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The main aim of the present study was to investigate the presence of Differential Item
Functioning (DIF) using a latent class (LC) analysis approach. Particularly, we examined
potential sources of DIF in relation to gender. Data came from 6,265 Saudi Arabia
students, who completed a high-stakes standardized admission test for university
entrance. The results from a Latent Class Analysis (LCA) revealed a three-class solution
(i.e., high, average, and low scorers). Then, to better understand the nature of the
emerging classes and the characteristics of the people who comprise them, we applied
a new stepwise approach, using the Multiple Indicator Multiple Causes (MIMIC) model.
The model identified both uniform and non-uniform DIF effects for several items across
all scales of the test, although, for the majority of them, the DIF effect sizes were
negligible. Findings from this study have important implications for both measurement
quality and interpretation of the results. Particularly, results showed that gender is a
potential source of DIF for latent class indicators; thus, it is important to include those
direct effects in the latent class regression model, to obtain unbiased estimates not only
for the measurement parameters but also of the structural parameters. Ignoring these
effects might lead to misspecification of the latent classes in terms of both the size and
the characteristics of each class, which in turn, could lead to misinterpretations of the
obtained latent class results. Implications of the results for practice are discussed.

Keywords: latent class analysis, Differential Item Functioning, mixture modeling, auxiliary variables, high-stakes
testing, multiple indicator multiple causes

INTRODUCTION

Standardized testing for university admission has seen enormous growth over the last decades and
affects the lives of millions of young individuals around the globe. Several different educational
achievement tests are used as criteria for university entrance, and students obtain access to higher
education level based on their performance on these tests (House, 1997). Most admissions tests

Frontiers in Psychology | www.frontiersin.org 1 April 2020 | Volume 11 | Article 622

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://doi.org/10.3389/fpsyg.2020.00622
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fpsyg.2020.00622
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyg.2020.00622&domain=pdf&date_stamp=2020-04-03
https://www.frontiersin.org/articles/10.3389/fpsyg.2020.00622/full
http://loop.frontiersin.org/people/232808/overview
http://loop.frontiersin.org/people/818156/overview
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-11-00622 April 3, 2020 Time: 17:42 # 2

Tsaousis et al. Latent Class Differential Item Functioning

are composed of different thematic areas, such as verbal,
numerical, and analytical reasoning skills or discipline-specific
knowledge (e.g., Mathematics, Physics, etc.) since it has been
found that the combination of several of these skills is a necessary
condition for a successful degree completion in all fields of study
(Kuncel and Hezlett, 2007). In a recent study, Noble and Camara
(2003) reported that more than 80% of all 4-year universities and
institutions in the U.S. require an admissions test, and more than
91% of non-open institutions required one. Moreover, more than
1.5 million students take admissions tests in the U.S. per year, and
this number is constantly increasing. Along the same lines, in
Saudi Arabia, the Grade Point Average (GPA), along with other
standardized test results, are the requirements for admission
to higher education institutions. These tests are the Standard
Achievement Admission Test (SAAT) which has been developed to
measure domain-related knowledge (e.g., math, physics, biology,
chemistry), and the General Aptitude Test (GAT) that focus
more on the students’ capability for learning. The composite
scores (GPA, SAAT, GAT) are usually employed to inform the
decision-making process.

One important reason why these tests have gained such
popularity is that they offer objectivity over other available
criteria, such as high school grades, structured interviews,
etc. (Phelps, 2005; Benbassat and Baumal, 2007). Another
advantage is, that these tests are norm-referenced, in that
the individual’s scores are compared with the scores of a
group of people (i.e., normative sample), who share the
same characteristics and attributes such as gender, age, socio-
economic status, etc. Furthermore, a standardized test has
certain rules in terms of administration, since all test takers
complete it following the same directions and time restrictions.
Additionally, the evaluation of the student’s performance is
not affected by subjective factors (e.g., evaluator’s perceptions),
since the scoring of the test is based on a series of pre-set,
objective, criteria. Finally, the interpretation of the obtained
scores is also free of subjective inferences and context (e.g.,
class size, teacher’s quality, etc.), but rather on the test-
takers’ relative information about their readiness to undertake
university coursework.

A serious issue in educational and psychological testing, with
lasting and at times, serious consequences in test-takers’ present
and future life, is fairness (Sackett et al., 2008). According to
Educational Testing Service (2019), fairness “. . .is the extent
to which the inferences made on the basis of test scores are
valid for different groups of test-takers” (p.19). Especially for
standardized high-stakes tests, fairness is a crucial issue, since
these instruments serve as a gateway for admitting individuals
into higher education (Caines et al., 2013). From a more technical
perspective, the concept of fairness in testing is equivalent to
bias. Test or item bias is related to all those construct-irrelevant
factors such as gender, age, race, culture, socio-economic status,
education, etc., which can result in systematic distortion on
the performance of test-takers from different groups, although
they possess the same level of the underlined ability or trait
(Millsap and Everson, 1993).

With regard to gender, there is a long-lasting tradition
pointing to the superiority of males in STEM-related subjects

(e.g., math, engineering) over females (Wai et al., 2010;
Lakin, 2013) but these findings are far from being conclusive
as girls appear to have higher school grades in STEM subjects
compared to males (Voyer and Voyer, 2014). Interestingly, and
regardless of the empirical evidence, males dominate these fields
professionally, and potential explanations put forth include (a)
females conform to stereotype threat (Spencer et al., 2016), and
(b) the variability hypothesis (Johnson et al., 2008). With regard
to the stereotype threat, females tend to behave for rather than
against gender stereotypes being fearful of the risk of backlash
(Rudman and Phelan, 2008). The variability hypothesis, on the
other hand, suggests that the observed higher variability in
achievement in males (Reinhold and Engqvist, 2013) suggests an
excess of males on the top 10% of the achievement’s distribution
(Halpern, 2007) although that is not always the case (Wang
and Degol, 2017). Perhaps the most salient evidence regarding
gender stereotypes in math and STEM subjects comes from
a recent meta-analysis by O’Dea et al. (2018) who analyzed
data involving 1.6 million students. The overarching conclusion
from this analysis was that the variability hypothesis did not
hold as equal numbers of males and females belonging to the
top 10% of their class in stem-related subjects. Consequently,
the null hypothesis of no differences in math across gender
seems to currently prevail using all available evidence. If this
finding holds, then it becomes even more important to evaluate
the existence of potentially biased items in measures of math
achievement across gender, which is the primary purpose of
the present study.

