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In recent decades, cognitive diagnostic models (CDMs) have been intensively
researched and applied to various educational and psychological tests. However,
because existing CDMs fail to consider rater effects, the application of CDMs to
constructed-response (CR) items that involve human raters is seriously limited. Given
the popularity of CR items, it is desirable to develop new CDMs that are capable of
describing and estimating rater effects on CR items. In this study, we developed such
new CDMs within the frameworks of facets models and hierarchical rater models, using
the log-linear cognitive diagnosis model as a template. The parameters of the new
models were estimated with the Markov chain Monte Carlo methods implemented in
the freeware JAGS. Simulations were conducted to evaluate the parameter recovery of
the new models. Results showed that the parameters were recovered fairly well and the
more data there were, the better the recovery. Implications and applications of the new
models were illustrated with an empirical study that adopted a fine-grained checklist to
assess English academic essays.

Keywords: cognitive diagnostic models, facets models, hierarchical rater models, rater effect, item response
theory

In the past few decades, extensive research has been conducted in the area of cognitive diagnosis,
and a wide range of cognitive diagnostic models (CDMs) (also called diagnostic classification
models; DCMs) has been developed to provide fine-grained information about students’ learning
strengths and weaknesses (Tatsuoka, 1985; Templin, 2004; de la Torre, 2011; Chiu and Douglas,
2013; Hansen and Cai, 2013). Popular CDMs include the deterministic inputs, noisy and gate
(DINA) model (Haertel, 1989; Junker and Sijtsma, 2001; de la Torre and Douglas, 2004),
the deterministic input, noisy or gate model (Templin and Henson, 2006), and the reduced
reparameterized unified model (Hartz, 2002). Unlike unidimensional item response theory (IRT),
which provides a single score for a student’s proficiency on a latent continuum, CDMs offer a profile
of multiple binary (mastery or non-mastery) statuses of certain knowledge or skills.

In applications of CDMs, item responses to multiple-choice items, for example, are assumed to
be objectively scored. In many situations, such as educational assessment, performance appraisal,
psychological diagnosis, medical examination, sports competition, and singing contests, responses
to constructed-response (CR) or performance-based items are evaluated by human raters. Different
raters often exhibit different degrees of severity. There are two major approaches to rater effects in
the IRT framework. One is to treat raters as a third facet, in addition to the item and person facets,
to highlight the impact of rater effects on the item scores. Examples are the Rasch facets models
(Linacre, 1989) and the random-effect facets model (Wang and Wilson, 2005). The other approach
is to employ signal detection theory to describe raters’ judgment. Examples include the hierarchical
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rater model (HRM; Patz et al., 2002) and the latent class
extension of signal detection theory (DeCarlo et al., 2011). The
facets approach and the HRM approach have very different
assumptions regarding rater behaviors, as discussed below. The
resulting measures of a person (ratee) can only be considered fair
and valid for individual comparison if rater effects are directly
accounted for in the IRT models.

Rater effects can happen in the CDM framework when
raters are recruited to mark item responses. In this study, we
adapt these two approaches (facets and HRM) to the CDM
framework to account for rater effects. Based on the same logic
above, the resulting profiles (a set of binary latent attributes)
of persons (ratees) are fair and valid for individual comparison
only when rater effects are directly accounted for in the CDMs.
The remainder of this paper is organized as follows. First, the
facets and HRM approaches within the IRT framework are
briefly introduced. Second, these two approaches are adapted
to the CDM framework to create new CDMs to account for
rater effects. Third, a series of simulations are conducted to
evaluate the parameter recovery of the new CDMs, and their
results are summarized. Fourth, an empirical example about
essay writing is provided to demonstrate applications of the new
models. Finally, conclusions are drawn and suggestions for future
studies are provided.

INTRODUCTION TO THE FACETS AND
HRM APPROACHES

The Facets Approach
In the facets approach, raters are treated as instruments to
measure ratees, just like items are. Raters are recruited to provide
their own expertise to make judgments of ratees’ performance;
therefore, the more raters there are, the more reliable the
measurement of the ratees. In the facets model (Linacre, 1989),
the log-odds (logit) of scoring k over k – 1 on item j for ratee i
judged by rater r is defined as:

log(Pijkr/Pij(k−1)r) = θi − βjk − ηr (1)

where Pijkr and Pij(k−1)r are the probabilities of receiving a score
of k and k - 1, respectively, for ratee i on item j from rater r; θi
is the latent (continuous) trait of ratee i and is often assumed
to follow a normal distribution; βjk is the kth threshold of item
j; ηr is the severity of rater r. A positive (negative) ηr decreases
(increases) the probability of receiving a high score. Equation 1
can be easily generalized to more than three facets.

In Equation 1, a rater has a single parameter ηr to account
for the rater’s degree of severity, meaning that the rater holds
a constant degree of severity throughout all ratings. In reality,
it is likely that a rater exhibits some fluctuations in severity
when giving ratings. If so, Equation 1 is too stringent, and the
assumption of constant severity needs to be relaxed. To account
for the intra-rater fluctuations in severity, Wang and Wilson
(2005) proposed adding a random-effect parameter to the facets
model, which can be expressed as:

log(Pijkr/Pij(k−1)r) = θi − βjk − (ηr + ζir) (2)

where ζir is assumed to follow a normal distribution, with mean
0 and variance σ2

r ; others have been defined in Equation 1; θ and
ζ are assumed to be mutually independent. Where appropriate,
slope parameters can be added and covariates (e.g., gender) can
be incorporated to account for variations in θ and η (Wang and
Liu, 2007). The facets models have been widely used to account
for rater effects in practice (Engelhard, 1994, 1996; Myford and
Wolfe, 2003, 2004).

The HRM Approach
In the HRM approach, it is argued that thorough scoring rubrics
can (in theory) be programmed into computers so human raters
are no longer needed (Patz et al., 2002). However, until computer
scoring is made possible (e.g., it is not cost-effective to develop
e-raters), human raters are still in demand but they are expected
to function like scoring machines (clones) as closely as possible.
Unfortunately, human judgment may deviate remarkably from
machine scoring, which brings random noise to the ratings. Only
when raters act exactly like scoring machines will a CR item
provide as much information as an objective (machine-scorable)
item does. Following this logic, increasing the number of raters
will not increase the precision of ratee measurements.

