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The standard item response theory (IRT) model assumption of a single homogenous
population may be violated in real data. Mixture extensions of IRT models have been
proposed to account for latent heterogeneous populations, but these models are
not designed to handle multilevel data structures. Ignoring the multilevel structure is
problematic as it results in lower-level units aggregated with higher-level units and yields
less accurate results, because of dependencies in the data. Multilevel data structures
cause such dependencies between levels but can be modeled in a straightforward way
in multilevel mixture IRT models. An important step in the use of multilevel mixture IRT
models is the fit of the model to the data. This fit is often determined based on relative
fit indices. Previous research on mixture IRT models has shown that performances of
these indices and classification accuracy of these models can be affected by several
factors including percentage of class-variant items, number of items, magnitude and
size of clusters, and mixing proportions of latent classes. As yet, no studies appear
to have been reported examining these issues for multilevel extensions of mixture IRT
models. The current study aims to investigate the effects of several features of the data
on the accuracy of model selection and parameter recovery. Results are reported on a
simulation study designed to examine the following features of the data: percentages
of class-variant items (30, 60, and 90%), numbers of latent classes in the data (with
from 1 to 3 latent classes at level 1 and 1 and 2 latent classes at level 2), numbers
of items (10, 30, and 50), numbers of clusters (50 and 100), cluster size (10 and 50),
and mixing proportions [equal (0.5 and 0.5) vs. non-equal (0.25 and 0.75)]. Simulation
results indicated that multilevel mixture IRT models resulted in less accurate estimates
when the number of clusters and the cluster size were small. In addition, mean Root
mean square error (RMSE) values increased as the percentage of class-variant items
increased and parameters were recovered more accurately under the 30% class-variant
item conditions. Mixing proportion type (i.e., equal vs. unequal latent class sizes) and
numbers of items (10, 30, and 50), however, did not show any clear pattern. Sample
size dependent fit indices BIC, CAIC, and SABIC performed poorly for the smaller level-1
sample size. For the remaining conditions, the SABIC index performed better than other
fit indices.

Keywords: item response theory, mixture item response model, multilevel data, model selection, classification
accuracy
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INTRODUCTION

Item response theory (IRT; Lord and Novick, 1968) models have
been used extensively for a variety of testing situations. However,
traditional IRT models assume a single homogenous population
which may be violated in some real data situations with multiple
albeit latent subpopulations. Mixture extensions of IRT models
have been proposed to account for heterogeneity due to these
latent populations (Mislevy and Verhelst, 1990; Rost, 1990).
Mixture IRT models combine a latent class model and an IRT
model in a single model. Combining both models provides both
qualitative and quantitative results simultaneously about the test
and examinees by accounting for both categorical latent variables
(i.e., latent classes) and continuous latent variables (i.e., factors)
(e.g., Rost, 1990). Mixture IRT models have been used frequently
due to their utility for measuring individual differences, when
distinct subpopulations are present in the overall population
(see Sen and Cohen, 2019, for a review of applications of
mixture IRT models).

The single-level mixture IRT models are like multigroup item
response models (Bock and Zimowski, 1997) in that groups are
treated as manifest. Groups are taken as latent classes, however, in
mixture IRT models. These models are useful for heterogeneous
samples, although they do not account for the dependencies
present in a multilevel (hierarchical) structure, such as are
common in educational and psychological data. Ignoring the
hierarchical structure with lower-level units aggregated in higher-
level units has been shown to yield less accurate results because
of violation of the local independence assumption (Lee et al.,
2018). The hierarchical structure should be considered, in other
words, in analyses of data from multilevel clusters. In this regard,
multilevel mixture IRT models have been developed to account
for possible dependencies, such as can arise due to cluster
or multistage sampling (Vermunt, 2007). The dependency in
multilevel data structures can be modeled in a straightforward
way in a multilevel framework. These models can then be used
to obtain information at both the individual (i.e., within) level
and group (i.e., between) level. Students or examinees can be
used to represent within-level and classrooms or schools can be
used to represent between-level classes. Within-level latent classes
capture the association between the responses at the student-level
unit while between-level latent classes capture the association
between the students within school-level units (Vermunt, 2003;
Cho and Cohen, 2010).

