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Collaborative Innovation Center of Assessment for Basic Education Quality, Beijing Normal University, Beijing, China

Longitudinal diagnostic classification models (DCMs) with hierarchical attributes can

characterize learning trajectories in terms of the transition between attribute profiles

for formative assessment. A longitudinal DCM for hierarchical attributes was proposed

by imposing model constraints on the transition DCM. To facilitate the applications of

longitudinal DCMs, this paper explored the critical topic of the Q-matrix design with a

simulation study. The results suggest that including the transpose of the R-matrix in the

Q-matrix improved the classification accuracy. Moreover, 10-item tests measuring three

linear attributes across three time points provided satisfactory classification accuracy for

low-stakes assessment; lower classification rates were observed with independent or

divergent attributes. Q-matrix design recommendations were provided for the short-test

situation. Implications and future directions were discussed.

Keywords: Q-matrix, longitudinal DCMs, hierarchical attributes, TDCM, HDCM

INTRODUCTION

Diagnostic cognitive models (DCMs; or cognitive diagnostic models, CDMs) have received
increasing attention because the latent variable modeling approach to diagnostic assessment can
shed light on the learning process (Rupp et al., 2010). A variety of latent variable models have been
proposed in recent decades including specific models (e.g., the Deterministic Input, Noisy “and”
Gate, DINA; Junker and Sijtsma, 2001) and generalized frameworks (e.g., the log-linear cognitive
diagnostic model, LCDM; Henson et al., 2009). Two recent directions aim to address hierarchical
attributes (Gierl et al., 2010; Templin and Bradshaw, 2014) and the mastery of attributes in
longitudinal data (Li et al., 2016; Kaya and Leite, 2017; Wang et al., 2017; Madison and Bradshaw,
2018a,b), respectively.

The transition DCM (TDCM), proposed by Madison and Bradshaw (2018a,b), is a longitudinal
model combining the LCDM and the latent transition analysis (LTA). The TDCM have been used
on tests measuring independent attributes (Madison and Bradshaw, 2018a,b). However, empirical
studies have suggested the presence of interdependencies among attributes in many educational
cases (e.g., Gierl et al., 2010; Templin and Bradshaw, 2014). The incorporation of attribute hierarchy
into the Q-matrix and the model parameterization has become important research topics in recent
years. One of the approaches to modeling the attribute relationships is to impose a hierarchical
structure in which mastering an attribute could be a prerequisite to mastering another attribute
(Tatsuoka, 1983; Leighton et al., 2004; Templin and Bradshaw, 2014). Taking this approach,
Templin and Bradshaw (2014) extended LCDM to its hierarchical form—hierarchical diagnostic
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classification model (HDCM). Similarly, the longitudinal model
TDCM can be constrained to incorporate hierarchical attributes.
Following this line of thinking, we proposed the hierarchical
transition DCM (H-TDCM) and explored the effects of Q-matrix
designs on its classifications in this study.

The Q-matrix design, as a core element of the DCM-based
test design, has not been adequately addressed in the context
of longitudinal DCMs, since existing research focuses on model
development and applications of longitudinal DCMs (e.g., Kaya
and Leite, 2017; Madison and Bradshaw, 2018a,b). The Q-matrix
links the items and the latent constructs to be measured (i.e.,
attributes) (Tatsuoka, 1983). Rows of the Q-matrix correspond
to items, columns correspond to attributes, and its binary
elements indicate whether an item measures an attribute (to
put it differently, whether mastery of an attribute is required
to succeed on an item). The row vectors of the Q-matrix are
also called q-vectors. The Q-matrix plays important roles, both
theoretically and statistically. From a theoretical perspective,
cognitive theories could have a real impact on testing practice
through the Q-matrix. This is especially true when the attributes
are related to each other according to the cognitive theory. From
a statistical perspective, the Q-matrix plays a significant role in
model identification (Xu and Zhang, 2016; Xu, 2017; Köhn and
Chiu, 2018; Gu and Xu, 2019a, forthcoming) and classification
accuracy (DeCarlo, 2011; Madison and Bradshaw, 2015; Liu et al.,
2017; Tu et al., 2019).