To date, efforts to examine item and test bias are coming
from the two basic traditions in measurement theory: (a)
from the perspectives of the Classical Test Theory (CTT), the
Multiple-Group CFA (MGC-FA) approach, in which the relations
between observed variables and latent construct(s) are tested
for measurement invariance between groups (Vandenberg and
Lance, 2000), and, (b) from the perspectives of modern methods
such as Item Response Theory (IRT), and the Differential Item
Functioning (DIF) approach, in which item behavior is evaluated
on whether it assesses equivalent levels on the latent trait
across members of separate groups (Roussos and Stout, 1996;
Embretson and Reise, 2000). A more recent approach is the
Multiple Indicators and Multiple Causes (MIMIC) modeling
procedure, in which a covariate exerts direct effects on both,
the latent variable(s), and the factor indicators (Finch, 2005).
The MIMIC model is considered as a special form of Structural
Equation Modeling (SEM) since it integrates causal variables
(i.e., covariates) within a confirmatory factor analysis model
(MacIntosh and Hashim, 2003). When a MIMIC model, is
utilized, two different models are tested: a measurement model,
in which the relationship between a latent variable and its
indicators is tested (i.e., items) and a structural model, in which
the direct effect of a covariate that defines group membership
(e.g., gender) on factor means and factor indicators (items)
are also tested. A significant direct effect of the covariate on
the latent factor indicates that factor means are different at
the different levels of the covariate (e.g., males vs. females).
Similarly, a significant direct effect of the covariate on an
item of the scale suggests that the item mean is different at
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the different levels of the covariate, after controlling for the
latent factor mean.

Raykov et al. (2013), argued that MIMIC models are
advantageous in examining DIF over other analogous techniques
such as multi-group CFA (Vandenberg and Lance, 2000; Millsap,
2011). First, MIMIC models require smaller sample sizes as
by modeling one group (over two groups), the number of
estimated parameters is dramatically decreased, and thus, the size
of the input matrix is less demanding (Brown, 2015). Another
advantage of this model is that it simultaneously addresses four
issues: (a) estimation of IRT measurement parameters, which
provides evidence for the internal validity of the measure; (b)
examination of the relationship between the covariate and the
latent construct, which provides information for the external
validity of the measure; (c) examination of Differential Item
Functioning (DIF) across the different levels of the covariate,
and, (d) relaxation of the assumptions of unidimensionality and
local dependency, which are very important in CFA and IRT
models. Finally, MIMIC modeling allows for the simultaneous
evaluation of the effect of the covariates on both, the latent
variable(s) as well as the factor indicators, and all obtained
estimates are adjusted for all other covariates in the model
(Muthén et al., 1991).

The MIMIC approach is mainly used by applied researchers
within the factor analytic framework (Finch, 2005; Willse and
Goodman, 2008; Woods and Grimm, 2011). However, this
approach can easily be extended to a Latent Class (mixture
modeling) framework, especially when researchers are interested
in understanding the nature of the emerging classes and the
characteristics of the people who comprise them (Nylund-Gibson
and Choi, 2018). For example, there are cases where researchers
are interested in examining the effect of covariates or distal
outcomes on latent class membership. Particularly, with this
approach, we can examine whether there are direct effects
from covariates to latent variable indicators, in an attempt to
identify possible sources of DIF across the covariate’s levels
(Masyn, 2017), or whether the obtained latent-classes display
statistically significant mean-level differences in an outcome
variable (Nylund-Gibson and Choi, 2018). Moreover, we can
examine whether the obtained latent classes are invariant
across two or more groups, with every individual within
a class having the same expected response on each item
(Kankaraš et al., 2011).

An issue that needs attention when examining the effect of
a covariate (or a distal variable) on the latent class variable
is, how we examine these two components: do we examine
their relationship within a 1-step procedure (i.e., a simultaneous
estimation of the latent class measurement model and the
association between the latent class and the covariate) or we
examine them via a stepwise procedure (i.e., first we estimate
the latent classes without the covariate, and then we examine the
association between the latent class variable and the covariate).
Previous studies have shown that the first approach, although
sensible (this is how it works in SEM), it could lead to the
distortion of the latent class results in terms of the estimation
of the latent class probabilities and the conditional probabilities.
This, in turn, might lead to misspecification of the latent

classes in terms of both the size and the characteristics of
each class (Vermunt, 2010; Asparouhov and Muthén, 2014;
Nylund-Gibson et al., 2014).

Today, there is general agreement among experts that
the best method to overcome this problem is first to
determine the number of latent classes needed to describe the
population homogeneity adequately without the presence of
the covariate. The second step is to examine the association
between the covariate and the latent class variable (Muthén
et al., 1991; Vermunt, 2010; Nylund-Gibson and Masyn,
2016). Among the different suggested approaches (more than
seven are reported in the literature), the most advanced is
the three-step procedure. The measurement parameters of
the latent classes are held fixed (step 1) while accounting
for classification error (step 2), and then the covariate
is introduced in the model, and its relationship to the
latent class variable is estimated (step 3) (see Nylund-
Gibson et al., 2014 for a detailed description). However,
even though this approach has been recently criticized for
not being robust to avoid misspecifications in the latent
class enumeration process (i.e., determining the optimal
number of classes) and obtain accurate estimates of the
covariates’ effects on latent class membership (Kim et al., 2016;
Masyn, 2017).