As described in Lee et al. (2018), the two-parameter multilevel
mixture item response model can be written as:

logit
[
P
(
Yjki = 1|θjkg, θk,Cjk

)]
= αig.Wθjkg + αi.Bθk − βig, (1)

where Yjki represents the responses of person j nested within
the kth cluster (k = 1. . .,K) to item i, Cjk is a within-
level latent classification variable where Cj = 1,., g,.,G for
person j nested within cluster k, αig.W represents a within-
level item discrimination parameter, αi.B represents between-
level item discrimination parameter, βig is a class-specific
item location parameter, θjkg is a class-specific within-level
continuous latent variable σ2

g and θk represents a between-level

continuous latent variable. Both θjkg and θk are assumed to
follow normal distributions with a mean of zero and variance
σ2
g and τ2, respectively.

The multilevel mixture IRT models have interested researchers
due to their utility for correctly accounting for dependencies
among the data in multilevel data structures (Vermunt, 2008;
Cho and Cohen, 2010; Tay et al., 2011; Bacci and Gnaldi, 2012,
2015; Varriale and Vermunt, 2012; Cho et al., 2013; Finch and
Finch, 2013; Bennink et al., 2014; Jilke et al., 2015; Liu et al.,
2018). Cho and Cohen (2010), Finch and Finch (2013), and
Bennink et al. (2014) describe applications of different types of
multilevel mixture IRT models for detection of differential item
functioning (DIF). Bacci and Gnaldi (2012, 2015), and Vermunt
(2008) analyzed educational data sets using multilevel mixture
IRT models. Examples of other studies using multilevel mixture
IRT models are analysis of self-reported emotions (Tay et al.,
2011) and measurement non-equivalence (Jilke et al., 2015).

The exploratory use of multilevel mixture IRT modeling
is based on the comparison of alternative models using
relative fit indices such as the Akaike Information Criterion
(AIC;Akaike, 1974) and Bayesian Information Criterion (BIC;
Schwarz, 1978) indices. The successful applications of these
models partly depend on selecting the correct model and its
classification accuracy. Several studies have been conducted
on model selection and classification accuracy issues with
different mixture IRT models (Li et al., 2009; Preinerstorfer
and Formann, 2012; Choi et al., 2017; Lee et al., 2018;
Sen et al., 2019). Most of these studies focused on single-
level mixture IRT models. Simulation studies conducted by Li
et al. (2009) and Preinerstorfer and Formann (2012) suggested
that BIC performed best among the model selection indices
selected in dichotomous mixture IRT models. Similar results
were reported by Sen et al. (2019) for multilevel mixture
Rasch models. Lee et al. (2018) found BIC to better perform
than AIC in selecting the correct multilevel model compared
to a single level model. Previous studies on single level
mixture IRT models reported that performances of model
selection indices and the classification accuracy of these models
can be affected by several factors including percentage of
class-variant items, magnitude of item difficulty differences,
pattern of item difficulty differences, mixing proportion of
latent classes (Choi et al., 2017). Choi et al. (2017) found
that AIC, corrected AIC (AICC; Sugiura, 1978), BIC, and
sample-size adjusted BIC (SABIC; Sclove, 1987) performed
differently depending on the percentage of class-variant items
and the magnitude and pattern of item difficulty differences
under a two-class structure. There appear to be no studies
yet reported, however, examining these issues in multilevel
extensions of mixture IRT models. Thus, the current study
aims to investigate the effects of various class distinction
features on the model selection, classification accuracy and
quality of parameter recovery in multilevel mixture IRT models.
The current study focused on the effects of class distinctive
features on fitting a multilevel mixture 2-parameter logistic
IRT model (Multilevel Mix2PL). Although the graded response
model (GRM; Samejima, 1969) is common in psychological
studies, the 2PLM essentially represents a simpler case of the
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GRM that; it was used as a starting point for investigating
the research questions posed in the current study. To this
end, this study investigated the following three research
questions:

(1) How do the different test characteristics affect the quality of
parameter estimates in multilevel mixture IRT models?

(2) How do these different characteristics affect classification
accuracy in multilevel mixture IRT models?

(3) How do the model selection indices perform in the presence
of these different characteristics?

MATERIALS AND METHODS

A Monte Carlo simulation study was conducted to answer
the three research questions. Details of the simulation study
are given below.