The identifiability conditions need to be satisfied for
consistent estimation of the model parameters. Gu and Xu
(2019a) identified the sufficient and necessary condition for
identification of DINA and DINO. It requires that each attribute
is measured by at least three items with a Q-matrix in the

form Q =

(

ITK ,
(

Q′
)T

)T
(T denotes transpose), in which any

two different columns of the submatrix Q′ are distinct (Gu and
Xu, 2019a). The indentifiability issue is more complicated for
saturated models (e.g., GDINA) and details on strict or generic
identification can be found in Gu and Xu (forthcoming). The
identification condition for hierarchical DCMs has also been
discussed (Gu and Xu, forthcoming).

However, the Q-matrices that lead to identification may
provide varying classification accuracy rates (DeCarlo, 2011;
Madison and Bradshaw, 2015). To provide guidance for test
construction practices based on DCMs, researchers explored
the effects of different Q-matrix designs on the classification
accuracy. For example, on the effects of Q-matrix designs
with independent attributes, DeCarlo (2011) and Madison
and Bradshaw (2015) have found that including more items
measuring each attributes in isolation could help increase
classification accuracy for DINA and LCDM.

When attribute hierarchies are involved, there has not been
a consensus on the Q-matrix design regarding whether all q-
vectors are eligible (Templin and Bradshaw, 2014; Tu et al.,
2019). When a test involves K independent attributes, there
are 2K − 1 distinct q-vectors. Consider a linear hierarchy with
three attributes: α1 → α2 → α3. Attribute α2 has direct
relationships with the other two attributes while Attribute α1

and α3 have an indirect relationship. The reachability matrix

FIGURE 1 | Example of R-matrix and Q-matrix for three linear attributes.

or R-matrix can be used to capture both direct and indirect
relationships (Tatsuoka, 1983; Gierl et al., 2000; Leighton et al.,
2004). The R-matrix for three attributes under a linear hierarchy
is presented in Figure 1. Some researchers argued that an item
cannot measure a higher-level attribute without measuring its
prerequisite(s) (Leighton et al., 2004; Köhn and Chiu, 2018; Tu
et al., 2019), referred to as the restricted Q-matrix approach.
According to the restricted Q-matrix approach, only three q-
vectors are allowed in the Q-matrix in the case of three linear
attributes, which correspond to the three column vectors of the
R-matrix. In contrast, some studies use all 2K − 1 = 7 q-vectors
in the Q-matrix as in an independent-attribute situation (Liu
and Huggins-Manley, 2016; Liu et al., 2017), referred to as the
unstructured Q-matrix approach.

Tu et al. (2019) took the restricted Q-matrix approach
in a simulation study and emphasized the importance of
containing the transpose of the R-matrix in the Q-matrix.
Figure 1 provided an example Q-matrix containing the transpose
of the R-matrix, RT . Liu et al. (2017), taking the unstructured
Q-matrix approach, proposed different approaches to generate
Q-matrices with linear, divergent, convergent, or unstructured
attributes under the hierarchical diagnostic classification model
(HDCM; Templin and Bradshaw, 2014). The adjacent approach
(allowing each item to measure at most two attributes with direct
relationships) was found to lead to higher classification accuracy
in a shorter test (Liu et al., 2017).

To sum up, the purposes of the current study are 2-fold: First,
the H-TDCM was defined to incorporate hierarchical attributes
in the longitudinal DCM. Second, different Q-matrix designs
were explored for TDCM and H-TDCM with a Monte Carlo
simulation study. Both longitudinal models are based on LCDM,
which is a general framework without limitations of the model
fit assumptions. The rest of the paper is organized as follows.
The next section briefly introduces LCDM, HDCM, and TDCM
before defining the H-TDCM. Then, previous studies on the Q-
matrix design are reviewed, followed by a simulation study on Q-
matrix designs for TDCM andH-TDCM. The paper is concluded
with a discussion of the limitations and educational implications.

MODELS

LCDM, HDCM, and TDCM
The LCDM (Henson et al., 2009) is a general diagnostic model
that parameterizes the effects of the attributes measured by the
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item on the probability of a correct response given examinee
attribute profile. The LCDM subsumes many specific DCMs,
including the DINA model (Junker and Sijtsma, 2001) and the
DINO model (Templin and Henson, 2006).

