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The Programme for International Student Assessment (PISA) introduced the
measurement of problem-solving skills in the 2012 cycle. The items in this new domain
employ scenario-based environments in terms of students interacting with computers.
Process data collected from log files are a record of students’ interactions with the
testing platform. This study suggests a two-stage approach for generating features
from process data and selecting the features that predict students’ responses using a
released problem-solving item—the Climate Control Task. The primary objectives of the
study are (1) introducing an approach for generating features from the process data and
using them to predict the response to this item, and (2) finding out which features have
the most predictive value. To achieve these goals, a tree-based ensemble method, the
random forest algorithm, is used to explore the association between response data and
predictive features. Also, features can be ranked by importance in terms of predictive
performance. This study can be considered as providing an alternative way to analyze
process data having a pedagogical purpose.

Keywords: process data, interactive items, feature generation, feature selection, random forests, problem-
solving, PISA

INTRODUCTION

Computer-based assessments (CBAs) are used for more than increasing construct validity (e.g.,
Sireci and Zenisky, 2006) and improving test design (e.g., van der Linden, 2005) through inclusion
of adaptive features. They also provide new insights into behavioral processes related to task
completion that cannot be easily observed using paper-based instruments (Goldhammer et al.,
2013). In CBAs, a variety of timing and process data accompany test performance. This means
that much more data from the response process of an answer is available in addition to correctness
or incorrectness.

Along with assessing the core domains of Math, Reading, and Science, the Programme
for International Student Assessment (PISA) introduced a problem-solving domain in the
2012 cycle, with fundamental technical support from computer delivery. It enabled interactive
problems – problems in which exploration is required to uncover undisclosed information
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(Ramalingam et al., 2014)—to be included in a large-scale
international assessment for the first time (Organisation for
Economic Co-operation and Development [OECD], 2014b).
Dynamic records of actions generated during the item-response
process form a distinct sequence representing participants’ input
and the internal state of the assessment platform. Analyzing these
sequences can facilitate understanding of how individuals plan,
evaluate, and select operations to achieve the problem-solving
goal (e.g., Goldhammer et al., 2014; Hao et al., 2015; He and von
Davier, 2016; Liao et al., 2019).

The problem-solving items in this new domain were typically
designed as interactive tasks. The contents of these items cover a
broad scope, from choosing an optimal geographic path between
departure and destination points to purchasing metro tickets via
a vending machine. Both the students’ responses and the whole
process of how students solved the problem in a sequence were
captured in log files, such as clicking buttons, drawing lines,
dragging on a scale, performing keystrokes to respond to open-
ended items, and so on. The data contained in log files, referred to
as process data in the present study, provide information beyond
response data (i.e., whether the final response was correct or not).

While process data are expected to provide a broader range
of information, the complex embedded structure demands an
extension of existing analysis methods. These demands entail
efforts to apply techniques used in other disciplines such as data
mining, machine learning, natural language processing (NLP),
social networking, and sequence data mining. These techniques
serve two purposes: (1) creating predictive features/variables1

associated with an outcome variable (i.e., feature generation)
and (2) determining which features are the most predictive (i.e.,
feature selection).

The present study analyzed process data from a released
PISA 2012 item (Organisation for Economic Co-operation and
Development [OECD], 2014a)—Climate Control Task – that
is intended to measure problem-solving skills of participants
in science. The purpose of this study was twofold: first, to
use process data obtained in a simulation-based environment
to generate predictive features; and second, to identify the
most important predictive features associated with success or
failure on the task. The present study employed one of the
tree-based ensemble methods – random forests – to select
the most predictive features when considering students as the
target of inferences.

The remainder of this paper is organized as follows. First,
a brief overview of the methods is provided for generating
features from process data and selecting important classifiers. The
random forest algorithm is introduced and its potential use in
analyzing process data is discussed. In the subsequent section,
an integrated approach for generating features from process data
and selecting features by the algorithm is introduced using a case
study from the PISA 2012 problem-solving item. Results obtained
from the introduced approach and their interpretations are then
presented. Lastly, thoughts on the limitations and implications of
the suggested approach are given.

1Predictor variables and covariates are also used interchangeably without being
specifically mentioned in sections that follow.

