 8) model and the 3PL
model is stronger than that of DIC, because the LPMLs of the
twomodels differ greatly. For example, the difference between the
G3PLT8 model and 3PL model in the median of LPML is 46.45.

In summary, the two Bayesian model assessment criteria
can accurately identify the true model that generates data. In
addition, the process of transformation of the G3PLT model into
the traditional 3PL model is also reflected by the differences in
DIC and LPML. Therefore, the two Bayesian model assessment
criteria are effective and robust and can guide practice.
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FIGURE 6 | The comparisons between ability estimates and true values in different sample sizes. (A) The comparisons between ability estimates and true values

based on 500 examinees and 20 items. (B) The comparisons between ability estimates and true values based on 500 examinees and 60 items. (C) The comparisons

between ability estimates and true values based on 1,000 examinees and 20 items. (D) The comparisons between ability estimates and true values based on 1,000

examinees and 60 items.

5. REAL DATA

5.1. Data Description
In this example, the 2015 computer-based Program for
International Student Assessment (PISA) science data are
used. From among the many countries that have participated
in the computer-based assessment of the sciences, we choose
the students from the USA as the object of analysis. Students
with Not Reached (original code 6) or Not Response (original
code 9) are removed in this study, where Not Reached
and Not Response (omitted) are treated as missing data.
The final 548 students are used to answer 16 items, and

the corresponding response times are recorded. All 16
items are scored using a dichotomous scale. The 16 items
are respectively CR083Q01S, CR083Q02S, CR083Q03S,
CR083Q04S, DR442Q02C, DR442Q03C, DR442Q05C,
DR442Q06C, CR442Q07S, CR245Q01S, CR245Q02S,
CR101Q01S, CR101Q02S, CR101Q03S, CR101Q04S, and
CR101Q05S. The frequency histogram of logarithmic response
times and the correct rate for each item are shown in Figure 7.

5.2. Bayesian Model Assessment
To evaluate the impact of different time weights on the PISA data
and to analyze the differences between the G3PLT model and
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TABLE 4 | The results of Bayesian model assessment in Simulation 2.

Fitted model 3PL G3PLT0 G3PLT2 G3PLT4 G3PLT6 G3PLT8

Q1 25297.63 25270.07 – – – –

DIC Median 25358.15 25324.43 – – – –

Q3 25412.52 25379.70 – – – –

IQR 114.88 109.63 – – – –

G3PLT0 Q1 −13456.37 −13251.64 – – – –

LPML Median −13431.01 −13231.77 – – – –

Q3 −13406.19 −13218.86 – – – –

IQR 50.17 32.77 – – – –

Q1 22742.44 – 22677.65 – – –

DIC Median 22851.46 – 22777.38 – – –

Q3 22953.34 – 22890.79 – – –

G3PLT2 IQR 210.89 – 213.14 – – –

Q1 −12274.46 – −12246.10 – – –

LPML Median −12243.68 – −12221.93 – – –

Q3 −12221.43 – −12200.33 – – –

IQR 53.02 – 45.76 – – –

Q1 20529.71 – – 20522.24 – –

DIC Median 20614.41 – – 20613.60 – –

Q3 20711.15 – – 20708.31 – –

True IQR 181.44 – – 186.06 – –

Model G3PLT4 Q1 −11322.69 – – −11263.87 – –

LPML Median −11300.75 – – −11239.84 – –

Q3 −11273.01 – – −11219.60 – –

IQR 49.67 – – 44.26 – –

Q1 20210.35 – – – 20206.43 –

DIC Median 20295.34 – – – 20294.27 –

Q3 20386.09 – – – 20384.67 –

IQR 175.73 – – – 178.23 –

G3PLT6 Q1 −11102.84 – – – −11144.73 –

LPML Median −11079.08 – – – −11121.81 –

Q3 −11052.10 – – – −11098.77 –

IQR 50.74 – – – 45.96 –

Q1 20014.40 – – – – 20013.64

DIC Median 20111.34 – – – – 20112.86

Q3 20191.08 – – – – 20189.52

IQR 176.68 – – – – 175.87

G3PLT8 Q1 −11083.24 – – – – −11032.39

LPML Median −11053.93 – – – – −11007.48

Q3 −11026.44 – – – – −10981.35

IQR 56.79 – – – – 51.03

Note that the 3PL denotes three parameter logistic model, and the G3PLTw denotes the general three parameter logistic model with time weight w, where w = 0, 2, 4, 6, 8.

the traditional 3PL model in fitting the data, both models are
used to fit the data. G3PLT models with different time weights
W = 0, 1, 2, 3, 4, 5, 6, 7, and 8 are considered. In the estimation
procedure, the setting of the prior distributions is the same as in
Simulation 1. In all of the Bayesian computations, we use 10,000
MCMC samples after a burn-in of 5,000 iterations for eachmodel
to compute all posterior estimates.