Examinee attribute profiles are denoted by vectors αc =

(αc1, . . . αck, . . . , αcK), where c = 1, . . . ,C and αck takes
the value of 0 or 1, indicating the non-mastery or mastery,
respectively, of the kth attribute. The LCDM classifies examinees
into one of the C = 2K attribute profiles assuming independent
attributes. The number of attribute profiles decreases accordingly
with hierarchical attributes.

For each item measured on a test, the LCDM item response
function models the attributes mastery effects on the item
response in terms of an intercept, the main effect for each
attribute measured by the item, and the interaction term(s) that
correspond to each possible combination of multiple attributes
measured by the item. The general form of the LCDM item
response function can be expressed as

P(Xic = 1|αc) =
exp(λi,0 + λTi h(αc, qi))

1+ exp(λi,0 + λTi h(αc, qi))
(1)

where λi,0 is the intercept parameter of item i, λi contains all
other item parameters including the main effects and interaction
terms for item i, qi denotes the q-vector of item i, the superscript
T denotes transpose, and the function h results in a linear
combination of αc and qi.

λi,0 + λTi h
(

αc,qi
)

= λi,0 + λi,1,(k)αckqik + λi,2,(l(k))αckαclqikqil

+λi,3,(m(l,k))αckαclαcmqikqilqim + . . . (2)

Templin and Bradshaw (2014) proposed the hierarchical
diagnostic classification models (HDCM) to address hierarchical
attributes. Specifically, two changes are made to LCDM. First, the
attribute profile space is limited and αc in Equations (1) and (2) is
replaced by α

∗
c for notation. When a linear hierarchy is assumed,

the number of mastery profiles is reduced from the original C =

2K to C = K + 1. The second change is that model constraints
are imposed on LCDM. Specifically, some model parameters of
the measurement model are fixed as zero.

Madison and Bradshaw (2018a,b) combined LCDM with
latent transition analysis (LTA) to produce TDCM. LTA is a
longitudinal latent class model that classifies examinees into
latent classes and captures the latent class transitions over
time (Collins and Lanza, 2010). As a conventional latent class
analysis, it consists of the structural model and the measurement
model. It is also a special case of the latent or hidden Markov
model (HMM; Baum and Petrie, 1966). LTA parameterizes the
probabilities of each latent class transitioning from one latent
class to another between each time point in addition to latent
class proportions and item parameters (i.e., the parameters
estimated in conventional latent class analysis. LCDM serves as
the measurement model of LTA. The LTA-DINA (Li et al., 2016)
and LTA-DINO (Kaya et al., 2016) can be seen as special cases of
the TDCM.

H-TDCM
The proposed H-TDCM combined the features of HDCM and
TDCM to deal with hierarchical attributes in longitudinal data.
The attribute hierarchy is imposed on TDCM by constraining
corresponding item parameters in the measurement model as
in HDCM and the structural parameters that are specific to
TDCM. Specifically, model parameters for the main effects of
nested attributes and some interaction terms are constrained
as zero in light of the prerequisite relationships among them.
Also, similar constraints are set on the transition parameters and
prevalence parameters.

Given the expression of LTA (Collins and Lanza, 2010, p. 198),
the probability of an examinee’s response vector on I items over
T time points is given by

P
(

Y = y
)

=

Structural
︷ ︸︸ ︷

C
∑

α
∗
c1
=1

. . .

C
∑

α
∗
cT
=1

δα
∗
c1

τ
α
∗
c2 |c1

. . . τ
α
∗
cT |cT−1

Measurement
︷ ︸︸ ︷

T
∏

t=1

I
∏

i=1

Ri∏

ri,t=1

[ρi,ri,t |α∗
ct
,qi ]

I(yi,t=ri,t)

=

Structural
︷ ︸︸ ︷
∑C

α
∗
c1
=1

. . .
∑C

α
∗
cT
=1

δα
∗
c1

τ
α
∗
c2 |c1

. . . τ
α
∗
cT |cT−1

Measurement
︷ ︸︸ ︷

∏T

t=1

∏I

i=1

∏Ri

ri,t=1

[

exp(λi,0 + λTi h(α
∗
ct
, qi))