Design of the Simulation Study
Data were simulated based on the dichotomous multilevel
mixture IRT model (Lee et al., 2018) having two between-level
and two within-level latent classes (labeled here as CB2C2). The
generating parameters for the study were obtained from estimates
of an empirical data set. Item threshold values obtained from
this data set were used in data generation (see Supplementary
Data Sheet S2). All data sets were generated with the Mplus 7.4
software package (Muthén and Muthén, 1998–2015) using the
Mplus syntax provided by Lee et al. (2018) (see Supplementary
Data Sheet S1). Different data sets were generated for a
varying number of conditions using the MONTE CARLO
simulation implemented in Mplus. The following conditions
were simulated: number of items (10, 30, and 50), mixing
proportions (equal and not equal), percentage of class variant
items (30, 60, and 90%), number of clusters (50 and 100), and
cluster size (10 and 50).

Ten-item test was used to represent a short test condition,
a 30-item test was used to represent a medium test length
and a 50-item test was used to represent a long test. Two
different mixing proportions were included to investigate
the effect of different mixing proportions, π: equal mixing
proportions (π1 = π2 = 0.5) and unequal mixing proportions
(π1 = 0.75, π2 = 0.25). Items with the same item threshold
parameters across latent classes are considered class-invariant
items, and items having unequal threshold parameters are
considered class-variant items. Given that the number of
class-variant items has been shown to affect number of
detected latent class (Choi et al., 2017), different percentages
of class-variant items were manipulated in this simulation
study. The percentage of class-variant items manipulated
in the simulation study was 30, 60, and 90% of items
on the simulated tests. Number of clusters and cluster
size have also been found to affect multilevel mixture IRT
results (Lee et al., 2018). Thus, the numbers of clusters
manipulated in the simulation study were 50 and 100 and
the cluster sizes manipulated in the simulation study were
10 and 50. Overall, 72 conditions were simulated in this

study (3 numbers of items × 2 mixing proportions × 3
class variant item percentages × 2 number of clusters ×
2 cluster size). One hundred replications were generated
for each condition.

Estimation
Four different models were estimated: CB1C2, CB2C2,
CB2C3 and CB3C3, CB is the notation for level-2 and
C is the notation for level-1. Thus, CB1C2 represents a
model with one level-two class and two level-one classes,
CB2C2 represents a model with two level-one classes and
two level-two classes, CB2C3 represents a model with
level-two classes and three level-one classes, etc. The true
(i.e., generating) model in this simulation study was the
CB2C2 model, i.e., a multilevel mixture item response
model with two within-level and two between-level latent
classes. Thus, misspecified models were the CB1C2, CB2C3
and CB3C3 models. The total number of runs was 28,800
(=100 replications × 4 models × 72 conditions). Marginal
maximum-likelihood estimation with the MLR estimator
option was used as implemented in Mplus for estimation
of the multilevel mixture IRT models. The following Mplus
options were used: TYPE = TWOLEVEL MIXTURE;
ALGORITHM = INTEGRATION; PROCESSORS = 2;.
The Mplus syntax for model estimation is provided in
the Supplementary Data Sheet S1.

Evaluation Measures (RMSE-Model
Selection)
Item Parameter Recovery Analysis
Root mean square error (RMSE) statistics were calculated,
after item parameter estimates were placed onto the scale of
the generating parameters, to examine the recovery of the
generating parameters. RMSE was calculated between item
threshold parameters of the true model and the estimated model

using

√
R∑

r=1

(
λ̂i − λ

)2
/R, where r represents the rth replication

(r = 1,. . .,R).
Label switching can be a concern with mixture IRT

estimation. Estimated latent classes can be switch across different
replications. As an example, between-level latent class 2 on one
data set can potentially correspond to between-level class 1
on another data set. Therefore, results for each data set were
monitored to detect and, if necessary, to correct label switching.
Threshold values obtained from the class were then used to
appropriately calculate RMSE values.

Classification Accuracy Rate
In the mixture IRT framework, each respondent has an estimated
posterior probability for membership in each latent class. Each
respondents is assigned to a single class based on their highest
estimated posterior probability value. As described in Lee et al.
(2018, p. 143), for each person j nested within cluster k, the
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posterior probability for membership in each latent class, Pjkg ,
can be calculated as follows:

Pjkg =

π̂g .
∏I

i=1

(
P
(
yjki = 1|θ̃jkg, θ̃k,Cjk

))yjki
[

1− P
(
yjki = 1|θ̃jkg, θ̃k,Cjk

)]1−yjki

∑G
g=1 π̂g .π̂g .