Table 5 shows the results for DIC and LPML under the
3PL model and the G3PLT model with different time weights.
According to DIC and LPML, we find that the G3PLT model

with time weight 6 is the best-fitting model, with DIC and LPML
values of 8389.316 and −4196.672, respectively. The G3PLT
model with time weight 0 is the worst-fitting model, with DIC
and LPML values of 9708.940 and −4792.301, respectively. That
the G3PLT model with time weight 0 is the worst fitting model
can be attributed to the fact that the influence of the time effect
on the correct-response probability is relatively weak for the PISA
data. This is consistent with the the evaluation purpose of the
PISA test, which is a nonselective and low-stakes test. Examinees
lack motivation to answer each item carefully, and therefore the

Frontiers in Psychology | www.frontiersin.org 13 August 2020 | Volume 11 | Article 1791

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Zhang et al. General Three Parameter Logistic Model

FIGURE 7 | The frequency histogram of logarithmic response times and the correct rate for each item in the real data.

time effect cannot be reflected. However, when the time weight
of the G3PLT model increases from 5 to 8, the DIC and LPML
values are basically the same as those in the case of the 3PL
model. Themodel fitting results once again verify that our G3PLT
model reduces to the traditional 3PLmodel when the time weight
increases to a certain value. Next, we will analyze the PISA data
based on the G3PLT model with time weight 6.

5.3. Analysis of Item Parameters
The estimated results for the item parameters are shown in
Table 6. We can see that the expected a posteriori (EAP)
estimates of the nine item discrimination parameters are greater
than one. This indicates that these items can distinguish well
between different abilities. In addition, the EAP estimates of the
11 difficulty parameters are less than zero, which indicates that
10 items are slightly easier than the other six. The three most
difficult items are items 8 (DR442Q06C), 7 (DR442Q05C), and
9 (CR442Q07S). The EAP estimates of the difficulty parameters
for these three items are, respectively 1.085, 0.900, and 0.839.
The corresponding correct rates for the three items in Figure 7

are 0.231, 0.257, and 0.285. The most difficult three items
have the lowest correct rates, which is consistent with our
intuition. The six EAP estimates of the guessing parameters
are larger than 0.1. The three items that the examinees are
most likely to answer correctly by guessing are items 11
(CR245Q02S), 12 (CR101Q01S), and 10 (CR245Q01S). The
EAP estimates of the guessing parameters for these three items
are respectively 0.132, 0.128, and 0.117. Among the 16 items,
item 7 is the best design item owing to the fact that it has
high discrimination and difficulty estimates, and the guessing
parameter has the lowest estimate in all of the items. Next,
we use the posterior standard deviation (SD) to evaluate the
degree of deviation from the EAP estimate. The average SD
of all discrimination parameters is about 0.005, the average

SD of all difficulty parameters is about 0.010, and the average
SD of all guessing parameters is about 0.001. We can see
that the average SD values of the three parameters are very
small, indicating that the estimated values fluctuate near the
posterior mean.

5.4. Analysis of Personal Parameters
Next, we analyze the differences between the estimated abilities
of examinees in the 3PL model and in the G3PLT model under
the same response framework, together with the reasons for these
differences. We consider four examinees with same response
framework for the 16 items, (1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1).
They are examinee 60, examinee 313, examinee 498, and
examinee 210, and the corresponding response times for these
examinees to answer the 16 items are 25.80, 29.36, 35.48, and
41.44 min. Under the framework of the 3PL model, the estimated
abilities of the four examinees are the same, 1.45. However,
taking into account the time factors for the four examinees, the
estimated abilities are different according to the G3PLT model
with time weight 6. The estimated abilities are 1.46, 1.42, 1.41,
and 1.38, respectively. We find that under the same response
framework, as the response times of the examinees increase from
25.80 to 41.44 min, the estimated abilities of the examinees
show a decreasing trend. This indicates that examinees with
short response times are more proficient in answering these
items than examinees with long response times. Therefore, the
ability of examinees with short response times to answer 15
items correctly should be higher than that of examinees with
long times. This once again shows that our G3PLT model
is reasonable. By incorporating the time effect into the IRT
model, the interpretation of the latent construct essentially shifts:
before we were measuring whether students could answer items
correctly, now we are measuring whether students can answer
items correctly and quickly.
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TABLE 5 | The results of Bayesian model assessment in real data analysis.

3PL G3PLT0 G3PLT1 G3PLT2 G3PLT3

DIC 8392.374 9708.940 9217.431 8825.986 8561.295

LPML −4197.832 −4792.301 −4565.769 −4395.082 −4275.351

G3PLT4 G3PLT5 G3PLT6 G3PLT7 G3PLT8

DIC 8441.556 8398.835 8389.316 8391.581 8390.254

LPML −4221.003 −4200.857 −4196.672 −4197.678 −4197.906

TABLE 6 | The results of item parameter estimation in real data analysis.