1+ exp(λi,0 + λTi h(α
∗
ct
, qi))

]I(yi,t=ri,t )

,

(3)

where i = 1, 2, . . . , I; item i has Ri response categories; yi,t is
the examinee’s response to item i at time point t and I

(

yi,t = ri,t
)

is an indicator function that is equal to 1 when the response is
ri,t , and equal to 0 otherwise; each sum ranges over each of the C
attribute profiles at each time point, the first product is over the T
time points, and the second product is over the I items; if the test
measures K attributes with a certain hierarchical structure, the
attribute profile at Time Point t is α

∗
ct
=

(

α1t , . . . ,αkt , . . . ,αKt

)

,
for simplicity, Ct = C.

There are three types of parameters to be estimated (similar
to the case of TDCM) in Equation (3). The first type includes
HDCM item parameters λi,0 and λi. The second type is the
probability of membership in attribute profile c at time point 1,
denoted as δαc1

; and the third is the probability of transitioning
between different attribute profiles (from αct−1 to αct ) between
time point t−1 to time point t, denoted as ταct |αct−1

, usually
expressed as a multinomial regression model (e.g., Reboussin
et al., 1998; Nylund, 2007):

ταct |αct−1
=

exp(act + bTct |ct−1
dct−1 )

∑C
ct=1 exp

(

act + bTct |ct−1
dct−1

)

=
exp(act + bTct |ct−1

dct−1 )

1+
∑C−1

ct=1 exp
(

act + bTct |ct−1
dct−1

) , t ≥ 2; (4)
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FIGURE 2 | Three attribute hierarchies with three attributes and their R-matrix. (A) Independent. (B) Divergent. (C) Linear.

We take for example a test measuring three linear attributes
(α1 → α2 → α3 ). The C = 4 attribute profiles are the rows in







α11 α12 α13

α21 α22 α23

α31 α32 α33

α41 α42 α43







=







0 0 0
1 0 0
1 1 0
1 1 1






. (5)

Four item parameters are to be estimated including the intercept
effect λi,0, the main effect λi,1,(1), the second-order interaction
effect λi,2,(2(1)), and the third-order interaction effect λi,3,(3(2,1)):

λi,0+ λTi h
(

α
∗
c ,qi

)

= λi,0 + λi,1,(1)αc1qi1 + λi,2,(2(1))αc1αc2qi1qi2

+λi,3,(3(2,1))αc1αc2αc3qi1qi2qi3 (6)

Note that Equation (3) is a general form of the H-TDCM. The
combination of LTA and any other specific hierarchical CDM can
be realized by imposing parameter constraints. The H-TDCM, in
turn, can be seen as a special case of TDCM, and the two models
can be compared with a likelihood-ratio difference test (Collins
and Lanza, 2010). When the attribute hierarchy exists, H-TDCM
is supposed to provide a more succinct model with a better fit
than TDCM (Templin and Bradshaw, 2014).

SIMULATION STUDY

Design
The simulation study aimed to explore the effects of different
Q-matrices on the classifications of TDCM with or without an
attribute hierarchy. There has been a need for short tests that
measure a couple of fine-grained attributes in the classroom
setting. The simulation conditions approximated a practical
formative assessment over a learning period of 2–4 weeks. A
limited number of attributes would be focused on within such
a short period, and time for testing is also very limited so
short sessions are preferred. This short test is supposed to
be administered three times: at the beginning, in the middle,
and approaching the end of the learning period. Therefore,

the simulations only consider three-attribute tests administered
over three time points. Three attribute hierarchies (independent,
divergent, and linear) are considered. The three attribute
hierarchies with three attributes and the associated R-matrices are
presented in Figure 2.