The HRM involves two steps. In the first step, the scores
provided by raters are treated as indicators of the latent (true,
or ideal) category for ratee i’s response to item j. Let ξij be the
latent category for ratee i on item j. The probability that rater r
will assign a rating k given ξij is assumed to be proportional to a
normal density with a mean ξij – φr and a standard deviation ψr:

Pijkr ∝ exp
[
−

1
2ψ2

r
[k− (ξij − φr)]

2
]

(3)

where φr represents the severity for rater r: a value of 0 indicates
the rater is most likely to provide the same rating as the latent
(true) category, a negative value indicates that the rater tends
to be lenient, a positive value implies that the rater tends to be
severe, and ψr represents the rater’s variability: the larger the
value, the less reliable (consistent) the ratings.

In the second step, the latent category ξij is used as the
indicator of a ratee’s ability via an IRT model such as the partial
credit model (Masters, 1982):

Pijl ≡ P(ξij = l |θi) =
exp

∑l
k=0

(
θi−δjk

)
∑Mj

m=0 exp
∑m

k=0
(
θi−δjk

) (4)

logit(Pijl) ≡ log (Pijl/Pij(l−1)) = θi − δjk (5)

where Mj is the maximum score of item j, δjk is the kth step
parameter of item j, θi is the latent trait for person i. By defining∑0

k=0
(
θi−δjk

)
≡ 0 and

∑m
k=0

(
θi−δjk

)
≡
∑m

k=1
(
θi−δjk

)
, the

probability of scoring 0 is Pij0=
1∑Mj

m=0 exp
∑m

k=0
(
θi−δjk

) . Note that

ξij in Equation 4 is latent rather than observed in the standard
partial credit model.

A problem in the HRM, also noted by Patz et al. (2002),
is that a relatively small value for ψr would lead to difficulties
in determining a unique value for φr because the posterior
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distribution of φr is almost uniform (DeCarlo et al., 2011).
Another limitation of the HRM is that it can account for a rater’s
severity and inconsistency, but not for other rater effects, such
as centrality. To resolve these problems, DeCarlo et al. (2011)
extended the HRM by incorporating a latent class extension of
the signal detection theory as:

Pijk∗r = F
[
ajr(ξij − cjkr)

]
, (6)

where Pijk∗r denotes the probability of assigning a rating less
than or equal to k (denoted as k∗) given ξij; F can be
a cumulative normal or logistic distribution; ajr is a slope
(sensitivity) parameter for rater r on item j; cjkr is the kth ordered
location parameter of item j for rater r. Like ψr in Equation 3,
ajr depicts how sensitive or reliable the ratings are for rater r
on item j. A close investigation of cjkr can reveal rater severity
and centrality. Further, by including an autoregressive time series
process and a parameter for overall growth, the HRM approach
is also feasible for longitudinal data (Casabianca et al., 2017).

THE LOG-LINEAR COGNITIVE
DIAGNOSIS MODEL

Cognitive diagnostic models have been applied to large-scale
educational assessments such as the Trends in International
Mathematics and Science Study (TIMSS), the Progress in
International Reading Literacy Study (PIRLS), the National
Assessment of Educational Progress (NEAP), and the Test of
English as a Foreign Language (TOEFL) to obtain information
about students’ cognitive abilities (Tatsuoka et al., 2004; Xu and
von Davier, 2008; Chiu and Seo, 2009; Templin and Bradshaw,
2013). In these datasets, both multiple-choice items and CR items
are used. For example, in the PIRLS reading comprehension test,
approximately half of the items require examinees to write down
their responses, which are then marked by human raters. In these
studies of fitting CDMs to large-scale educational assessments,
rater effects were not considered simply because existing CDMs
could not account for rater effects. To resolve this problem, we
developed new CDMs for rater effects within both the facets and
HRM frameworks. We adopted the log-linear cognitive diagnosis
model (LCDM; Henson et al., 2009) as a template because it
includes many CDMs as special cases. Nevertheless, the new
models developed in this study can also apply easily to other
general CDMs, such as the general diagnostic model (von Davier,
2008) or the generalized DINA model (de la Torre, 2011).

Under the LCDM, the probability of success (scoring 1) on
item j for person i is defined as:

Pij1 ≡ P(Xij = 1|αi) =
exp

(
λj,0 + λT

j h
(
αi, qj

))
1+ exp

(
λj,0 + λT

j h
(
αi, qj

)) (7)

logit(Pij1) ≡ log[Pij1/(1− Pij1)] = λj,0 + λT
j h(αi, qj) (8)

where αi is the latent profile of person i, λj,0 defines the
probability of success for those persons who have not mastered

any of the attributes required by item j; λT
j is a (2K

− 1) by 1
vector of weights for item j; qjk is the entry for item j in the
Q-matrix; h(αi, qj) is a set of linear combinations of αi and qj;
λT

j h(αi, qj) can be written as:

λT
j h
(
αi,qj

)
=

K∑
k=1

λjk
(
αikqjk

)
+

K∑
k=1

∑
v>k

λjkv
(
αikαivqjkqjv

)
+ ...

(9)
For item j, the exponent includes an intercept term, all main
effects of attributes, and all possible interaction effects between
attributes. By constraining some of the LCDM parameters, many
existing CDMs can be formed (Henson et al., 2009). For example,
for a three-attribute item, the DINA model can be defined as:

Pij1 =
exp

(
λj,0 + λj,123αi1αi2αi3

)
1+ exp

(
λj,0 + λj,123αi1αi2αi3

) (10)

Although we concentrate on dichotomous responses in this
study for illustrative purpose, Equation 7 can be extended to
accommodate polytomous items. Let Pijk and Pij(k−1) be the
probabilities of scoring k and k − 1 on item j for person i,
respectively. Equation 8 can be extended as:

logit(Pijk) ≡ log (Pijk/Pij(k−1)) = λj,0,k−1 + λT
j h(αi, qj), (11)

where λj,0,k−1 is the (k – 1)th intercept for item j. Equation
11 is based on adjacent-category logit. Actually, cumulative
logit (Hansen, 2013) and other approaches are also feasible
(Ma and de la Torre, 2016).

For the ease of understanding and interpretation, item
parameters in the LCDM can be expressed as follows, which
is commonly called as the guessing parameters (gj) and slip
parameters (sj):

gj =
exp

(
λj,0

)
1+ exp

(
λj,0

) (12)

sj = 1−
exp

(
λj,0 + λT

j (αi, qj)
)

1+ exp
(
λj,0 + λT

j (αi, qj)
) (13)

representing the probability of success without mastering all the
required attributes, and the probability of failure with mastering
all the required attributes, respectively.