The basic idea in measuring invariance or non-invariance
(DIF) in a latent class model is simple: first, a model in
which all response probabilities are allowed to vary across
groups is examined; then, a model where these probabilities
are constrained to be equal is examined, and the two models
are compared using a difference likelihood ratio test. If the
constrained model is significantly worse compared to the
unconstrained model, invariance across classes is lacking. At the
last stage, individual indicators are examined for the presence of
uniform and non-uniform DIF. The difference between the two
types of DIF exists in the shape of the item response functions.
Uniform DIF exists when the item response pattern is related to
the group at all levels of the latent class variable and does not
depend on the latent ability level, whereas in non-uniform DIF,
the IRFs across groups cross.

On the other hand, non-uniform DIF exists when the
differences depend on the latent class levels (Berger and
Tutz, 2016). Recently, measurement invariance within the
latent class paradigm has been examined either by use of the
multi-group latent class analysis (MGLCA) (for an extended
review and detailed description, see Collins and Lanza, 2010)
or the MIMIC approach. In previous years, some studies
have used MGLCA to examine whether the nature of latent
classes differs across known subgroups in the populations (e.g.,
Lohman et al., 2014; Finch, 2015). The MIMIC approach to
test for measurement invariance, however, is new, and since
its introduction (Masyn, 2017), there is to our knowledge
no other study that utilized the method using real data.
Consequently, in the present study, we follow the stepwise
protocol presented by Masyn (2017), to examine potential sources
of DIF across gender using a high-stake admission test for
university entrance (i.e., Standard Achievement Admission
Test - SAAT).
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MATERIALS AND METHODS

Participants and Procedure
The sample used in this study consisted of 6,260 participants.
From them, 3,563 (56.9%) were males, and 2,697 (43.0%) were
females. Five participants (0.1%) did not report their gender
and were excluded from the study. Concerning the region
of residence, participants came from all 13 provinces of the
Kingdom of Saudi Arabia, with the majority coming from
three urban areas: 1,469 (23.4%) from Riyadh, 1,246 (19.9%)
from Makkah, and 513 (13.3%) from Eastern Province. No
missing data for this variable were reported. The study was
conducted as part of a National Examination in Saudi Arabia
and was reviewed and approved by the National Center for
Assessment in Higher Education (Qiyas) Ethics Committee1.
All participants were informed that their responses would be
utilized as a part of a larger study to evaluate the psychometric
properties of the measure. Completion of the test comprised
their informed consent for their participation. No participants
reported any psychological or emotional issues that would inhibit
their full performance.

Measure
Standard Achievement Admission Test (SAAT;
National Center for Assessment, 2012)
The SAAT is a high-stakes standardized test used for university
admissions in the Kingdom of Saudi Arabia. The test was
designed to assess students’ readiness for higher education and
covers four basic academic domains (subject areas): Mathematics,
Biology, Chemistry, and Physics, and focuses on the material
of the official 3-year (scientific) curriculum of the Saudi Arabia
High Schools. For this study, a shortened version of the SAAT
comprised of 65 multiple-choice items (4 alternative options) was
used. The content of the items was distributed as follows: 20% of
each subject for the first year of the high school syllabus, 30% of
each subject for the second year of the high school syllabus, and
50% of each subject for the third year of the high school syllabus.
The test time for each section is 25 min. The total time of the
test, including the time given to instructions, is 2 h. The SAAT
has been developed and evaluated within the IRT framework
and exhibits excellent psychometric characteristics. Due to space
constraints, only the Math scale was analyzed. However, all
analyses reported in this study were also conducted for the
remaining scales, and they are available upon request. The Math
scale constitutes of a unidimensional construct (CFI = 0.964,
TLI = 0.958, RMSEA = 0.019, and SRMR = 0.024). The mean
difficulty level of the test was 0.45 (0.33 for the Math scale), while
the mean item discrimination was 0.30 (0.24 for the Math scale)
(Luo and Al-Harbi, 2016). The SAAT also exhibits acceptable
internal consistency levels (total omega = 0.88), although, for the
Math scale, the omega index was somewhat lower (i.e., 0.60).

Analytical Strategy
First, a Latent Class Analysis (LCA, Lazarsfeld and Henry, 1968;
Goodman, 1974) was conducted to identify the optimal number

1www.qiyas.sa

of distinct groups (i.e., classes) that meaningfully differentiate
item responses among participants. The LCA model, utilizes
two types of parameters (the proportion of the population
belonging to a particular class, and the probability of an
individual to answer an item correctly given that he/she has
been classified in a particular class), to identify subgroups of
participants who share similar patterns of responses. A typical
statistical approach in LCA is to examine the fit of several
models with different numbers of latent classes, and then
to compare them using different inferential and information
criteria of model fit.

Model fit of an estimated LCA model is usually tested via
the likelihood-ratio (L2) chi-square test. However, the most
interesting process in LCA is not the evaluation of the fit
of a model, but rather which of the contrasted models fits
the data better. In this case, it is not valid to subtract the
Ls2 and the corresponding df values of the compared models
and test for significance, because this conditional test does
not have an asymptotic chi-squared distribution (Vermunt and
Magidson, 2004). Instead, the Vuong-Lo-Mendell-Rubin (LMR)
chi-square test (i.e., two times the loglikelihood difference value
for the respective different number in estimated parameters)
seems more appropriate to determine the best fitting model
among the contrasted nested latent class models (Vuong, 1989;
Lo et al., 2001).