As mentioned earlier, there are two general approaches to
Q-matrix design with hierarchical attributes—the restricted and
the unstructured Q-matrix approaches. The restricted Q-matrix
approach only allows q-vectors in the transpose of the R-matrix,
denoted as RT (Leighton et al., 2004; Köhn and Chiu, 2018;
Tu et al., 2019), and the general guideline is to contain several
RTs in the Q-matrix to obtain acceptable classification accuracy
(Tu et al., 2019). We took the unstructured Q-matrix approach,
which means an item can measure all possible combinations
of attributes as in an independent-attribute situation (Liu and
Huggins-Manley, 2016; Liu et al., 2017), because there exists no
empirical evidence against the possibility of items measuring a
higher-level attribute without measuring its prerequisite(s). With
three attributes in a test, there are seven q-vectors corresponding
to seven item types. However, it remains an open question
whether it is still beneficial to contain RTs in the Q-matrix
even though the unstructured approach was adopted. For each
attribute hierarchy, three Q-matrix designs were used. The
first Q-matrix design does not contain RT , denoted as Q1.
The second and third Q-matrix designs include one or two
RTs, which are denoted as Q2 and Q3, respectively. Crossing
two factors (i.e., attribute hierarchy and Q-matrix design) led
to a total of 9 conditions. The simulation study focused on
the Q-matrix design; thus, all Q-matrices were assumed to be
correctly specified.

The item parameters are assumed to be time-invariant for
the attribute profiles to retain the same meaning over time.
Previous studies have shown that the examinee sample size barely
has an impact on the classification rates of DCMs (de la Torre
et al., 2010; Kaya and Leite, 2017). The effect of sample sizes
was explored in Madison and Bradshaw (2018a) with TDCM.
Therefore, the sample size was not manipulated but set to be
1,000 in each condition. The attribute profile of examinees
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TABLE 1 | Classification rates of three Q-matrix designs.

Independent Divergent Linear

Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3

PROFILE CORRECT CLASSIFICATION RATES

Time 1 0.517 0.550 0.557 0.582 0.651 0.671 0.710 0.731 0.725

Time 2 0.522 0.553 0.556 0.595 0.667 0.681 0.725 0.749 0.736

Time 3 0.536 0.577 0.577 0.606 0.680 0.693 0.734 0.761 0.744

Mean 0.525 0.560 0.563 0.594 0.666 0.682 0.723 0.747 0.735

MARGINAL CORRECT CLASSIFICATION RATES

Time 1 α1 0.723 0.784 0.821 0.938 0.937 0.917 0.931 0.929 0.901

Time 1 α2 0.833 0.838 0.809 0.714 0.795 0.840 0.864 0.887 0.904

Time 1 α3 0.831 0.807 0.810 0.855 0.858 0.860 0.864 0.872 0.885

Mean 0.796 0.810 0.813 0.836 0.863 0.872 0.886 0.896 0.897

Time 2 α1 0.704 0.774 0.809 0.929 0.925 0.903 0.915 0.913 0.881

Time 2 α2 0.827 0.835 0.803 0.716 0.804 0.845 0.848 0.875 0.890

Time 2 α3 0.828 0.796 0.798 0.857 0.859 0.864 0.927 0.932 0.937

Mean 0.787 0.802 0.804 0.834 0.863 0.871 0.897 0.907 0.903

Time 3 α1 0.713 0.784 0.816 0.927 0.924 0.901 0.912 0.912 0.877

Time 3 α2 0.835 0.840 0.806 0.724 0.811 0.852 0.849 0.876 0.890

Time 3 α3 0.834 0.807 0.808 0.864 0.864 0.868 0.944 0.947 0.950

Mean 0.794 0.810 0.810 0.838 0.866 0.874 0.902 0.912 0.906

Three Q-matrix designs Q1, Q2, and Q3 included zero, one, or two R-matrix transposes.

followed a uniform distribution. Ten-item tests were generated
under each condition.

To avoid the effects of item quality, we fixed the item
parameters over all conditions: The intercept effect was −1, the
main effect was 2, and the interaction effect was 1. As a result,
P(X = 1|α = 0) ranged from 0.1 to 0.3, and P(X = 1|α = 1) was
between 0.7 and 1.0. There are 8, 5, and 4 attribute profiles under
independent, divergent, and linear hierarchies, respectively.
With three independent attributes, there were 23 attribute
profiles: c1 (0, 0, 0), c2 (0, 0, 1), c3 (0, 1, 0), c4 (0, 1, 1), c5 (1, 0, 0),
c6 (1, 0, 1), c7 (1, 1, 0) , and c8 (1, 1, 1). The divergent hierarchy
condition had c1 (0, 0, 0) , c5 (1, 0, 0) , c6 (1, 0, 1) , c7 (1, 1, 0) , and
c8(1, 1, 1). Three linear attributes led to four attribute profiles:
c1 (0, 0, 0) , c5 (1, 0, 0) , c7 (1, 1, 0) , and c8(1, 1, 1).