NEW CDMs WITH THE FACETS
APPROACH

All existing CDMs involve two facets: person and item. When
items are marked by human raters, a third facet is needed to
account for rater effects. To accomplish this, Equation 8 can be
extended as:

logit(Pijr1) ≡ log[Pijr1/(1− Pijr1)] = λj,0 − ηr + λT
i h(αi, qj)

(14)

where Pijr1 is the probability of success (scoring 1) on item j for
person i marked by rater r; ηr is the severity of rater r; other terms
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have been defined. A positive (negative) ηr decreases (increases)
the probability of success. If ηr = 0 for all raters, Equation 14
simplifies to Equation 8. That is, Equation 14 is a three-facet
extension of the LCDM.

When there is a concern about intra-rater variations in
severity, ηr in Equation 14 can be replaced with ηr + ζir.
Moreover, Equation 14 can be easily generalized to include more
than three facets. For example, in the Test of Spoken English
(TSE) assessment system, examinees’ speaking tasks are marked
on multiple criteria by human raters, so four facets are involved:
ratee, task, rater, and criterion. In such cases, Equation 14 can be
extended to four facets as:

logit(Pijrs1) ≡ log[Pijrs1/(1− Pijrs1)]

= λj,0 − ηr − γs + λT
i h(αi, qj) (15)

where Pijrs1 is the probability of success (scoring 1) on task j along
criterion s for examinee i marked by rater r; γs is the threshold of
criterion s; other terms have been defined. Generalization to more
facets is straightforward. For polytomous items, Equation 14 can
be extended as:

logit(Pijrk) ≡ log (Pijrk/Pijr(k−1)) = λj,0,k−1 − ηr + λT
i h(αi, qj)

(16)

where Pijrk and Pijr(k−1) be the probabilities of scoring k and
k − 1 on item j for examinee i marked by rater r, respectively;
other terms have been defined.

NEW CDMs WITH THE HRM APPROACH

The signal detection model in the first step in the HRM approach
can be defined as in Equation 3 or 6, with the constraint of
k = 0 or 1 because of dichotomous items. For dichotomous items,
Equations 3 and 6 become equivalent, except there is a single
ψr for each rater in Equation 3, but multiple ajr (across items)
for each rater in Equation 6. The IRT model in the second step
(Equation 4 or 5) can be replaced with a CDM like the LCDM.
Using the LCDM as template, the new model can be written as:

Pij1 ≡ P(ξij = 1 |αi) =
exp

(
λj,0 + λT

j h
(
αi, qj

))
1+ exp

(
λj,0 + λT

j h
(
αi, qj

)) (17)

logit(Pij1) ≡ log[Pij1/(1− Pij1)] = λj,0 + λT
j h
(
αi, qj

)
(18)

where ξij is the latent binary category of person i on item j;
other terms have been defined. Comparing Equations 17 and
7, one finds that the category is latent in Equation 17, but
observed in Equation 7. For polytomous items, Equation 18 can
be extended as:

logit(Pijk) ≡ log (Pijk/Pij(k−1)) = λj,0,k−1 + λT
j h
(
αi, qj

)
(19)

PARAMETER ESTIMATION

Parameters in the new facets-CDM and HRM-CDMs can be
estimated by utilizing Markov chain Monte Carlo (MCMC)
methods (de la Torre and Douglas, 2004; Ayers et al., 2013),
which treat parameters as random variables and repeatedly draw
from their full conditional posterior distributions over a large
number of iterations. In this study, the freeware JAGS (Version
4.2.0; Plummer, 2015) and the R2jags package (Version 0.5-
7; Su and Yajima, 2015) in R (Version 3.3.0 64-bit; R Core
Team, 2016) were used to estimate model parameters. JAGS
uses a default option of the Gibbs sampler and offers a user-
friendly tool for constructing Markov chains for parameters,
so the derivation of the joint posterior distribution of the
model parameters becomes attainable. We used the Gelman–
Rubin diagnostic statistic (Gelman and Rubin, 1992) to assess
convergence, in which a value smaller than 1.1 is typically
regarded as convergence as a rule of thumb. In the facets-CDMs,
the rater severity was constrained at a zero mean for model
identification. Our pilot simulation supported the use of 10,000
iterations, with the first 5,000 iterations as burn-in and the
remaining 5,000 iterations for the point estimates (expected a
posteriori) and their standard errors by sampling one in every 10
values. The resulting Gelman–Rubin diagnostic statistic indicated
no convergence problem.

Two simulation studies were conducted to evaluate the
recovery of item parameters and person profiles for the two
newly proposed models with rater effects. Moreover, we evaluated
the effects of ignoring rater effects by comparing the proposed
models (with rater effect) and standard models (without rater
effect) in the simulations. In particular, Study I evaluated the item
and person recovery of the facets-CDM under different rating
designs. Study II assessed the implementation of the HRM-CDM.
One hundred replications were conducted under each condition.
For comparison, all simulated data were also analyzed with the
standard CDMs, which did not consider rater effects.

SIMULATION STUDY I: FACETS-CDM

Design
Rating design is a practical issue because it involves resource
allocation. A good rating design can save a great deal of resource
while holding acceptable precision of ratee measurement.
According to the procedures of Chiu et al. (2009), latent
ability θ of 500 ratees were drawn from a multivariate normal
distribution MVN(0, 6), with the diagonal and off-diagonal
elements of the covariance matrix taking a value of 1 and 0.5,
respectively. A correlation of 0.5 between attributes was specified
to mimic moderate to medium correlations between attributes in
educational settings. Assuming that the underlying continuous
ability for the ith ratee was θT

i = (θi1, θi2, · · · , θiK), the profile
pattern αT

i = (αi1, αi2, · · · , αiK) was determined by

αik =

 1, if θik ≥ 8−1
(

k
K + 1

)
,

0, otherwise.
(20)
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The test consisted of 10 dichotomous items measuring five
attributes, as shown in Table 1, and 10 raters. Dichotomous
responses were simulated according to the facets-CDM (Equation
11). The generating intercepts (λj,0), main effects (λj,1), two-
way interactions (λj,2), and rater severities (ηr) are listed in
Table 3, and the resulting range of the guessing parameters and
slip parameters was [0.08, 0.20] and [0.07, 0.19], respectively.