On the other hand, it is well known that chi-square goodness-
of-fit tests are sensitive to large samples since they tend to
mistakenly reject the null hypothesis (Agresti, 2013) even
when deviations from a perfect model are negligible. For
that, several alternative statistical criteria have been suggested
for deciding the optimum model solution in LCA (Masyn,
2013), although, as Muthén and Asparouhov (2006) pointed
out, there is no single method for comparing models with
different numbers of latent classes that is widely accepted.
Thus, in this study, we decided to employ several different
information criteria to decide on the optimal model solution.
First, we used the Akaike’s (AIC) and Bayesian Information
Criteria (BIC) (also termed penalized statistics), as well as
some of their variants to control for excessive power due to
the large sample size (>6,000 participants). Recent simulation
studies have shown that the BIC performs better than other
information criteria and likelihood ratio tests in identifying the
appropriate number of latent classes (Nylund-Gibson et al.,
2007). Additionally, we adopted the BIC’s sample size correction
variant, the consistent AIC (CAIC; Bozdogan, 1987), the
Approximate Weight of Evidence criterion (AWE; Banfield
and Raftery, 1993), and the Schwartz Information Criterion
(SIC; Schwarz, 1978). Moreover, additional quantitative indices
were employed such as the approximate Bayes Factor (BF),
which tests the relative fit between two competing models,
the approximate correct model probability index (cmP), which
compares all models with the sum value being 1, assuming
one of the tested models is the correct model (Masyn, 2013).
The LCA was performed using Mplus, version 8.3 (Muthén
and Muthén, 1998-2019), using the Robust Maximum-likelihood
(MLR) as a method of estimation and the expectation-
maximization (EM) algorithm.
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Stepwise Procedure for Testing for DIF
The following stepwise procedure has been developed by Masyn
(2017), and we draw heavily from the original source. Graphically
the steps are shown in Figure 1. The interested reader may also
consult (Masyn, 2013).

Step 0, Selecting the Optimal Latent Class Solution
This first step involves the series of latent class models that are
run to satisfy and conclude the latent class enumeration process
and select the optimal model. Note that during this process,
the covariate is treated as an auxiliary variable not to have any
influence on the latent class solution formation.

Step 1, Evaluating Omnibus DIF
This step involves comparing two nested models. The first,
termed M1.0, includes the regression of the covariate on the latent
class variable only, not the indicators (Omnibus test), which
evaluate the appropriateness of a no-DIF model. This model
is contrasted to a model in which the latent variable and the
indicators are regressed onto the covariate (M1.1), which is an
all-DIF model as the effects of the covariate on the items are left
free to vary across classes (non-uniform DIF). In the presence of
DIF, a comparison of the two models by use of a likelihood ratio
test should provide evidence in favor of model M1.1 compared
to M1.0. If Model M1.0 is the preferred model, then there is no
evidence of significant DIF due to the covariate. Preference for
model M1.1., however, requires further scrutiny over the location
of non-invariance due to the covariate.

Step 2, Evaluating the Presence of Non-uniform DIF
Assuming preference for lack of measurement invariance model
(i.e., M1.1), a series of models are run to evaluate the effects of the
covariate on each one of the indicators to test the hypothesis that
non-uniform DIF is present. This step involves first saving the
model assignment from a previous run, defining it as a nominal
variable, and then using the class-specific multinomial intercepts
of the modal assignment (reflecting classification error rates) as
indicators in a new LCA model. The compared models include
a no-DIF model (termed M2.01) in which the latent class c is
regressed onto the covariate (e.g., gender) and a, one-item at a
time, DIF model in which an item is regressed onto the covariate
(termed M2.1.1 for the first item, M2.1.2 for the second item,
etc.). Models’ comparison will involve a series of likelihood ratio
difference tests. Evidence in favor of the later model will signal
the presence of non-uniform DIF for that item in the given run.

Step 3, Selecting Most Parsimonious Non-uniform
DIF Model
The goal of this step is to identify the model in which only
significant DIF effects are included. Consequently, a new model
termed M3.0 involves estimating a latent class model with
all non-uniform paths (from step 2) that were identified as
being statistically significant, and we term this model as the
“Parsimonious Non-Uniform DIF model.” This model (M3.0)
should then be contrasted with two comparison models. The
first comparison involves contrasting the M.3.0 model to the
no-DIF model (M1.0) in step 1 with the expectation that M3.0,

the parsimonious non-uniform DIF model, would be superior to
model M1.0, the no-DIF model. The second comparison involves
contrasting M3.0, the parsimonious non-uniform DIF model
with M1.1, the all DIF model. The expectation here is that the
parsimonious non-uniform DIF model (i.e., M3.0) would be no
worse than the all DIF model.

Step 4, Testing for Uniform DIF
The goal of this step is to test the hypothesis that the earlier
identified as exerting non-uniform DIF effects items were not
exerting uniform effects. Consequently, the model in step 3
in which non-uniform DIF effects were identified (M3.0) was
contrasted with models in which the effects of the covariate on
each item earlier identified as exerting varying influences across
classes was consistent across classes (i.e., uniform). Evidence
of non-uniform DIF effects would be manifested with non-
significant differences between models M3.0 and M4.1–M4.7 in
that there is insufficient evidence that the effect of the covariate
on the item is non-uniform (because models with uniform and
non-uniform effects are no different). A significant difference,
favoring the M4 models would suggest that fixing the effects of the
covariate on an item to be invariant across classes (i.e., uniform
DIF) is preferred. All DIF analyses were performed using Mplus,
version 8.3 (Muthén and Muthén, 1998-2019). The syntax code
can be found in the Supplementary Material that accompanies
this manuscript.

Differential Item Functioning: Effect Size
Conventions
Several studies have looked upon the issue of effect size metrics
for DIF (e.g., Raju, 1990; Zwick, 2012) suggesting diverse
analytical means (e.g., Raju, 1990; Raju et al., 1995; Penfield and
Lam, 2000 etc.). Amongst them, the most prominent are the
ETS criteria, which transform the difference logit parameter onto
the delta metric system (Holland and Thayer, 1988; Linacre and
Wright, 1989; Dorans and Holland, 1993). Conventions on effect
sizes, based on the difference logit parameter, are 0.44 and below
pointing to the existence of negligible DIF, and estimates greater
than 0.64 showing large DIF. Lin and Lin (2014) extended the ETS
criteria to avoid Type-I errors with values of 0.45 and below being
indicative of negligible DIF, values between 0.45 and 0.90 in logits
representing medium level DIF, and values greater than 0.90
showing large DIF. The present study includes all conventions.