Mplus 7.4 (Muthén and Muthén, 1998–2015) was used
to generate and analyze the response data of three time
points based on TDCM or H-TCDM via maximum likelihood
estimation. We include the Mplus syntax for estimation as
an Supplementary Material. Evaluation criteria include the
marginal correct classification rates (MCCRs) for each attribute
and the correct classification rates (CCRs) for each attribute
profile. Each simulation condition was replicated 100 times.

RESULTS

The correct classification rates are presented in Table 1. The
results suggested that including the transpose of the R-matrix
in the Q-matrix (i.e., Q2) increased the profile CCRs and
marginal CCRs at each time point for independent, divergent,
and linear hierarchies. Including one more transpose of the R-
matrix (i.e., Q3) further slightly increased the CCRs except for
the linear hierarchy. Another interesting finding is that the profile

CCRs tended to increase with time. The CCRs at Time 3 were
the highest. This trend was found under each combination of
attribute hierarchy and Q-matrix design. The increase with time
was not found in the marginal CCRs for independent attributes.
Within the divergent or linear hierarchy, the marginal CCRs of
the highest-level attribute (i.e., α2 and α3 under the divergent
hierarchy and α3 under the linear hierarchy) increased with time
while the lowest-level attribute (i.e., α1) had decreasing CCRs
with time.

Comparing the three attribute hierarchies revealed that the
CCRs generally increased as the relationship between attributes
became stronger, andmeanwhile, the number of attribute profiles
became smaller. The profile CCRs were above 0.7, and the
marginal CCRs were above 0.85 under the linear hierarchy with
10-item tests. The classifications for the independent attributes
were the most difficult.

DISCUSSION

This paper proposed H-TDCM for hierarchical attributes in the
longitudinal DCM by imposing model constraints on TDCM.
The simulation study explored Q-matrix designs with different
numbers of R-matrices. The CCRs generally increased with
stronger dependencies between attributes, which is consistent
with the findings of Templin and Bradshaw (2014) with LCDM.
Ten-item tests for three linear attributes lead to profile CCRs
above 0.7 and marginal CCRs above 0.85 at each time point,
which might to acceptable for low-stakes classroom assessment.
However, longer tests are needed for independent or divergent
attributes to obtain acceptable classification rates. The profile
CCRs increased with time, which means the attribute profile
estimate from the final test would be the most accurate among
several tests. The final attribute profile estimation may benefit
from information from all the previous tests and provides a
relatively accurate picture of the learning outcome, which is a
desirable property for the longitudinal model.

Regarding the Q-matrix design, we took the unstructured
Q-matrix approach (Liu and Huggins-Manley, 2016; Liu et al.,
2017) by allowing all possible q-vectors, but explored Q-matrix
designs containing different numbers of RT . Simulation results
showed that including one R-matrix transpose in the Q-matrix
increased the CCRs in the case of independent attributes. Note
that although the identification issue of CDMs and the Q-matrix
design are usually treated as two separate research areas, the
identification requirement may not always be satisfied in the Q-
matrix design studies, especially for more complicated models
and shorter tests.

First, we looked at the results for independent attributes.
A closer look at the Q-matrices revealed that the first Q-
matrix design (Q1) did not measure α1 in isolation; the
second Q-matrix design (Q2) contained only one identity
matrix and measured α1 in isolation only once. This explained
the much lower classification rates for α1 compared with
other attributes. This finding with the TDCM agrees with the
results of conventional DCMs (DeCarlo, 2011; Madison and
Bradshaw, 2015). From the identification perspective, it has
been proven that including two identity matrices in the Q-
matrix is necessary for a saturated DCM such as LCDM with
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TABLE 2 | RT as a submatrix in the Q-matrix ensures a separable Ŵ -matrix.

q-vector Attribute profile

000 100 110 111

100 0 1 1 1

110 0 0 1 1

111 0 0 0 1

independent attributes (Gu and Xu, forthcoming). UnderQ1 and
Q2 for independent attributes, the model parameters suffered
from the non-identifiability issue and the consequence was
reflected in the lower profile CCRs with Q1 and Q2 than with Q3

inTable 1. It also explains why themarginal CCRs of α1 underQ1

and Q2 were substantially lower than those under Q3, while the
marginal CCRs of the other two attributes did not differ much
between Q-matrix designs.