Four kinds of rating design were used: (a) completely crossed
design, where every ratee was judged by every rater; (b) balanced
incomplete design, where each ratee was judged by three raters
and each rater judged 150 ratees; (c) unbalanced incomplete
design, where each ratee was judged by three raters but different
raters judged different numbers of ratees; (d) random design,
where 20 ratees were judged by all raters and the remaining
480 ratees were judged by three raters randomly selected from
the rater pool. The completely crossed design, although seldom
used when there are a large number of ratees (e.g., several
hundred), was adopted here to provide reference information
about the parameter recovery of the facets-CDMs. In the three
incomplete designs, raters were connected by a set of common
ratees. Detailed specification of the incomplete designs is shown
in Table 2.

Analysis
The generated data were analyzed with (a) the data-generating
facets-CDM (saturated) model and (b) the standard CDM
without considering rater effects, where the ratings given by the
raters were treated as responses to virtual items with identical
item parameters. Based on prior studies (e.g., Li and Wang, 2015;
Zhan et al., 2019), a less informative normal prior was specified
for all model parameters across the two models. Specifically,
a normal prior with mean zero and standard deviation four
was assumed for the intercepts (λj,0), main effects (λj,1), two-
way interactions (λj,2), and rater severities (ηr). Moreover, a
truncated normal distribution was specified to constraint the
main effect parameters (λj,1) to be positive. In doing so, the
probabilities of correct responses increased as a function of
mastering each required attribute. To evaluate the recovery of
item parameters, we computed the bias and root mean squared
error (RMSE) of these estimates across replications. For person

TABLE 1 | Q-matrix for the ten items in the simulations.

Item Attribute 1 Attribute 2 Attribute 3 Attribute 4 Attribute 5

1 1 0 0 0 0

2 0 1 0 0 0

3 0 0 1 0 0

4 0 0 0 1 0

5 0 0 0 0 1

6 1 1 0 0 0

7 0 1 1 0 0

8 0 0 1 1 0

9 0 0 0 1 1

10 1 0 0 0 1

1s mean the attributes are required, and 0s mean the attributes are not required.

profiles, we computed the mean accurate recovery rate. In the
completely crossed design, each item received 5,000 scores (500
ratees times 10 raters), each ratee received 100 scores (10 items
times 10 raters), and each rater gave 5,000 scores (10 items
times 500 ratees); in the three incomplete designs, each item
received approximately 1,500 scores (500 ratees times 3 raters),
each ratee received 30 scores (10 items times 3 raters) except
20 ratees received 100 scores (10 items times 10 raters) in the
random design, and each rater gave approximately 1,500 scores
(10 items times 150 ratees). In general, the more the data points,
the better the parameter estimation and profile recovery. It was
thus anticipated that when the facets-CDM was fit, the parameter
estimation and recovery rates would be better in the completely
crossed design than in the three incomplete designs. When the
standard CDM was fit, the parameter estimation and recovery
rates would be poor because the rater effects were not considered.

Results
Table 3 lists the generating values, the bias values, and the RMSE
values for the two models under the four designs. When the
facets-CDM was fit, the RMSE values were not large, ranging
from 0.07 to 0.24 (M = 0.16) in the completely crossed design,
from 0.10 to 0.52 (M = 0.23) in the balanced incomplete design,
from 0.12 to 0.51 (M = 0.23) in the unbalanced incomplete

TABLE 2 | Number of ratees under the incomplete designs in simulation
study I (Facets-CDM).

Rater

1 2 3 4 5 6 7 8 9 10

Balanced

50 50 50

50 50 50

50 50 50

50 50 50

50 50 50

50 50 50

50 50 50

50 50 50

50 50 50

50 50 50

Total 150 150 150 150 150 150 150 150 150 150

Unbalanced

50 50 50

68 68 68

44 44 44

58 58 58

35 35 35

51 51 51

50 50 50

55 55 55

40 40 40

49 49 49

Total 139 167 162 170 137 144 136 156 145 144

Random

Total 134 155 157 141 168 158 152 130 153 152
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TABLE 3 | Generating values, bias, root mean square error (RMSE), and profile recovery rates (%) in simulation study I (Facets-CDM).

Complete design Balanced design Unbalanced design Random design

Facets-CDM Standard CDM Facets-CDM Standard CDM Facets-CDM Standard CDM Facets-CDM Standard CDM

Par. Gen Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

λ1,0 −2.00 −0.13 0.21 0.30 0.30 −0.21 0.28 0.08 0.11 −0.12 0.22 0.16 0.19 −0.12 0.22 0.17 0.19

λ2,0 −1.40 −0.12 0.19 0.23 0.23 −0.19 0.25 0.04 0.07 −0.21 0.25 −0.02 0.06 −0.13 0.18 0.11 0.13

λ3,0 −1.79 −0.13 0.20 0.27 0.27 −0.18 0.25 0.09 0.16 −0.18 0.24 0.09 0.13 −0.20 0.25 0.10 0.14

λ4,0 −1.37 −0.15 0.21 0.20 0.20 −0.19 0.26 0.02 0.09 −0.17 0.23 0.08 0.09 −0.21 0.28 0.03 0.08

λ5,0 −1.85 −0.12 0.21 0.28 0.28 −0.28 0.31 0.01 0.09 −0.16 0.21 0.10 0.15 −0.16 0.19 0.17 0.20

λ6,0 −2.42 −0.14 0.23 0.33 0.33 −0.26 0.33 −0.06 0.16 −0.11 0.18 −0.05 0.18 −0.30 0.36 −0.05 0.13

λ7,0 −1.57 −0.10 0.20 0.26 0.27 −0.12 0.22 0.01 0.16 −0.09 0.29 −0.03 0.16 −0.11 0.24 0.07 0.10

λ8,0 −1.95 −0.10 0.21 0.31 0.32 −0.17 0.24 0.00 0.14 −0.18 0.23 −0.02 0.17 −0.19 0.24 −0.02 0.18

λ9,0 −2.07 −0.11 0.20 0.32 0.33 −0.22 0.31 −0.06 0.23 −0.09 0.18 0.03 0.13 −0.12 0.27 0.07 0.21

λ10,0 −1.69 −0.10 0.22 0.28 0.29 −0.18 0.28 −0.05 0.12 −0.08 0.29 0.02 0.16 −0.09 0.17 0.09 0.12

λ1,1 3.72 −0.01 0.09 −0.62 0.62 −0.03 0.20 −0.63 0.65 −0.13 0.18 −0.84 0.84 −0.03 0.14 −0.60 0.62

λ2,1 2.82 −0.06 0.10 −0.55 0.55 −0.15 0.21 −0.56 0.58 −0.19 0.24 −0.58 0.59 −0.18 0.20 −0.65 0.65

λ3,1 3.41 0.03 0.08 −0.55 0.56 −0.01 0.18 −0.58 0.60 −0.05 0.17 −0.61 0.62 −0.05 0.11 −0.67 0.68