RESULTS

Class Enumeration Process
Step 0 in the evaluation of DIF goal involves the prerequisite
selection of an optimal latent class model. The class enumeration
process involves contrasting adjacent latent class models (from 1
to, e.g., 4 or 5 classes) by use of likelihood ratio difference tests
and information criteria. Table 1 presents the results from this
process for the Mathematics scale.

Initially, a one-class baseline model was fit to the data as a
reference point from which other models would be contrasted (as
it is rather uninformative for answering focal hypotheses). When
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TABLE 1 | Latent class enumeration process of SAAT mathematics sub-scale (N = 6265).

Model LL npar AIC BIC CAIC AWE BF cmP(K) SIC aBIC HQ

1-class −58907.94 15 117845.94 117947.02 117962.02 118123.16 0.000 0.000 −58973.51 117899.35 117880.93

2-class −57025.65 31 114113.30 114353.32 114353.32 114686.35 0.000 0.000 −57161.16 114062.59 114185.73

3-class −56872.09 47 113838.18 114155.09 114155.09 114707.00 6400399.31 1.000 −57077.54 113761.30 113947.99

4-class −56817.82 63 113761.64 114186.43 114249.43 114926.22 0.000 0.000 −57093.22 113658.59 113908.84

LL, Model maximum log-likelihood value; npar, number of parameters; AIC, Akaike’s information criterion; BIC, Bayesian information criterion; CAIC, consistent Akaike’s
information criterion; AWE, average weight of evidence criterion; BF, approximate Bayes factor comparing row model (K classes) to model with one additional latent class
(K + 1 classes) in the row below; cmP(K) = approximate correct model probability for the row model (K classes) compared to all other models in the table; SIC, Schwartz
Information Criterion; aBIC, adjusted sample size BIC; HQ, Hannan and Quinn information criterion. Shaded cells show preferred solution based on diverse criteria for the
LC enumeration process.

a two-class model was fit to the data, it provided a significantly
better model fit, as evidenced by the Vuong-Lo-Mendell-Rubin
likelihood ratio test with −2∗ the loglikelihood difference been
3764.590, which for 16 parameters, was significantly different
from zero (p < 0.001). The above finding was further reinforced
since all information criteria values of the two-class model
were smaller than the corresponding criteria of the one-class
model. Similar findings emerged by modeling a third distinct
group. Again, the difference likelihood ratio test was significant
(−2∗LL = 307.106, 1par = 16, p = 0.042). Furthermore, besides
the AIC which favors larger models, all other information criteria
pointed to the superiority of a 3-class model in relation to the
2-class model. When a four-class model was fit to the data,
inferential statistics by use of the LR difference test favored
the 4-class model; however, this effect was not relied upon
due to the excessive power linked to the LRT test and instead,
more value was given to the information criteria. By use of
the BIC, CAIC, and AWE, the 3-class model provided the
most parsimonious solution with these data. Furthermore, the
approximate model probability (cmPk) pointed to the preference
of a 3-class solution. Consequently, a 3-group representation
provided the best description of different subgroups with these
data. The first class (7.5% of the sample) consisted of participants
with a high probability of success in all items of the Mathematics
scale (high achievers). The second class, which comprised 18.6%
of the sample, consisted of participants with moderate probability
of success in approximately all scale items (average achievers).
Finally, the third class made up of 73.8% of the sample consisted
of participants with very low probability of success in the
Mathematics scale (low achievers). A graphical representation of
the LCA results is presented in Figure 2.

Testing for DIF
Building upon this best-fitting model, we next examined whether
item response patterns within each class were differentiated
across the different levels of gender. In other words, we examined
whether two participants belonging to the same latent class had
the same expected responses on each scale item regardless of
their gender (Masyn, 2017). In this case, the latent class indicator
(i.e., the item) is considered measurement invariant. In any other
case, the item exhibits differential behavior, considered as DIF. As
mentioned earlier, this analysis is very important, as if gender is a
potential source of DIF, it is important to include direct effects
of gender in the latent class regression model, to get unbiased

estimates not only for the measurement parameters but also of
the structural parameters. Ignoring these effects might lead to
misspecification of the latent classes in terms of both the size
and the characteristics of each class, which in turn, could lead to
misinterpretations of the obtained latent class results.

To examine for possible DIF effects on the Math items within
a latent class framework, we adapted the Multiple-Indicator
Multiple-Causes (MIMIC) approach (Masyn, 2017), a model
which is analogous to the classical MIMIC approach used for DIF
detection in factor analysis (MacIntosh and Hashim, 2003; Finch,
2005; Wang et al., 2009; Wang, 2010). The summary of the DIF
results across all steps is presented in Table 2.

Step 1
In this step, we contrasted two models, the Null (M1.0 model),
which assumes no-DIF versus an alternative model (M1.1.
model), which assumes DIF for all items (termed all-DIF
model). The results from the likelihood ratio test statistic (LRTS)
suggested a rejection of the Null model M1.0 (LRTS = 188.58,
df = 45, p = 0.001), indicating that gender is a source of DIF for
at least one of the 15 scale items in at least one of the three latent
classes. Thus, we proceeded to Step 2 to decipher item level effects
that were responsible for the omnibus DIF finding.

Step 2
In this step, we examined each item for non-uniform DIF using
two competing models: A Null model, representing No-DIF
(M2.0.1) vs. an alternative model (M2.1.1), which represents
a non-uniform DIF for a specific item. The results from the
likelihood ratio test statistic (LRTS) for all 30 pairwise model
comparisons are shown in Step 2 part of Table 2. At the end of
this procedure, for eight items (i.e., 3, 4, 5, 6, 7, 11, 12, and 14),
the model no-DIF was not statistically significantly worse than
the model allowing non-uniform DIF. On the other hand, for 7
Math items (i.e., 1, 2, 8, 9, 10, 13, and 15), the no-DIF model
was rejected in favor of the alternative model representing a non-
uniform DIF. These findings suggest that the non-uniform DIF
items might be functioning differently across gender.