Including RT in the Q-matrix also increases the classification
rates for the hierarchical cases in this study, which is consistent
with the empirical findings from Tu et al. (2019). The
results for hierarchical attributes can also be explained from
the identification perspective as discussed in Gu and Xu
(forthcoming). For a generalized multi-parameter DCM such as
LCDM or HDCM, the concept of a separable Ŵ -matrix was
introduced (Gu and Xu, forthcoming). The rows and columns
of the Ŵ -matrix is indexed by the items and the attribute profiles,
respectively. An entry of the Ŵ -matrix equals to 1 if an attribute
profile has the highest correct response probability on an item
and 0 otherwise. A Ŵ -matrix is said to be separable if any two
column vectors of are distinct. The separability of theŴ -matrix is
necessary for strict identification.We show thatRT as a submatrix
in the Q-matrix ensures a separable Ŵ -matrix in Table 2. It can
be further shown that the matrix of RT is in the form of








1 ∗ · · · ∗

∗ 1 · · · ∗

...
...
. . .

...
∗ ∗ · · · 1








K×K

after some row permutation, in which ∗ takes the value of 0 or
1 and K is the number of attributes. Two RTs were contained in
Q3, which led to a separable Ŵ -matrix. As a result, Q3 always
ensures the identification of the model, while the first design may
lead to non-identification issues (Gu and Xu, forthcoming). In
contrast, Q2 contained one RT and at least one identity matrix
instead of two RTs, which does not affect themodel identification.
Therefore, Q2 and Q3 showed similar classification rates. One
major difference between the two designs is that Q2 contains
more single-attribute items and fewer multiple-attribute items.
Under the linear hierarchy, for example,Q3 has at least two items
with q=(111), which has seven item parameters to be estimated.
The parameter recovery of such items may be more difficult than
single-attribute items, and the classification rate may suffer. As a
result, the performance of Q2 turned out to be better than Q3 for
the linear hierarchy.

This study aimed to demonstrate the classification
performance of the H-TDCM with a short test and provide
practical guidelines for the applications of this longitudinal
model for formative classroom assessment. For the current
setting of short tests and only a few attributes, we recommend
that the Q-matrix contains (1) two identity matrices for
independent attributes, (2) two RTs for a divergent hierarchy,
and (3) one RT and one identity matrix for a linear hierarchy.
Besides, each attribute should be probed by at least three items.
However, it should be noted that the current simulation study
assumes that it is possible to develop items of all types of
q-vectors with equal easiness, which may not be true for certain
subject areas. For example, it may be more difficult to develop
items that measure each attribute in isolation.

The formative classroom assessment has received renewed
attention recently with the development of curriculum reform.
The fusion of curriculum, instruction, and the assessment
requires timely and constructive feedback that is closely
connected to a curriculum and are based on students’ learning
history (e.g., Bennett, 2015; Gotwals, 2018; Shepard et al., 2018).
Such feedback can be obtained from a diagnostic model that
portrays the progression of attribute profiles. To establish the
learning progression in terms of attribute profiles, however,
is not an easy task. A possible solution could be collecting
longitudinal assessment data from multiple classrooms and
applying H-TDCM. The model parameters and classification
results from H-TDCM can be used to understand the learning
process better and to give teachers and students prior information
before the learning begins. The current study focused on
short tests for classroom applications where the attribute
hierarchy is prespecified. Future simulation research can extend
to longer tests for the purpose of exploring the learning
process by estimating the attribute hierarchy. Those who are
interested may refer to the requirement on the Q-matrix design
(Gu and Xu, 2019b).
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