λ4,1 2.91 0.01 0.08 −0.50 0.50 −0.06 0.10 −0.42 0.43 −0.09 0.14 −0.58 0.59 −0.04 0.18 −0.50 0.52

λ5,1 3.38 0.00 0.10 −0.56 0.57 −0.05 0.10 −0.53 0.54 −0.03 0.12 −0.59 0.60 −0.08 0.14 −0.63 0.65

λ6,1 1.26 0.04 0.10 −0.12 0.14 −0.02 0.18 0.02 0.16 −0.13 0.20 0.04 0.15 0.14 0.29 0.13 0.27

λ7,1 1.04 −0.04 0.07 −0.20 0.20 −0.03 0.26 −0.01 0.21 −0.15 0.28 −0.04 0.19 −0.09 0.20 −0.10 0.17

λ8,1 1.18 −0.05 0.09 −0.20 0.21 −0.03 0.15 −0.04 0.13 −0.04 0.22 0.00 0.25 −0.03 0.24 0.05 0.26

λ9,1 1.00 −0.03 0.09 −0.16 0.17 −0.01 0.20 0.05 0.23 −0.09 0.23 0.08 0.26 −0.08 0.27 0.00 0.23

λ10,1 0.96 0.00 0.07 −0.14 0.15 −0.01 0.15 0.06 0.14 −0.03 0.17 0.07 0.17 −0.04 0.10 −0.02 0.11

λ6,2 2.16 −0.01 0.24 −0.42 0.48 0.07 0.32 −0.72 0.76 0.20 0.51 −0.79 0.82 0.00 0.48 −0.70 0.81

λ7,2 2.14 0.07 0.19 −0.29 0.32 −0.13 0.39 −0.78 0.81 0.14 0.39 −0.58 0.66 0.24 0.40 −0.47 0.54

λ8,2 1.98 0.09 0.20 −0.28 0.31 −0.03 0.22 −0.56 0.59 0.13 0.43 −0.51 0.61 0.26 0.39 −0.55 0.63

λ9,2 2.05 0.08 0.15 −0.33 0.35 0.12 0.52 −0.44 0.63 0.20 0.34 −0.67 0.76 0.27 0.49 −0.38 0.51

λ10,2 2.12 −0.02 0.21 −0.39 0.43 0.10 0.27 −0.52 0.59 0.19 0.28 −0.63 0.64 0.05 0.24 −0.55 0.59

η1 0.57 −0.01 0.15 −0.01 0.18 0.09 0.17 −0.02 0.11

η2 0.59 0.01 0.13 0.05 0.17 0.11 0.18 −0.04 0.15

η3 0.70 0.04 0.16 0.04 0.17 0.12 0.18 −0.02 0.13

η4 1.83 0.00 0.17 0.05 0.15 0.10 0.18 −0.03 0.13

η5 −0.50 −0.04 0.16 −0.03 0.14 0.10 0.20 −0.07 0.18

η6 −0.56 0.03 0.16 −0.06 0.17 0.08 0.17 −0.09 0.15

η7 −0.10 0.01 0.18 0.03 0.23 0.09 0.18 −0.04 0.17

η8 −1.05 0.01 0.17 0.07 0.17 0.08 0.17 −0.03 0.17

η9 0.55 0.04 0.15 0.04 0.13 0.10 0.19 −0.04 0.14

η10 −2.03 0.02 0.19 0.10 0.24 0.16 0.21 0.04 0.14

Profile recovery

Minimum 96.41 94.27 68.80 59.83 67.44 58.61 68.42 62.40

Maximum 99.15 97.00 75.67 67.85 73.22 65.24 77.21 69.83

Mean 97.58 95.78 71.02 63.50 70.14 62.16 72.62 66.20

SD 0.66 0.64 2.14 2.77 1.45 1.83 2.89 2.29

design, and from 0.10 to 0.49 (M = 0.22) in the random
design. Such small RMSE values suggested good parameter
recovery and they were similar to those found in common
CDMs (e.g., De la Torre et al., 2010; Huang and Wang, 2014).
With respect to the recovery of the latent profile, the mean
recovery rate across profiles was 97.58% in the completely
crossed design, 71.02% in the balanced incomplete design,
70.14% in the unbalanced incomplete design, and 72.62% in
the random design. As expected, the parameter estimation and

profile recovery were better in the completely crossed design than
in the incomplete designs.

Focusing on results of the facets-CDM model, the profile
recovery rates ranged from 67 to 69% in the three incomplete
designs, where each item was rated by three raters. Such findings
indicated that if one wishes to obtain a mean profile recovery rate
of 70% from ten dichotomous items measuring five attributes,
each item should be judged by three raters (i.e., each ratee
received 30 scores). Moreover, as indicative by the results of the
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completely crossed design, if each item is judged by ten raters (i.e.,
each ratee received 100 scores), the mean profile recovery rate
could be as high as 98%.

When rater effects were ignored and the standard CDM
was fit, the RMSE values became larger, ranging from 0.14 to
0.62 (M = 0.34) in the completely crossed design, from 0.07 to
0.81 (M = 0.34) in the balanced incomplete design, from 0.06
to 0.84 (M = 0.37) in the unbalanced incomplete design, and
from 0.08 to 0.81 (M = 0.35) in the random design. The mean
recovery rate across profiles was 95.78% in the completely crossed
design, 63.50% in the balanced incomplete design, 62.16% in
the unbalanced incomplete design, and 66.20% in the random
design. Therefore, as expected, the parameter estimation in the
standard CDM was worse than those in the facets-CDM. With
respect to the recovery of the latent profile, both models yielded
a higher recovery rate in the complete design than incomplete

TABLE 4 | Q-matrix of the 52 criteria in the empirical example.