∏I
i=1

(
P
(
yjki = 1|θ̃jkg, θ̃k,Cjk

))yjki
[

1− P
(
yjki = 1|θ̃jkg, θ̃k,Cjk

)]1−yjki

,

where Yjki represents the responses of person j nested within kth
cluster to item i, and k represents cluster k (k = 1,.,K), Cjk is a
categorical latent variable at the within level, π̂g is an estimated
mixing proportion, θ̃jkg is a class-specific within-level predicted
score, and θk represents a between-level predicted score. The Pjkg

values sum to 1 for each person (i.e.,
G∑

g=1
Pjkg = 1).

Simulated examinees were assigned to specified latent classes
during data generation. It is necessary to determine whether
these examinees were classified into the same latent classes after
model estimation. Posterior probabilities for membership of each
examinee were calculated using the CPROBABILITIES option
of the SAVEDATA command in Mplus. Classification accuracy
rate was calculated for each condition. The correct detection
rate was defined as the correct classification of the latent class
membership for each examinee. Generated and simulated class
memberships were compared and a percentage was computed
across the 100 replications for each condition. Thus, agreement
was recorded when an examinee assigned to the first class
(Class 1) during data generation was also classified into Class 1
after estimation.

Model Selection
Unlike multigroup IRT models, the latent classes in mixture
IRT models are not known a priori in an exploratory analysis
as they are unobserved. In an exploratory analysis, different
numbers of latent classes are specified as candidate models
and estimated for a given data set. The most commonly
used criteria for model selection in IRT models are based
on either a likelihood ratio test or information criterion
indices. Nylund et al. (2007) note that the likelihood ratio
test is not appropriate for model selection for mixture IRT
models. Thus, information criterion indices were used for model
selection in this study.

Information criterion indices are based on some form of
penalization of the loglikelihood. The penalization is used to
adjust for the selection of over-parameterized models. Let L
be the likelihood function obtained from maximum likelihood
estimation and P be the penalty term. The following is a general
form for information criterion indices:

−2logL+ P

The performances of AIC, BIC, consistent AIC (CAIC;
Bozdogan, 1987), and SABIC were investigated in this study as

these are generally the more commonly used indices in mixture
IRT applications (Sen and Cohen, 2019). Each of these indices
applies a different penalty function to the−2logL term. Thus, the
definitions of the relative fit indices in this study are as follows:

AIC = −2logL+ 2d,

BIC = −2logL+ d.ln(N),

CAIC = −2logL+ d.
[
ln (N)+ 1

]
,

SABIC = −2logL+ d.ln[(N + 2) /24],

Where, N represents the number of examinees and d
represents the number of parameters. Smaller numbers for
these fit indices indicate better fit. Performances of these
indices were examined by calculating the proportion of
correct selections for each model. To evaluate correct model
selections, the data sets generated based on CB2C2 model
were analyzed with four different models (i.e., CB1C2,
CB2C2, CB2C3, and CB3C3). The correct detection rate
was defined as the correct detection of the simulated
CB2C2 model with the correct number of within- and
between-level latent classes.

RESULTS

Parameter Recovery
Table 1 presents mean RMSE values for each condition.
The labels indicate the condition under which the data were
generated. For example, the label E5010 indicates that the
CB2C2 data were generated for equal mixing proportions for
50 clusters and with a cluster size of 10. That is, number
of level-2 units is 50 and number of level-1 is 10. The
NE label indicates unequal mixing proportion conditions.
Results of each condition are presented for 10-, 30-, and
50-item test lengths and 30, 60, and 90% of class variant
items. Mean RMSE values for item threshold estimates ranged
from 0.092 to 2.927.

As shown in Table 1, the mean RMSE values decreased as
the cluster size and number of examinees for level-1 increased.
Similarly, mean RMSE values increased as the percentage of
class-variant items increased. As expected, greater accuracy was
observed with the higher number of clusters and cluster size
conditions. Type of mixing proportion (equal vs. unequal) and
number of items (10, 30, and 50) did not show any clear
pattern of recovery.

Classification Accuracy
As with latent class models, mixture IRT models assign
each examinee to one of the latent classes based on class
probability values. The class memberships created during the data
generation were compared with the estimated class memberships.
A classification accuracy rate was calculated for each condition
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TABLE 1 | Mean RMSE values of item threshold estimates for the CB2C2 Model.