OVERVIEW OF FEATURE GENERATION
AND SELECTION USING PROCESS DATA

Generating Features Using Process Data
The principle of predictive feature generation is to maximize
information exploration generated solely from timing and
process data. This information may be indicative of respondents’
problem-solving processes, which are associated with the
problem-solving skills targeted in the assessment. As summarized
in He et al. (2018), the features collected in log files can be
roughly categorized into three groups: (1) behavioral indicators
that represent respondents’ problem-solving strategies and
interactions with the computer, (2) sequences of actions and
mini-actions that are directly extracted from test takers’ process
data, and (3) timing data such as total time on task, duration
of respondent actions in the simulation environment, and
time until first actions are taken by the respondent when
solving a digital task.

Behavioral Indicators
Behavioral indicators are typically recorded at a higher,
aggregated level. Although human-computer interactions are
often accomplished through simple gestures or movements,
in most cases, they are not automated actions but involve
case-based reasoning and self-regulatory processes (Shapiro
and Niederhauser, 2004; Azevedo, 2005; Lazonder and Rouet,
2008; Zimmerman, 2008; Brand-Gruwel et al., 2009; Bouchet
et al., 2013; Winne and Baker, 2013). Therefore, to perform
well on computer-based problem-solving tasks, one needs to
have essential skills in using information and communication
technology tools and higher-level skills in problem solving.
Respondents have to decode and understand menu names
or graphical icons in order to follow the appropriate chain
of actions to reach a goal. Meanwhile, problem-solving tasks
also require higher-order thinking, finding new solutions, and
interacting with a dynamic environment (Mayer, 1994; Klieme,
2004; Mislevy et al., 2012; Goldhammer et al., 2014).

A typical example is the strategy indicator “vary one thing at a
time (VOTAT)” studied in Greiff et al. (2015). This study showed
that VOTAT was highly correlated with student performance.
Note that solving complex, interactive tasks requires developing
a plan consisting of a set of properly arranged subgoals and
performing corresponding actions to attain the final goal. This
differs from solving logical or mathematical problems, where
complexity is determined by reasoning requirements but not
primarily by the information that needs to be accessed and used
(Goldhammer et al., 2013). In this sense, one could argue that
the indicators of user actions should in some systematic way
map onto the subgoals a user develops and applies to achieve a
successful completion of the learning or assessment task.

Another example of a strategy indicator was derived from
the problem-solving path and pace of examinees as studied in
Lee and Haberman (2016). In this study, it was found that test
takers adopted different strategies in solving reading tasks in an
international language assessment and that these strategies were
highly related to respondents’ country, language, and cultural
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background. For example, the typical strategy of test takers
from two Asian countries was to skip the passage and view the
questions first. Based on what the item’s instructions requested,
those test takers went back to read the passage and locate the
information needed. Conversely, participants from two European
countries were found to follow what was intended, that is, read
the stimuli passage first and then answer the questions. These two
strategies did not have a significant relationship to performance
of test takers, although substantial performance differences and
completion rates were found in the low-performing group.

Sequences of Actions From Process Data
The importance of sequence data in education has been
recognized for decades. Agrawal and Srikant (1995) said “the
primary task, as applied in a variety of domains including
education, is to discover patterns that are found in many of
the sequences in a dataset.” Actions or mini-sequences that
can be represented as n-grams (He and von Davier, 2015,
2016) are typical indicators to describe respondents’ behavioral
patterns. For instance, actions related to “cancel” (e.g., clicking
on a cancel button in order to go back and change or check
entries again) are sequence indicators, which are associated with
test takers’ cognitive processes and may indicate hesitation or
uncertainty about next steps. Mini-sequences can not only show
the actions adjacent to each other, but also the strategy link
between the actions. For example, in He and von Davier (2016),
strategy changes between the searching and sorting functions
were successfully identified through analysis of bigrams and
trigrams. More details on the use of n-grams for analyzing action
sequences are given in the see section “Materials and Methods”.

Some researchers have employed sequential pattern mining
to inform student models for customizing learning to individual
students (e.g., Corbett and Anderson, 1995; Amershi and
Conati, 2009). Other researchers have employed sequential
pattern mining to better understand groups’ learning behaviors
in designed conditions (e.g., Baker and Yacef, 2009; Zhou
et al., 2010; Martinez et al., 2011; Anderson et al., 2013). As
Kinnebrew et al. (2013) summarized, “identifying sequential
patterns in learning activity data can be useful for discovering,
understanding, and, ultimately, scaffolding student learning
behaviors.” Ideally, these patterns provide a basis for generating
models and insights about how students learn, solve problems,
and interact with the environment. Algorithms for mining
sequential patterns generally associate some measures of
frequency to rank identified patterns. The frequency of a
pattern along the problem-solving process timeline can provide
additional information for interpretation. Further, the observed
variability across action-sequence patterns may play an important
role in identifying behavioral patterns that occur only during
a certain span of time or become more or less frequent
than ones occurring frequently but uniformly over time, thus
allowing us to explore what conditions lead to such changes
(Kinnebrew et al., 2013).