Step 3
In this step, we introduced a new model (M3.0), which was based
on the findings from Step 2, and aimed to exploit further the
non-uniform effects found in Step 2. Particularly, we built a new
MIMIC model exclusively from items exhibiting non-uniform
DIF. This model was then compared with the MIMIC models
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FIGURE 1 | Stepwise procedure for DIF detection using mixture modeling.
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FIGURE 2 | Latent class profile plots for SAAT Mathematics sub-scale based on most commonly used information criteria [e.g., BIC, CAIC, cmP(k)].

M1.0 (no-DIF model) and M1.1 (all-DIF model), respectively.
We expected that M3.0 model would be significantly better than
model M1.0 (the no-DIF model), but not significantly worse
than model M.1.1 (the all-DIF model). When model M3.0 was
contrasted to model M1.0 (no-DIF), the later showed improved
fit (LRTS = 130.98, df = 21, p = 0.001). When model M3.0
was contrasted to M1.1. (all DIF), significant differences were
observed, contrary to expectations (LRTS = 57.60, df = 24,
p = 0.001), a finding being likely reflective of excessive power
levels observed with over 6,000 participants. This conclusion
was further substantiated by examining BIC estimates; Results
showed that the BIC value for M3.0 (113,967.05) was lower than
the corresponding value for model M1.1 (114,119.26) suggesting
that model M3.0 was the preferred model with these data in
comparison to M1.1 after accounting for model complexity and
sample size. The results from this step are shown in Step 3 part of
Table 2. To sum up, all evidence from this step suggests that M3.0

model was the final latent class MIMIC model that summarizes
the effects of gender on the latent class solution.

Step 4
Last Step in the implementation of the current protocol was to
test for uniform DIF (Table 2, step 4). Particularly, we estimated
a series of MIMIC models containing only the items exhibiting
non-uniform DIF, as described in the previous step (M4.1–
M4.7). In these models, we constrained the direct effect from
the covariate to each item (one at a time) to be class-invariant,
while allowing all other direct effects to vary across classes freely.
Then, we compared each model with the M3.0 non-uniform
latent class MIMIC model using a difference likelihood ratio test.
If the new models (i.e., M4.1 – M4.7) are not significantly worse
than the M3.0 (the non-uniform DIF model), there is evidence for
uniform DIF. In contrast, if the new models are statistically worse
than the model allowing non-uniform DIF effects, DIF effects are
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TABLE 2 | Model comparisons for Differential Item Functioning (DIF) for gender across classes at a 3-latent class model for mathematics scale.

Steps Model Model description LL npar Comparison LRTS d.f p-value

1 M1.0 MIMIC: No DIF −56743.05 49 M1.0 vs. M1.1 188.58 45 0.001

M1.1 MIMIC: All DIF −56648.76 94

2 M2.0.1 Item1: No DIF −8349.60 7 M2.0.1 vs. M2.1.1 13.48 3 0.001

M2.1.1 Item1: N-U DIF −8342.86 10

M2.0.2 Item2: No DIF −8117.29 7 M2.0.2 vs. M2.1.2 33.56 3 Ns

M2.1.2 Item2: N-U DIF −8100.51 10

M2.0.3 Item3: No DIF −7776.14 7 M2.0.3 vs. M2.1.3 2.64 3 Ns

M2.1.3 Item3: N-U DIF −7774.82 10

M2.0.4 Item4: No DIF −8208.62 7 M2.0.4 vs. M2.1.4 9.44 3 Ns

M2.1.4 Item4: N-U DIF −8203.90 10

M2.0.5 Item5: No DIF −8310.93 7 M2.0.5 vs. M2.1.5 8.84 3 Ns

M2.1.5 Item5: N-U DIF −8306.51 10

M2.0.6 Item6: No DIF −8046.94 7 M2.0.6 vs. M2.1.6 0.64 3 Ns

M2.1.6 Item6: N-U DIF −8046.62 10

M2.0.7 Item7: No DIF −8189.82 7 M2.0.7 vs. M2.1.7 2.88 3 Ns

M2.1.7 Item7: N-U DIF −8188.38 10

M2.0.8 Item8: No DIF −8044.60 7 M2.0.8 vs. M2.1.8 21.60 3 0.001

M2.1.8 Item8: N-U DIF −8033.80 10

M2.0.9 Item9: No DIF −8312.74 7 M2.0.9 vs. M2.1.9 19.52 3 0.002

M2.1.9 Item9: N-U DIF −8302.98 10

M2.0.10 Item10: No DIF −8127.99 7 M2.0.10 vs. M2.1.10 26.56 3 0.001

M2.1.10 Item10: N-U DIF −8114.71 10

M2.0.11 Item11: No DIF −8171.41 7 M2.0.11 vs. M2.1.11 7.38 3 Ns

M2.1.11 Item11: N-U DIF −8167.72 10

M2.0.12 Item12: No DIF −8098.77 7 M2.0.12 vs. M2.1.12 2.70 3 Ns

M2.1.12 Item12: N-U DIF −8097.42 10

M2.0.13 Item13: No DIF −8171.10 7 M2.0.13 vs. M2.1.13 13.94 3 0.003

M2.1.13 Item13: N-U DIF −8164.13 10

M2.0.14 Item14: No DIF −7659.90 7 M2.0.14 vs. M2.1.14 3.56 3 ns

M2.1.14 Item14: N-U DIF −7658.12 10

M2.0.15 Item15: No DIF −7490.77 7 M2.0.15 vs. M2.1.15 13.46 3 0.004

M2.1.15 Item15: N-U DIF −7484.04 10

3 M3.0 MIMIC with all N-U DIF items −56677.56 70 M1.0 vs. M3.0 130.98 21 0.001

M3.0 vs. M.1.1 57.60 24 0.001

4 M4.1 Item1 (U DIF) all other (N-U DIF) −56681.62 68 M4.1 vs. M3.0 8.12 2 0.017

M4.2 Item2 (U DIF) all other (N-U DIF) −56679.80 68 M4.2 vs. M3.0 4.48 2 ns

M4.3 Item8 (U DIF) all other (N-U DIF) −56684.85 68 M4.3 vs. M3.0 14.58 2 0.001

M4.4. Item9 (U DIF) all other (N-U DIF) −56684.02 68 M4.4 vs. M3.0 12.92 2 0.001

M4.5 Item10 (U DIF) all other (N-U DIF) −56680.97 68 M4.5 vs. M3.0 6.82 2 0.033

M4.6 Item13 (U DIF) all other (N-U DIF) −56679.87 68 M4.6 vs. M3.0 4.62 2 ns

M4.7. Item15 (U DIF) all other (N-U DIF) −56677.72 68 M4.7 vs. M3.0 0.32 2 ns

LL, Model maximum log likelihood value; npar, number of free parameters; LRTS, likelihood ratio test statistic; d.f., degrees of freedom; MIMIC, Multiple Indicator Multiple
Cause; U DIF = uniform DIF; N-U DIF, non-uniform DIF; p < 0.001.