Percent of class variant items

Simulation condition 10 Items 30 Items 50 Items

30 60 90 30 60 90 30 60 90

E5010 1.335 1.812 1.949 0.454 0.993 1.333 0.562 1.231 2.007

E5050 0.256 0.325 0.829 0.118 0.732 0.977 0.107 0.985 1.268

E10010 0.752 0.830 1.099 0.213 0.766 1.007 0.199 1.006 1.458

E10050 0.164 0.191 0.767 0.083 0.724 0.965 0.075 0.977 1.260

NE5010 1.087 1.213 1.401 1.873 2.653 2.710 1.435 1.860 2.927

NE5050 0.400 0.596 1.010 0.328 0.751 1.087 0.134 0.988 1.321

NE10010 0.803 1.377 1.565 1.289 1.621 1.928 0.548 1.120 1.766

NE10050 0.335 0.376 0.859 0.328 0.734 1.070 0.092 0.979 1.262

E, Equal proportion; NE, Non-equal proportions; E5010 reprents a condition with equal mixing proportions under 50 clusters and with a cluster size of 10.

TABLE 2 | Classification accuracy rates for CB2C2 Model.

Simulation condition 10 Items 30 Items 50 Items

30 60 90 30 60 90 30 60 90

E5010 37.35 38.20 31.43 43.19 24.14 44.66 69.11 80.04 69.38

E5050 45.13 58.58 38.69 57.86 45.05 38.85 82.29 89.02 86.92

E10010 30.82 42.54 27.87 44.18 27.58 58.00 70.04 83.34 78.93

E10050 35.39 61.53 30.18 61.15 47.43 37.79 82.09 89.02 87.12

NE5010 37.00 37.42 30.93 28.50 27.27 26.69 65.86 74.70 45.70

NE5050 52.94 57.05 45.03 38.71 26.58 29.01 85.04 90.50 88.61

NE10010 34.79 47.14 36.97 26.61 32.31 32.50 72.86 85.12 66.97

NE10050 60.27 57.42 32.45 31.13 12.31 15.87 85.85 90.64 86.52

E, Equal proportion; NE, Non-equal proportions; E5010 reprents a condition with equal mixing proportions under 50 clusters and with a cluster size of 10.

between generated values and estimated values based on the
same model. Classification accuracy rates are shown in Table 2.
These rates ranged from 12.31 to 90.64%. Table 2 shows
that the classification accuracy rates increase as the number
of items increases. The highest rates occurred for the 50-
item conditions while the lowest rates were observed with
10-item conditions. Only the 30-item conditions with 60% of
class-variant items did not follow this pattern. This condition
actually yielded lower rates than the 10-item counterparts (i.e.,
10-item conditions with 60% of class variant items). Equal
mixing proportion conditions yielded smaller accuracy rates
than unequal mixing proportion conditions for almost each
percentage of class-variant items and test length conditions. As
shown in Table 2, conditions with 60% of class-variant items
yielded higher accuracy rates than conditions with 30 and 90%
of class-variant items under 10- and 50-item condition. However,
this was not the case with the 30-item conditions. The cluster
size seemed to influence the classification accuracy rates. The
conditions with the smaller level-1 sample size (i.e., 10) yielded
lower accuracy rates than the conditions with the higher level-1
sample size (i.e., 50). Similarly, the number of clusters appeared
to influence classification accuracy rates. The conditions with 50
clusters yielded lower accuracy rates than the conditions with
100 clusters. As expected, increases in the number of items,

number of clusters and cluster size had a positive effect on
classification accuracy.

Model Selection
AIC, BIC, CAIC, and SABIC values were calculated for each
condition. The number of correct selections was calculated as the
number of detections of the CB2C2 (i.e., the generating) model
over 100 iterations. The frequencies of correct model selections
are shown in Tables 3–5 for each of the information indices.

The numbers of correct detections for 10-item conditions
are presented in Table 3. Correct detection frequencies ranged
between 0 and 100 out of 100 replications in the 10-item
conditions. As shown in Table 3, BIC, CAIC, and SABIC
performed better than AIC index for the conditions with level-
1 sample size of 50 (i.e., E5050, E10050, NE5050, and NE10050).
The number of correct detections of the BIC and CAIC indices
for the smaller number of level-1 sample size conditions were
all either very low or zero except for unequal mixing proportion
condition with 100 clusters and level-1 sample size of 10 (i.e.,
NE10010). The SABIC index performed better than BIC index for
almost all conditions. BIC and CAIC performed less well than the
SABIC for the small level-1 sample. However, the level-1 sample
size did not appear to have any effect on the performance of
AIC. The percentage of class-variant items appeared to influence
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TABLE 3 | Number of correct detections over 100 replications for 10-Item conditions.