Attribute Attribute

Item 1 2 3 4 5 6 Item 1 2 3 4 5 6

1 1 1 1 1 1 0 27 0 0 1 0 0 0

2 1 0 0 0 0 0 28 0 0 1 0 0 0

3 1 0 0 0 0 0 29 0 0 1 0 0 0

4 0 1 1 1 0 0 30 0 0 1 0 0 0

5 0 1 1 1 0 0 31 0 0 1 0 0 1

6 1 0 1 1 1 0 32 0 0 1 0 0 1

7 1 1 1 1 0 0 33 0 0 1 0 0 0

8 1 1 0 0 0 0 34 0 0 1 0 0 0

9 1 1 0 0 0 0 35 0 0 1 0 0 0

10 1 1 0 0 0 0 36 0 0 1 1 0 0

11 1 0 0 1 0 0 37 0 0 1 0 0 0

12 1 1 0 1 0 0 38 0 0 1 0 0 0

13 1 0 0 0 0 0 39 0 0 1 1 0 0

14 0 1 0 0 1 0 40 0 0 1 1 0 0

15 0 1 0 0 0 0 41 0 0 0 1 0 0

16 0 1 0 0 0 0 42 0 0 0 1 0 0

17 0 1 0 0 0 0 43 0 0 0 1 0 0

18 0 1 0 0 0 0 44 0 0 0 1 0 0

19 0 1 0 0 0 0 45 0 0 1 1 0 0

20 0 1 0 0 0 0 46 0 0 0 1 0 1

21 0 1 1 1 0 0 47 0 0 0 1 0 1

22 0 1 1 1 0 0 48 0 0 1 0 0 1

23 0 1 1 1 0 0 49 0 0 0 0 0 1

24 0 1 1 1 0 0 50 0 0 0 0 0 1

25 0 1 0 0 0 0 51 0 0 1 1 1 0

26 0 0 1 0 0 0 52 0 0 1 1 1 0

1s mean the attributes are required, and 0s mean the attributes are not required.

TABLE 5 | Means and standard deviations for raters’ scorings across all indicators
in the empirical example.

Rater 1 2 3 4 5 6 7 8 9

Mean 0.41 0.74 0.68 0.68 0.57 0.58 0.55 0.84 0.59

SD 0.28 0.26 0.29 0.26 0.28 0.31 0.27 0.18 0.33

TABLE 6 | Model fit statistics of the three models in the empirical example.

Model ppp AIC BIC

DINA 0.36 17004 17625

Facets DINA 0.44 16690 17331

HRM DINA 0.56 10490 11167

ppp, posterior predictive p-value; AIC, Akaike’s information criterion; BIC, Bayesian
information criterion.

designs. This was because in the facets framework, when there are
more raters, the measurements are more precise. In the complete
design, these two models yielded almost identical recovery rates,
which was because the mean rater effect was constrained at
zero and thus canceled out. In the incomplete design, the
mean rater effect was not canceled out, so the facets model
consistently yielded a higher recovery rate (6–8% improvement)
than the standard model.

SIMULATION STUDY II: HRM-CDM

Design and Analysis
The settings were identical to those in simulation study I
except only the completely crossed design was adopted and
each ratee was judged by three or six raters. The (saturated)
HRM-CDM (Equation 17), given the latent category, was used
at the second step. At the first step, φr and ψr were fixed at
0 and 0.5, respectively, for all raters. Both the data-generating
HRM-CDM and the standard CDM (without considering rater
effects) were fit to the simulated data. In the standard CDM,
multiple ratings given to the same item response were treated
as independent responses. For example, the three sets of ratings
given by three raters were analyzed as if the test was answered by
three virtual examinees. Then, the posterior probability for each
latent attribute (or latent profile) was averaged across the three
virtual examinees to represent the examinee’s final estimate. Like
in simulation study I, it was expected that the more the raters
(the more the data points), the better the parameter estimation
and recovery rates. Further, when the standard CDM was fit, the
parameter estimation and recovery rates would be poor because
the rater effects were not considered.

Results
Detailed results for individual parameters are not presented due
to space constraints but available on request. When the HRM-
CDM was fit, the resulting RMSE values ranged from 0.11 to 0.67
(M = 0.35) and from 0.08 to 0.43 (M = 0.25) for three and six
raters, respectively; the mean profile recovery rate was 61.12 and
79.12% for three and six raters, respectively. It appeared that the
more the data points the better the parameter estimation and
recovery rates when the HRM-CDM was fit. If one wishes to
obtain a mean profile recovery rate of 80% from 10 dichotomous
items measuring five attributes, it can be found from this
simulation study that each item should be judged by six raters
(i.e., each ratee received 60 scores). If each item is judged by only
three raters (i.e., each ratee received 30 scores), the mean profile
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TABLE 7 | Estimates for the guessing and slip parameters yielded by the three
models in the empirical example.