non-uniform. The analysis revealed three uniform DIF items (i.e.,
2, 13, and 15) and four non-uniform DIF items (items 1, 8, 9, and
10). Tables 3, 4 present inferential statistics and corresponding
effect size indicators for these effects.

In terms of uniform DIF, males scored higher than females
(positive values designate higher values for males) in items 2 and
15, regardless of their class membership. The opposite occurred
in item 13, with females scoring higher than males across all
classes. However, when it comes to interpreting the size of
DIF in terms of effect size metrics, all three items exhibited

negligible uniform DIF (Lin and Lin, 2014). In terms of non-
uniform DIF, item 1 exhibited medium level DIF across gender
only at latent class 2 (average achievers), with females scoring
higher than males. For the remaining classes, the DIF effect
was negligible. Item 8 exhibited a large DIF effect only at latent
class 1 (high scorers), with females scoring higher than males;
in all other classes, the DIF effect was negligible. Items 9 and
10 exhibited large levels DIF in the 2nd class, with females
scoring higher than males. In all other classes, the DIF effects
were negligible.
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TABLE 3 | Statistics for uniform DIF items across males and females for SAAT’s Mathematics scale.

Item no Estimate (in logits) 95% CIs (UL/LL) S.E. Est./S.E. p-value Effect size

2 0.307 0.170/0.445 0.070 4.389 0.001 Negligible

13 −0.244 −0.365/−0.123 0.062 −3.952 0.001 Negligible

15 0.271 0.117/426 0.079 3.441 0.001 Negligible

UL, upper level; LL, low level; S.E, standard error.

TABLE 4 | Statistics for non-uniform DIF items across males and females for SAAT’s Mathematics scale.

Latent Class 1 Latent Class 2 Latent Class 3

Item no Estimates (in
logits)

95% CIs
(UL/LL)

Effect size Estimates (in
logits)

95% CIs
(UL/LL)

Effect size Estimates (in
logits)

95% CIs
(UL/LL)

Effect size

1 −0.075 −0.643/0.493 Negligible −0.672 −1.076/−0.267 Medium 0.095 −0.100/0.290 Negligible

8 −2.03 −6.779/2.712 Large −0.335 −0.705/0.034 Negligible 0.425 0.226/0.625 Negligible

9 −0.068 −0.725/0.589 Negligible −15.09 −15.94/−14.25 Large −0.176 −0.378/0.027 Negligble

10 −0.266 −0.868/0.335 Negligible −1.367 −2.242/−0.492 large −0.073 −0.328/0.181 Negligible

UL, upper level; LL, low level.

DISCUSSION

The aim of this study was twofold: first, to determine if
subgroups of participants completing a standardized admission
test for university entrance could be identified based on their
performance; the findings from this analysis could help experts,
education specialists, and policymakers to identify possible
common characteristics shared by participants of each group,
and uncover factors/reasons determining their performance;
second, to examine whether the observed latent class indicators
are invariant across classes in terms of gender. Lately, a
standard practice in latent class analysis is to investigate
what types of individuals belong to each class by relating
classes to covariates (e.g., gender, age, etc.). Thus, this analysis
could help experts to identify whether gender is a potential
source of DIF for the latent class indicators. Previous findings
have shown that ignoring these effects may lead to biased
estimated parameters, not only for the measurement but also
for the structural model of the latent class analysis (Masyn,
2017; Nylund-Gibson and Choi, 2018). Moreover, if there
are DIF items in the latent class model, then the obtained
latent classes cannot be used for class comparisons, a practice
that is very common in the latent class tradition (e.g.,
Clark and Muthén, 2009).

To address the first goal, we ran a latent class analysis
(LCA). The results from latent class analysis confirmed the
heterogeneity of the participants’ performance on this high-
stake admission test and revealed a three-class solution. The
first class consisted of participants with a high probability of
success in SAAT on Math items. It is the smallest class since
it is made up of 7.5% of the total sample. The second class,
which comprised 18.6% of the sample, consisted of participants
with moderate probability of success in all scale items (average
achievers). Finally, the third group (largest, comprising 73.8% of
the participants) had a low probability of success in the Math
items (termed low achievers).

Apart from the above classification of the participants into
the three classes, this analysis could provide further information
in terms of how specific items performed across the different
classes. For example, item 4 was an easy item and had a
high probability of success throughout, with even the low
ability group having a probability of success greater than 40%.
A similar pattern was observed with item 9. On the other
hand, item 15 seems to be a difficult item that discriminates
high achievers from the other two classes (average and low
scorers). However, it does not differentiate efficiently average
from low achievers. Similar conclusions can be drawn for item
11. In general, however, the majority of the Math items seem
to differentiate participants across classes adequately, suggesting
proper class discrimination.