Sequential pattern mining can be conducted via various
approaches. For instance, Biswas et al. (2010) used hidden
Markov models (HMMs; Rabiner, 1989; Fink, 2008) as a direct
probabilistic representation of the internal states and strategies.

This methodology facilitated identification, interpretation, and
comparison of student learning behaviors at an aggregate level.
As with students’ mental processes, the states of an HMM are
hidden, meaning they cannot be directly observed but produce
observable output (e.g., actions in a learning environment).

As Fink (2008) pointed out, the development and spread in
use of sequential models was closely related to the statistical
modeling of texts as well as the restriction of possible sequences
of word hypotheses in automatic speech recognition. Motivated
by the methodologies and applications in NLP and text mining
(e.g., He et al., 2012; Sukkarieh et al., 2012), a number of
methods from these fields can be borrowed for application
in process data analysis. For instance, the longest common
subsequence introduced by Sukkarieh et al. (2012) to educational
measurement for scoring computer-based Program for the
International Assessment of Adult Competencies items was
used in He et al. (2019) to extract the most likely strategy by
respondent in each item by calculating the distance between
individual sequences and reference ones. This approach allowed
comparisons of respondents’ behavior across multiple items
in an assessment.

Features Generated From Timing Data
In addition to sequential data on actions taken by respondents
during the problem-solving process, CBAs provide rich data
on response latency or timing data. Each action log entry is
associated not only with data on what a respondent did, but also
when the action took place. These timestamps can be aggregated
to an overall time measure for the survey, which is specific to the
task, or measures that are specific to certain types of interactions
such as keystrokes, navigation behavior, or time taken for reading
instructions. Timing data at this level of resolution has led to
renewed interest in how latency can be used in modeling response
processes (e.g., DeMars, 2007; van der Linden et al., 2010; Weeks
et al., 2016). In addition, timing data information is expected to
be valuable in conjunction with the types of actions observed
in the sequence data and to help us derive features that allow
predicting cognitive outcomes such as test performance as well
as background variables (Liao et al., 2019).

Predictive Feature Selection
Feature selection models play an essential role in identifying
predictive indicators that can distinguish different groups, such
as the correct and incorrect groups at the item level in problem-
solving processes. A variety of models that have been developed
in “big data” fields that relate to information retrieval, NLP, and
data mining are also applicable to process data analysis. Here,
we discuss some commonly used feature selection models that
are popularly used in similar settings, ultimately focusing on one
tree-based ensemble method – the random forest method – which
will be further applied in this study.

As reviewed by Forman (2003) as well as Guyon and Elisseeff
(2003), the feature selection approaches are essentially divided
into wrappers, filters, and embedded methods. Wrappers utilize
the learning machine of interest as a black box to score
subsets of variables according to their predictive power. Filters
select subsets of variables as a preprocessing step, independent
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of the chosen predictor. Embedded methods perform variable
selection in the process of training and are usually specific to
given learning machines. We introduced these three methods in
details in the following subsections. In the embedded methods,
the random forests method that has been used in this study
is highlighted.

Wrapper Methods
These methods, popularized by Kohavi and John (1997), offer
a simple and powerful way to address the problem of variable
selection, regardless of the chosen machine learning approach.
In their most general formulation, they consist of using the
prediction performance of a given approach to assess the relative
usefulness of subsets of variables. The wrapper methods that
are most used in sequential forward selection or genetic search
perform an exhaustive search over the space of all possible
subsets of features, “repeatedly calling the induction algorithm
as a subroutine to evaluate various subsets of features” (Guyon
and Elisseeff, 2003). These methods are more practical for low-
dimensional data but often are not for more complex large-scale
problems due to intractable computations (Forman, 2003).

Filter Methods
These methods apply an intuitive approach in that the
associations of each predictor variable with the response variable
are individually evaluated, and those most associated with it are
selected. For nominal response variables (the case considered
in this study), measures of dispersion (also referred to as
concentration or impurity depending on the context) such
as Gini’s impurity index and Shannon (1948)’s entropy are
employed as the building blocks for measures of association
between response variables and features (Haberman, 1982; Gilula
and Haberman, 1995). In cases where response and features
are both categorical, Goodman and Kruskal (1954) measure the
association using the proportion of reduction of concentration
if a predictor variable is involved. Other examples of measures
of association can be found in, Theil (1970), Light and Margolin
(1971), and Efron (1978).