Item Guessing Slip

DINA Facets-DINA HRM-DINA DINA Facets-DINA HRM-DINA

1 0.49 0.49 0.48 0.03 0.02 0.00

2 0.47 0.47 0.42 0.02 0.03 0.00

3 0.49 0.49 0.49 0.09 0.08 0.12

4 0.46 0.46 0.46 0.05 0.06 0.00

5 0.24 0.30 0.12 0.34 0.36 0.43

6 0.50 0.49 0.49 0.05 0.00 0.00

7 0.16 0.17 0.00 0.52 0.50 0.70

8 0.09 0.11 0.00 0.18 0.20 0.23

9 0.38 0.41 0.28 0.01 0.04 0.00

10 0.31 0.31 0.14 0.23 0.21 0.30

11 0.18 0.17 0.01 0.26 0.27 0.31

12 0.46 0.46 0.38 0.07 0.07 0.01

13 0.48 0.48 0.43 0.08 0.08 0.06

14 0.49 0.49 0.49 0.05 0.00 0.00

15 0.15 0.14 0.00 0.45 0.44 0.56

16 0.48 0.48 0.48 0.08 0.08 0.06

17 0.47 0.47 0.46 0.15 0.15 0.17

18 0.26 0.41 0.23 0.23 0.25 0.31

19 0.46 0.45 0.44 0.15 0.13 0.16

20 0.38 0.24 0.31 0.10 0.07 0.07

21 0.25 0.16 0.09 0.31 0.22 0.13

22 0.49 0.48 0.48 0.12 0.06 0.01

23 0.50 0.49 0.49 0.01 0.01 0.00

24 0.48 0.48 0.48 0.11 0.13 0.06

25 0.45 0.46 0.45 0.07 0.08 0.05

26 0.07 0.12 0.00 0.79 0.81 1.00

27 0.31 0.33 0.02 0.66 0.67 0.96

28 0.40 0.47 0.40 0.15 0.18 0.19

29 0.47 0.47 0.46 0.04 0.05 0.03

30 0.44 0.37 0.29 0.31 0.26 0.39

31 0.39 0.36 0.19 0.45 0.42 0.59

32 0.30 0.42 0.25 0.24 0.26 0.31

33 0.18 0.10 0.02 0.37 0.32 0.41

34 0.08 0.15 0.01 0.54 0.56 0.77

35 0.42 0.47 0.33 0.21 0.24 0.19

36 0.23 0.34 0.06 0.25 0.26 0.27

37 0.45 0.47 0.42 0.11 0.12 0.09

38 0.13 0.17 0.01 0.56 0.59 0.70

39 0.48 0.48 0.48 0.05 0.04 0.00

40 0.00 0.01 0.00 0.93 0.95 1.00

41 0.01 0.07 0.00 0.54 0.58 0.88

42 0.37 0.35 0.39 0.26 0.24 0.41

43 0.23 0.33 0.12 0.28 0.30 0.34

44 0.21 0.33 0.05 0.33 0.38 0.49

45 0.19 0.21 0.02 0.07 0.18 0.02

46 0.28 0.27 0.09 0.02 0.11 0.00

47 0.49 0.49 0.48 0.04 0.07 0.01

48 0.49 0.49 0.49 0.01 0.02 0.00

49 0.49 0.49 0.49 0.00 0.02 0.00

50 0.04 0.24 0.00 0.43 0.69 0.95

51 0.33 0.47 0.24 0.13 0.31 0.37

52 0.03 0.30 0.00 0.40 0.66 0.92

recovery rate could be as low as 60%. When the standard CDM
was fit, the RMSE values ranged from 0.25 to 0.91 (M = 0.57) and
from 0.08 to 0.46 (M = 0.30) for three and six raters, respectively;
the mean profile recovery rate was 56.34 and 70.84% for three and
six raters, respectively. Taken together, as anticipated, ignoring
rater effects by fitting the standard CDM would yield poor
parameter estimation and profile recovery, and the fewer the
raters, the worse the parameter and profile recovery. As for the
recovery of latent profiles, the HRM-CDM outperformed the
standard model, and its superiority (5–10% improvement) was
more obvious when more raters were included.

A comparison between the facets-CDM and HRM-CDM
revealed that the parameter estimation and profile recovery were
better in the former than in the latter. This was mainly because
each data point contributed to the parameter estimation directly
in the facets-CDM, whereas the scores given by raters provided
information about the latent category, which then provided
information about the ratee and item parameters in the HRM-
CDM. The corresponding JAGS codes for the facets-CDM and
HRM-CDM are presented in Appendix.

REAL DATA APPLICATION

The empirical study involved a total of 287 university students,
each producing one academic essay in English, which was judged
by one or two teachers (out of nine) against a 52-item checklist.
The checklist was developed on the basis of the Empirical
Descriptor-based Diagnostic Checklist (Kim, 2011). Each item
of the checklist was rated on a binary scale, where 1 = correct,
0 = incorrect. The 52 items aimed to measure six latent attributes
of academic writing, namely, content, organization, grammar,
vocabulary, conventions of the academic genre, and mechanics.
The Q-matrix of the 52 items is shown in Table 4. The data
matrix was three-dimensional: 287 examinees by 52 items by 9

TABLE 8 | Rater severity and variability yielded from the HRM DINA model in the
empirical example.

Rater 1 2 3 4 5 6 7 8 9

Severity 0.40 0.02 0.01 0.02 0.01 0.02 0.24 0.04 0.02

SE 0.02 0.05 0.06 0.06 0.05 0.06 0.00 0.07 0.02

Variability 0.37 0.84 0.69 0.70 0.53 0.52 0.76 1.28 0.49

SE 0.01 0.05 0.04 0.04 0.03 0.03 0.04 0.10 0.02

TABLE 9 | Fair scores and observed scores for selected cases in the real data.

Student Estimated Rater Observed Fair Difference
index profile scores scores

21 1,1,1,1,1,0 1 23 40 −17

23 0,1,1,1,1,1 1 13 36 −23

30 0,0,0,1,0,0 1 15 22 −7

69 1,0,1,1,0,1 8 44 38 6

230 1,1,1,1,0,1 8 42 33 9

Estimated profiles were obtained by fitting facets-DINA model. Fair scores were
calculated by DINA model with given person profile and item parameters.
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raters. Because each item on the diagnostic checklist represented
a concrete descriptor of the desirable quality of writing (e.g., item
4 “the essay contains a clear thesis statement”), the scoring rubrics
were clear and simple for the raters to follow. Thus, the HRM
framework appeared to be preferable to the facets approach. For
completeness and illustrative simplicity, three models were fitted
using JAGS, including (a) the standard DINA model, in which
the ratings from raters were treated as responses to virtual items
with identical item parameters; (b) the facet-DINA model; (c) the
HRM-DINA model. A normal prior with mean zero and standard
deviation four was specified for all item parameters across the
three models, except that a log-normal distribution with mean
zero and standard deviation four was specified for the variability
parameter (ψr) in the HRM-DINA. For the facets-DINA model,
a normal distribution with mean zero and standard deviation one
was specified for rater parameters, and the mean severity across
raters was fixed at zero for model identification. In the HRM-
DINA model, the prior distributions for φr and ψr were set as
φr ∼ N(0, 1) and log(ψr) ∼ N(0, 4), respectively.

Table 5 displays the means and standard deviations of the
ratings on the 52 descriptors given by the nine raters. Rater 1
gave the lowest mean score (M = 0.41), whereas rater 8 gave the
highest (M = 0.84). For model comparison, Table 6 presents the
posterior predictive p-values (Gelman et al., 1996) of the Bayesian
chi-square statistic, Akaike’s information criterion (AIC), and
Bayesian information criterion (BIC) for the three models. The
p-values suggested all models had a good fit. Both AIC and BIC
indicated that the HRM-DINA model was the best-fitting model.
Table 7 lists the estimates for the guessing and slip parameters
for the three models. The standard DINA model and the facets-
DINA model produced very similar estimates. In comparison,
the HRM-DINA model yielded smaller estimates for the guessing
parameters and larger estimates for the slip parameters than the
other two models.

Estimates for rater severity (φ) and variability (ψ) under the
HRM-DINA model are presented in Table 8. Among the 9 raters,
rater 1 was the most severe, followed by rater 7, while the others
had severity measures around 0. Both rater 1 and rater 7 tended to
assign ratings lower than what the ratees deserved (their severity
parameters were positive). Furthermore, the estimates for rater
variability ranged from 0.37 (rater 1) to 1.28 (rater 8), suggesting
the raters exhibited moderate to high variability in their ratings.

Regarding the attribute estimates, the mastery probabilities of
the six attributes were 50, 77, 76, 69, 63, and 73% for the standard
DINA model, 53, 81, 77, 78, 83, and 79% for the facets-DINA
model, and 50, 71, 68, 66, 75, and 74% for the HRM-DINA model.
Among the 287 students, 77 students (27%) resulted in identical
profile estimates with the three models, indicating moderate
similarity on profile estimates across the three models.