To address the second aim of this study, we examined whether
gender is a potential source of measurement non-invariance
(DIF). For that, we ran a multiple-indicator multiple-causes
model (MIMIC), to examine whether there are direct effects not
only from the covariate to the latent class variable but also to
the latent class indicators (i.e., scale items). First, we ran an
omnibus DIF test, by comparing a model which assumes no-
DIF (i.e., gender has an effect on the latent class variable but
not direct effects on any of the latent class indicators) versus a
model which assumes all-DIF (i.e., gender has an effect on the
latent class variable but also has class varying direct effects on
all of the latent class indicators). The results showed that the all-
DIF model was statistically significantly better than the no-DIF
model, indicating that gender is a source of measurement non-
invariance (DIF) for at least one of the 15 scale items in at least
one of the three latent classes. This is an important finding since
it shows that it should be included in the latent class regression
model. Unfortunately, the use of covariates in latent class analysis
has not yet been established as a standard procedure, although
empirical evidence suggests that ignoring the effects of various
demographic variables (e.g., gender, age, socio-economic status,
income, etc.) can lead to misspecifications of the latent class
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model classification (Clark and Muthén, 2009; Asparouhov and
Muthén, 2014; Masyn, 2017).

Next, we investigated which of the Math items exhibited
uniform and non-uniform DIF effects. Uniform DIF is
established when the effect of the covariate (i.e., gender) on
an item is invariant across classes, while non-uniform DIF is
evidenced when the effects of the covariate on an item vary
across classes. The results indicated that seven items exhibited
significant evidence DIF. From them, three items exhibited
uniform DIF (items 2, 13, and 15) and four items non-uniform
DIF (items 1, 8, 9, and 10). In terms of the uniform DIF items,
males scored higher than females in items 2 and 15, and females
scored higher than males in item 13. In all cases, however, the
DIF effect size was negligible by the use of effect size conventions.
Finally, we examined the nature of non-uniform DIF. First, DIF
effects were observed in only one class, with all other classes
exhibiting negligible DIF due to gender. Second, in all cases where
a medium or strong DIF effect was evidenced, that effect favored
females in that they scored higher compared to males.

Findings from this study demonstrated that a latent class
analysis could be very useful for providing information about
what may be responsible for differential item behavior. Ignoring
or avoiding DIF effects in latent class analysis could jeopardize
the results of the analysis since it provides biased estimates for
the classification process (i.e., the determination of the classes)
as well the prediction model (i.e., the relationship between
the covariate and the latent class variable). The results from
this analysis showed that testing for DIF effects via a MIMIC
approach was a necessary procedure to ensure unbiased estimates
since there were items exhibiting DIF effects across males and
females. Furthermore, it demonstrated that examination of direct
effects (measurement non-invariance) from latent class variable
predictors (e.g., gender or other demographic variables) to latent
class indicators must become a standard procedure in latent
class analysis. Potential treatments in the presence of DIF may
include (a) purification procedures, (b) merging items with
similar content to comprise super items so that DIF effects
would dissolve, (c) examining the behavior of the distractors
and whether DIF was a function of the item stem or specific
distractors, and others.

This study also highlighted the importance of within-person
analyses. The results from this study showed that it is not
wise to assume that all latent class indicators have the same
expected responses across classes and across different levels of
a demographic variable such as gender (unfortunately, this is
what happens in practice). Thus, the nature of each latent class
must be examined by inspecting the manifest characteristics (e.g.,
demographic information) in each latent class membership. In
this study, we showed that response probabilities across latent
classes are not the same for all latent class indicators and
that individuals within a class could have different response
probabilities depending on a specific characteristic (e.g., whether
he/she is male or female).

Limitations and Future Directions
This study has several limitations that need to be pointed
out. First, the adapted approach (i.e., MIMIC modeling) is

relatively new in the latent class paradigm, with no substantial
amount of empirical evidence. Thus, there are some steps
in this sequential procedure, for which further evaluation is
needed, either with simulation or real-life data. For example,
as Masyn (2017) denotes, in Step 2 and perhaps in Step 4,
where multiple comparisons are conducted testing for non-
uniform and uniform DIF effects for one indicator at a time,
it is possible that Type I error inflation is present; thus a
sequential p-value correction procedure might be necessary such
as the Holms sequential Bonferroni procedure or others. In
this study, we did not take any action toward that, which
might have increased the number of items exhibiting DIF in
light of the large sample size. Fortunately, however, the use
of the effect size metric in interpreting the magnitude of the
DIF has minimized that risk. Second, item content was not
available to preserver item non-exposure, and consequently,
understanding differences across gender as a function of item
content was not currently possible. Third, the class enumeration
process was based solely on statistical and not theoretical and
content-based criteria for the same reasons just described,
and thus, a more thorough and informed solution could not
be derived. Fourth, because a large number of participants
were associated with excessive power levels when testing for
aberrant response patterns and/or the presence of outlying
observations, inferential statistics were not implemented in the
evaluation process.

Furthermore, outlying cases are likely not influential in
the presence of such a large sample size. Consequently, all
participants were included in the sample, assuming they are
valid members of this large population. Additionally, our use of
information criteria, although non-exhaustive, involved several
for which little research has been conducted (e.g., AWE) but
which were likely more appropriate with large samples. The
behavior of the information criteria across conditions and their
use for comparative purposes is another unexplored area of
inquiry. Last, as the editor noted, the efficacy of the proposed
method over competing methodologies would provide insights
in relation to the pros and cons of LCA DIF and is therefore a
limitation of the present study.

In this study, we examined gender composition as a means
of further distinguishing classes. Future work should focus on
expanding classification to other demographic variables, such
as age, and socio-economic status, etc. Moreover, there is
a clear need for incorporating various distal outcomes (e.g.,
academic performance, academic satisfaction, self-efficacy, etc.)
that could be used to examine whether the obtained latent
classes display statistically significant mean-level differences
and/or whether these processes should be included in the
class enumeration process. Such studies could be used to
enhance the predictive and discriminant validity of the
test. Another interesting line of research, which is related
to the further development of the method itself, might
be the implementation of the MIMIC modeling in testing
DIF effects using continuous variables as covariates (e.g.,
age) and ordinal or continuous variables as latent class
indicators. With that way, the usefulness and utility of this
promising approach in measurement theory and practice would
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be expanded. We see these as some of the many exciting questions
awaiting further study.
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