Practices in area such as NLP implement an even more
simplified approach by comparing the value of test statistics
of association such as the chi-square statistic for the nominal
response and categorical independent variable (Nigam et al.,
2000; Oakes et al., 2001; He et al., 2012, 2014). Though
some have raised concerns that this approach lacks statistical
significance and soundness, its practical effectiveness in ordering
the importance of categorical features makes it broadly accepted
by certain audiences (Manning and Schütze, 1999; Forman,
2003). Applications can be founded in the recent literature about
feature selection in large-scale assessment (He and von Davier,
2015, 2016; Liao et al., 2019).

Embedded Methods
These methods incorporate variable selection as part of the model
training process. Compared with wrapper methods, they are
more efficient and reach a faster solution by avoiding retraining
a predictor from scratch for every variable subset investigated
(Guyon and Elisseeff, 2003). For instance, the classification

and regression tree (CART; Breiman et al., 1984) algorithm
can be redesigned to serve this purpose. The random forest
algorithm (Breiman, 2001), as an extension of CART that is a
random ensemble of multiple trees, belongs to the family of
embedded methods and is the method chosen for the current
study. The random forest algorithm increasingly adjusts itself
by randomly combining a predetermined number of single tree
algorithms (shorten as trees in later sections). By aggregating
the prediction results obtained from individual trees, the forest
reduces prediction variance and improves overall prediction
accuracy (Dietterich, 2000).

Some basic ideas about tree algorithms are reviewed here
to facilitate understanding of the random forest algorithm.
Let X = X1, . . . , Xp for covariates and Y denote the outcome
variable. Instead of establishing an analytical form of predicting
Y from X, a decision tree grows by recursively splitting the
space of covariates extended by the set X in a greedy way
such that segments (nodes) created have the least impurity (for
classification) or mean squared error (for regression) possible and
are thus used to predictY . Binary split – splitting a parent node
into two child nodes – is conventionally employed and guided by
the splitting rules. For classification, one of the rules is the Gini
impurity index (Breiman et al., 1984; Breiman, 2001),

IG(s, t) = 1−
∑

k

p2
k(s, t),

where t denotes the current node, pk (s, t) is the frequency
of class k in the samples of node t, and split s represents a
certain numeric value or class label of a covariate Xj. If Y is
binary, the above expression will be simplified as 1− p2

0 (s, t)−
p2

1 (s, t). It is intuitive that the index is a measure of dispersion: 1
indicates the utmost dispersion and 0 stands for the most extreme
concentration. In other fields such as ecology, the index used to
measure diversity is known as the Simpson-Gini Index due to its
similarity to the Simpson Index (Peet, 1974). It should be noted
that the estimate of IG (s, t) is biased for small samples if the
sample frequencies fk (s, t) = nk(s, t)/n(s, t) are directly used.
This is because the unbiased estimate of p2

k (s, t) is nk(s,t)[1−nk(s,t)]
n(s,t)[1−n(s,t)] .

A simple modification can be implemented to correct this bias.
The optimal split is determined by seeking the s

that maximizes

1IG (s, t) = IG (s, t)−
1

Nt
[Ntl IG (s, tl)+ Ntr IG(s, tr)]

through the given predictors in set X. The quantity above
indicates the decrease of impurity resulting from splitting the
parent node t at s into the left child node tl and the right
child node tr . Sample sizes (Ntl and Ntr ) of child nodes are
used to obtain the weighted impurity. For regression, the mean
squared error is applied as the splitting rule (Breiman et al., 1984;
Breiman, 2001).

Random forests ensemble individual decision trees through
the following steps. First, subsets of samples are randomly drawn
from the whole sample dataset and individual trees are grown
based on each subset of samples. Note that data entries not chosen
in each random draw are called “out of bag” data and kept for
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validating purposes. Second, for each individual decision tree in
the random forest algorithm, it grows by recursively splitting a
parent node into two or more child nodes with respect to a set of
predictor variables as previously discussed. Rather than seeking
the “best” cut point through all available predictor variables, the
tree of random forests only examines through a set of m randomly
chosen variables at each split. An individual tree stops to grow
when a preset number of leaf nodes (nodes at the end of the tree
that have no child nodes) or a threshold in terms of impurity
of child nodes is reached. Third, final predicted responses are
obtained by aggregating the prediction results over these fitted
individual trees constructed using different subsets of covariates.