AIC BIC SABIC CAIC

30 60 90 30 60 90 30 60 90 30 60 90

E5010 82 52 65 3 0 2 59 31 48 2 0 0

E5050 82 76 97 100 100 100 100 100 100 97 99 98

E10010 86 67 67 21 0 3 84 58 65 7 0 1

E10050 57 70 89 80 100 100 77 100 100 77 97 97

NE5010 70 57 69 1 0 2 51 26 41 0 0 0

NE5050 91 79 90 100 80 100 100 87 100 97 77 95

NE10010 86 74 73 11 1 2 78 42 70 5 0 2

NE10050 75 38 92 100 70 100 100 59 100 100 73 97

E, Equal proportion; NE, Non-equal proportions; E5010 reprents a condition with equal mixing proportions under 50 clusters and with a cluster size of 10; AIC, Akaike
Information Criterion; BIC, Bayesian Information Criterion; CAIC, Consistent AIC; SABIC, Sample size adjusted BIC.

TABLE 4 | Number of correct detections over 100 replications for 30-Item conditions.

AIC BIC SABIC CAIC

30 60 90 30 60 90 30 60 90 30 60 90

E5010 53 55 47 28 0 0 99 97 66 11 0 0

E5050 56 72 37 100 100 100 100 100 100 100 100 100

E10010 48 34 48 99 53 0 100 99 66 97 20 0

E10050 59 77 41 99 100 100 99 100 100 98 100 100

NE5010 28 38 25 0 2 0 11 6 100 0 0 0

NE5050 18 65 53 81 66 8 97 99 83 66 33 1

NE10010 16 47 31 0 0 0 13 6 1 0 0 0

NE10050 5 63 39 100 99 92 85 99 99 100 98 85

E, Equal proportion; NE, Non-equal proportions; E5010 reprents a condition with equal mixing proportions under 50 clusters and with a cluster size of 10; AIC, Akaike
Information Criterion; BIC, Bayesian Information Criterion; CAIC, Consistent AIC; SABIC, Sample size adjusted BIC.

TABLE 5 | Number of correct detections over 100 replications for 50-Item conditions.

AIC BIC SABIC CAIC

30 60 90 30 60 90 30 60 90 30 60 90

E5010 58 79 78 0 0 1 54 30 2 0 0 0

E5050 67 66 77 100 100 100 100 100 100 100 100 90

E10010 67 76 92 1 0 0 93 89 21 0 0 0

E10050 69 65 65 100 100 97 100 100 94 100 100 98

NE5010 57 49 31 0 0 0 23 3 0 0 0 0

NE5050 77 74 76 100 89 36 100 99 100 99 78 12

NE10010 60 73 97 0 0 0 53 26 0 0 0 0

NE10050 92 91 68 100 100 100 100 100 100 100 100 98

E, Equal proportion; NE, Non-equal proportions; E5010 reprents a condition with equal mixing proportions under 50 clusters and with a cluster size of 10; AIC, Akaike
Information Criterion; BIC, Bayesian Information Criterion; CAIC, Consistent AIC; SABIC, Sample size adjusted BIC.

the correct detection rates based on four fit indices. The 60%
conditions yielded lower correct detection rates for almost every
condition. The effects of mixing proportion type (equal vs.
unequal), however, did not show any clear pattern.

The number of correct detections for the 30-item conditions
ranged between 0 and 100 (see Table 4). As shown in Table 4,
BIC, CAIC, and SABIC performed better than AIC for the sample
size of 50 (i.e., E5050, E10050, NE5050, and NE10050). As was
the case for the 10-item conditions, the numbers of correct

detections of the BIC and CAIC indices for smaller number of
level-1 sample size conditions were all either very low or zero
for the E5010 and E10010 conditions. SABIC performed better
than BIC and CAIC for most conditions except for NE10050
condition under 30% of class-variant items. The small level-
1 sample size (i.e., 10) appeared to influence the performance
of BIC and CAIC compared to SABIC. However, the level-1
sample size did not show any clear pattern for the performance of
AIC. The percentage of class-variant items appears to influence
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the correct detection rates based on four fit indices. The 60%
conditions yielded lower correct detection rates for most of the
conditions. The effects of mixing proportion type (equal vs.
unequal), however, did not show any clear pattern.