Parameter EAP SD HPDI Parameter EAP SD HPDI

a1 0.980 0.003 [0.873, 1.120] a9 1.199 0.003 [1.116, 1.312]

a2 0.927 0.003 [0.824, 1.025] a10 0.821 0.004 [0.688, 0.946]

a3 0.986 0.004 [0.857, 1.114] a11 1.059 0.006 [0.890, 1.200]

a4 1.034 0.003 [0.928, 1.139] a12 1.004 0.007 [0.874, 1.195]

a5 0.893 0.007 [0.723, 1.047] a13 1.037 0.006 [0.899, 1.198]

a6 1.084 0.005 [0.965, 1.211] a14 1.011 0.005 [0.883, 1.137]

a7 1.216 0.005 [1.062, 1.336] a15 0.986 0.006 [0.848, 1.190]

a8 1.087 0.004 [0.974, 1.203] a16 0.803 0.002 [0.715, 0.917]

b1 −0.065 0.009 [−0.240, 0.111] b9 0.839 0.007 [0.670, 0.995]

b2 −1.405 0.014 [−1.617,−1.170] b10 0.065 0.020 [−0.186, 0.391]

b3 −0.921 0.010 [−1.085,−0.693] b11 −0.147 0.016 [−0.374, 0.114]

b4 −0.519 0.009 [−0.700,−0.321] b12 0.530 0.014 [0.324, 0.795]

b5 −1.187 0.021 [−1.430,−0.849] b13 −1.608 0.015 [−1.846,−1.369]

b6 −0.920 0.011 [−1.124,−0.730] b14 −0.083 0.012 [−0.280, 0.149]

b7 0.900 0.007 [0.726, 1.069] b15 −1.145 0.016 [−1.429,−0.933]

b8 1.085 0.007 [0.876, 1.236] b16 0.272 0.016 [0.062, 0.547]

c1 0.065 0.000 [0.018, 0.120] c9 0.042 0.000 [0.016, 0.069]

c2 0.098 0.001 [0.026, 0.189] c10 0.117 0.001 [0.029, 0.192]

c3 0.079 0.001 [0.017, 0.156] c11 0.132 0.001 [0.056, 0.216]

c4 0.079 0.001 [0.015, 0.143] c12 0.128 0.001 [0.071, 0.190]

c5 0.107 0.002 [0.028, 0.199] c13 0.093 0.001 [0.028, 0.176]

c6 0.092 0.001 [0.019, 0.158] c14 0.115 0.001 [0.034, 0.177]

c7 0.026 0.000 [0.006, 0.045] c15 0.097 0.002 [0.022, 0.185]

c8 0.032 0.000 [0.009, 0.056] c16 0.103 0.001 [0.035, 0.165]

6. CONCLUDING REMARKS

In this paper, we propose a new and flexible general three-
parameter logistic model with response time (G3PLT), which
is different from previous response time models, such as the
hierarchical model framework proposed by van der Linden
(2007), in which the response and the response time are
considered in different measurement models, while a high-
level model represents the correlation between latent ability
and speed through a population distribution. However, our
model integrates latent ability, time, and item difficulty into a
item response model to comprehensively consider the impact
on the probability of correct response. This approach to
modeling is simpler and more intuitive. In addition, time
weights are introduced in our model to investigate the

influence of time intensity limited by different tests on the
correct-response probability. When the time weight reaches
8, our model reduces to the traditional 3PL model, which
indicates that the time factor has little influence on the
correct-response probability. The examinees then answer each
item correctly with the response probability given by the
3PL model.

However, the computational burden of the Bayesian algorithm
becomes excessive when large numbers of examinees or items
are considered or a large MCMC sample size is used. Therefore,
it is desirable to develop a standalone R package associated
with C++ or Fortran software for more extensive large-scale
assessment programs.

Other issues should be investigated in the future. First of
these is whether the G3PLT model can be combined with a
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multilevel structure model to analyze the influence of covariates
on the latent ability at different levels, for example, to explore
the influence of the time effect, gender, and socioeconomic
status on latent ability. Second, although we have found that
for different examinees with the same response framework,
the ability estimates from the 3PL model is the same, those
from the G3PLT model differ greatly. Examinees who take
less time should be more proficient in answering items, and
their ability should be higher than that of examinees who take
longer. “Proficiency” is a latent skill that is not the same as
latent ability. Whether we can connect proficiency and latent
ability through a multidimensional 3PLT model to analyze their
relationship is also an important topic for our future research.
Third, our newmodel can also be used to detect various abnormal
response behaviors, such as rapid guessing and cheating, with
the aim of eliminating deviations in ability estimates caused by
such behaviors.
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