To show the effects of ignoring rater effects, we picked up five
students from the real data. For the selected cases, they were rated
either by Rater 1, who tended to be the most severe, or by Rater 8,
who tended to be most lenient. The differences between observed
and fair scores (the expected score given the item and person
parameters) are shown in Table 9. If one wants to admit students
to some program according to their observed (raw) scores, then
the ordering will be no. 69, 230, 21, 30, and 23, respectively. After

taking into consideration of the rater effect by fitting the facets-
DINA, we have fair score for each student. Now, if one wants
to admit the five students according to the fair scores, then the
ordering will be student no. 21, 69, 23, 230, and 30, respectively.
Obviously, the two rank orderings were very different, which was
because the former did not consider rater effect.

CONCLUSION AND DISCUSSION

Rater effects on CR items have been investigated extensively
within the frameworks of IRT-facets and IRT-HRM, but not
within those of CDMs. In this study, we adopted the facets
and HRM frameworks and used the LCDM as a template to
create new facets-CDM and HRM-CDM to accommodate rater
effects. We also conducted simulations to evaluate parameter
recovery of the new models under various conditions. Results
indicate that model parameters could be estimated fairly well with
JAGS package in R. Implications and applications of the new
models were demonstrated with an empirical study that assessed
English academic essays by university students. In the empirical
study, the scales of the guessing and slip parameters for standard
DINA and facets-DINA models were very similar, but they were
very different from those for the HRM-DINA model, which was
mainly because the HRM-DINA model was formed in a very
different way from the other two models. Under the HRM-DINA
model, among the 9 raters, raters 1 and 7 were the most severe. In
addition, the rater variability ranged from 0.37 to 1.28, suggesting
a moderate to high variability in their ratings.

Several limitations of the current study should be
acknowledged. First, despite our efforts in testing the new
models under different rating designs, the simulated conditions
of the present study is not comprehensive. Future studies should
be conducted to evaluate the performance of the new models
under more comprehensive conditions, such as different test
lengths, sample sizes, rater sizes, and rater designs. Second, a
good CDM test depends on the quality of the Q-matrix (Lim and
Drasgow, 2017). In this study, only one Q-matrix was used. How
the facets- and HRM-CDMs perform with different Q-matrices
needs further investigation. Third, like other simulation studies
of CDMs, the data were analyzed with the data-generating
models without looking to other potential sources of model-data
misfit, such as mis-specification of the model or Q-matrix.
Sensitivity analysis of the new models is warranted. Finally, the
long computing time for MCMC methods may be a concern
for potential users, especially for large scale data sets with long
test length and large sample size. Future attempts are needed to
develop more efficient and effective estimation programs.

Future studies can also be conducted to extend the
new facets- and HRM-CDMs. For instance, the linear
combination of parameters in the facets- or HRM-CDMs
can be extended to account for interactions among facets
(Jin and Wang, 2017). It is feasible to develop explanatory
facets- or HRM-CDMs by incorporating covariates (e.g.,
gender or language background) to account for the
variations in rater effects (Ayers et al., 2013). Large-scale
educational testing services often recruit a large number of
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raters (e.g., hundreds of raters), where it would be more
efficient to treat rater severity as a random effect following
some distributions (e.g., normal distributions). Finally,
this study focuses on dichotomous items because the
majority of existing CDMs focus on binary data. New
facets- or HRM-CDMs can be developed to accommodate
polytomous CR items, just as CDMs has been extended
to accommodate polytomous items, as shown in Equations
11, 16, and 19, or those in the literature (Hansen, 2013;
Ma and de la Torre, 2016).
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APPENDIX

(1) JAGS code for the facets-CDM in Simulation Study I.

model<-function(){
for (i in 1:n.p){

for (k in 1:n.a){
pi[i,k]∼dunif(0,1)
alpha[i,k]∼dbern(pi[i,k])}

eta2[i,1]<-0
eta2[i,2]<-0
eta2[i,3]<-0
eta2[i,4]<-0
eta2[i,5]<-0
eta2[i,6]<-alpha[i,1]*alpha[i,2]
eta2[i,7]<-alpha[i,2]*alpha[i,3]
eta2[i,8]<-alpha[i,3]*alpha[i,4]
eta2[i,9]<-alpha[i,4]*alpha[i,5]
eta2[i,10]<-alpha[i,1]*alpha[i,5]

for (j in 1:n.i){
for (k in 1:n.a) {w[i,j,k]<- alpha[i,k]*q[j,k]}

eta1[i,j]<-prod(w[i,j,k]
for (r in 1:n.r){

logit(prob[i,j,r])<-lamda0[j]+lamda1[j]*eta1[i,j]+lamda2[j]*eta12[i,j]+rater[r]
resp[i,j,r]∼dbern(prob[i,j,r])}}}

for (r in 1:n.r) {rater[r]∼dnorm(mean.r, pr.r)}
for (j in 1:n.i) {

lamda0[j]∼dnorm(mean.lamda0, pr.lamda0)
lamda1[j]∼dnorm(mean.lamda1, pr.lamda1)
lamda2[j]∼dnorm(mean.lamda2, pr.lamda2)}}

(2) JAGS code for the HRM-CDM in Simulation Study II.

model<-function(){
for (i in 1:n.p){

for (k in 1:n.a){
pi[i,k]∼dunif(0,1)
alpha[i,k]∼dbern(pi[i,k])}

for (j in 1:n.i){
for (k in 1:n.a) {w[i,j,k]<- alpha[i,k]*q[j,k]}

eta[i,j]<-prod(w[i,j,k]

for (r in 1:n.r){
logit(p[i,j,r])<-lamda0[j]+lamda1[j]*eta[i,j]
resp[i,j,r]∼dbern(p[i,j,r])
rating.prob[i,j,r]<-exp((-0.5)*pow((1-resp[i,j,r]-mu.rater[r]),2)*pow(sigma.rater[r],-2))
rating[i,j,r]∼dbern(rating.prob[i,j,r])}}}

for (j in 1:n.i){
lamda0[j]∼dnorm(mean.lamda, pr.lamda)
lamda1[j]∼dnorm(mean.lamda, pr.lamda)}

for (r in 1:n.r) {
mu.rater[r]∼dnorm(mean.mu.rater, pr.mu.rater)
sigma.rater[r]∼dlnorm(mean.sigma.rater, pr.sigma.rater)}}
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