Correct detection frequencies (see Table 5) ranged between
0 and 100 in the 50-item conditions. As shown in Table 5,
BIC, CAIC, and SABIC performed better than AIC for
the conditions with the level-1 sample size of 50 (i.e.,
E5050, E10050, NE5050, and NE10050). AIC performed better
than BIC, CAIC, and SABIC, however, for the conditions
with the level-1 sample size of 10 (i.e., E5010, E10010,
NE5010, and NE10010). As was the case with the 10-
and 30-item conditions, the numbers of correct detections
of the BIC and CAIC indices for smaller level-1 sample
size conditions were all either very low or zero for the
50-item conditions. SABIC performed better than BIC and
CAIC for most conditions except for E10050 for the 90%
class-variant items condition. The small level-1 sample size
(i.e., 10) appears to influence the performance of BIC and
CAIC compared to SABIC. The level-1 sample size, however,
did not show any clear pattern for AIC. Similarly, the
percentage of class-variant items and the effects of type of
mixing proportion (i.e., equal vs. unequal) did not show
any clear pattern.

SUMMARY AND DISCUSSION

This simulation study examined the accuracy of parameter
estimates and classifications under different multilevel and
mixture conditions. The simulation factors in this research
were chosen to represent different class-distinction features in
multilevel mixture IRT modeling, in which the percentage of
class-variant items, the number and magnitude of clusters, and
the number of items varied for the structure with two level-
1 and two level-2 classes (i.e., CB2C2 model). In addition,
this study also investigated the differential performance of
the four information criteria (AIC, BIC, CAIC, and SABIC)
for model selection with different multilevel mixture IRT
model applications.

Findings from the simulation study indicated that greater
accuracy was observed with the higher number of clusters (i.e.,
100 clusters) and cluster size (i.e., 50 simulated examinees)
conditions, as well as the lower (30%) percentage of class-
variant item conditions. When the number of clusters and the
cluster sizes were small, the applications of multilevel mixture
IRT models can be problematic with respect to the accuracy
of item parameter estimates. These findings were consistent
with previous research by Lee et al. (2018) which found that
the multilevel mixture IRT model does not perform well for
small sample sizes.

Findings regarding classification accuracy rates showed that
the classification accuracy rates increased as the number of items
increased. Equal mixing proportion conditions yielded smaller
accuracy rates than unequal mixing proportion conditions
for most percentages of class-variant items and test length

conditions. The numbers of clusters and cluster size appeared
to influence classification accuracy rates. The smaller cluster
size (i.e., 10 examinees) and smaller number of clusters
(i.e., 50 clusters) yielded lower accuracy rates. Similarly,
the number of clusters appeared to influence classification
accuracy rates. As expected, increases in the number of items,
number of clusters and cluster size had a positive effect on
classification accuracy.

Differential performances of the AIC, BIC, CAIC, and SABIC
were observed under the different study conditions. Overall,
SABIC performed better than BIC or CAIC for the small level-
1 sample (i.e., 10) conditions, and for the conditions with
the higher sample size at level-1 (i.e., 50). BIC and CAIC
failed to select the true model for conditions with the smaller
level-1 sample size. Overall, BIC and CAIC indices showed
similar performances under the different data conditions. The
SABIC appears to be the better than BIC and CAIC for the
smaller level-1 sample size. These findings were consistent
with Choi et al. (2017) that showed the superiority of SABIC
over other relative fit indices. AIC also appeared to perform
better than SABIC, however, under some conditions (i.e.,
NE5010, NE10010 conditions with 10-, 30- and 50-items
and E5010, E10010 conditions with 10- and 50-items). Thus,
results suggest that no uniformly superior single information
criterion index of the four indices studied here was consistently
the best model selection index under each of the simulated
conditions here.

Multilevel mixture IRT models and relative fit indices used for
model selection perform better with higher number of clusters
and cluster sizes. The percentage of class-variant items also
appeared to have an effect on accuracy of model estimates and on
performance of model selection indices. Given these findings, it is
important to note that model selection also needs to pay attention
to substantive theory as well as to multiple fit indices rather than
relying on a single fit index for model selection. The present study
shares similar limitations to those of other simulation studies
using similar conditions in the study design (e.g., Choi et al., 2017;
Lee et al., 2018).
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