Even though the stability of an individual tree in terms
of prediction is still not quite comparable with a typical
logistic regression model fitted using all covariates, Breiman
et al. (1984) argued that the variance is reduced because of
the aggregation, which further enhances the overall prediction
performance. Lin and Jeon (2006) showed that the random forest
outperforms other less model-based predictive methods in cases
with moderate sample sizes. In addition to the improvement
on prediction performance, random forests also have other
advantages in practice. As introduced above, only a certain
number of covariates are selected to conduct each split when
growing a decision tree. Such a feature allows the random forest
algorithm to fit with a relatively larger number of predictor
variables (especially for categorical variables) on a given sample
size compared to other predictive methods such as linear models
(e.g., generalized linear models), for which fitting with an
extensive number of predictors may create data sparsity and
reduce the numerical robustness.

In addition, two built-in variable selection methods of
random forests, using two types of variable importance
measures (VIMs)—(1) impurity importance and (2) permutation
importance – have been successfully applied in fields such as gene
expression and genome-wide association studies (Díaz-Uriarte
and Alvarez de Andrés, 2006; Goldstein et al., 2011). The current
study utilizes the permutation importance to select the most
important variables extracted from the process data.

Impurity importance is quantified by accumulating 1IG (s, t)
for each covariate over nodes of all trees. The accumulation is
weighted by the sample sizes of nodes. While the importance
measure enjoys all the computational convenience of the random
forest algorithm, the splitting mechanism – just by chance –
favors variables with many possible split points (e.g., categorical
variables with many levels), resulting in a biased variable
selection (Breiman et al., 1984; White and Liu, 1994). Much
statistical literature further investigated this issue and proposed
practical solutions (Kim and Loh, 2001; Hothorn et al., 2006;
Strobl et al., 2007; Sandri and Zuccolotto, 2008). For instance,
Strobl et al. (2007) reimplemented the random forest method
based on Hothorn et al.’s (2006) conditional inference tree-
structural algorithms (ctrees) to provide unbiased estimation of
impurity importance. Instead of altering the algorithm, Sandri
and Zuccolotto (2008) proposed a heuristic procedure to directly
correct the bias of impurity measure by differentiating the
“importance” resulting from characteristics of variables from the
importance due to the association with the outcome variable.

As another built-in VIM of the random forest algorithm, the
measure of permutation importance is free from this undesirable
bias. Although it has been criticized for its computational
inconvenience, the simple nature of the permutation importance
measure becomes attractive as computation speed increases.
The rationale of the permutation importance measure is as
follows: First, a predictor variable, say Xj, is permutated in
terms of the order of samples. Second, together with the other
unaltered variables, another random forest algorithm is fit to
compare with the algorithm constructed using unaltered samples.
Permutation breaks the original association between Xj and Y ,
resulting in a drop of prediction accuracy for the testing data.
Lastly, the rank of predictor variables can be established after
applying this procedure to each covariate. In the present study,
the permutation importance measure, also known as the mean
decrease accuracy (Breiman, 2001), was implemented to conduct
variable selection.

Tree-based ensemble algorithms also include bagging
(Breiman, 1996) and boosting (Freund and Schapire, 1997).
Bagging-tree algorithms are similar to random forests but are
more straightforward in terms of randomizing the data and
growing individual trees. Boosting-tree algorithms grow a
sequence of single trees in a way that the latter grown tree fits
the variation not explained by the former grown tree. Bayesian
additive regression tree (BART; Chipman et al., 2010) is a
tree ensemble method established in the Bayesian approach,
offering a straightforward means of handling model selection
by specifying a prior for the tuning parameter controlling the
complexity of trees. Meanwhile, BART considers the uncertainty
of parameter estimation with that of model selection. In addition,
this method provides a flexible way to address the missing data
issue by allowing for directly modeling the missing mechanism.

MATERIALS AND METHODS

Item Description and Data Processing
This study analyzed process data from a computer-based
problem-solving item from PISA 2012 – Climate Control Task
1 (item code CP02501). The full-sample data has been made
publicly available by the OECD2. The dataset for this item
includes responses from 30,224 15-year-old in-school students
from 42 countries and economies. Sample sizes of countries and
economies are shown in Table 1.

This item (a snapshot of the item is shown in Figure 1)
asked test takers to determine which of the three sliders
controls temperature and which controls humidity, respectively.
To obtain the correct answer, test takers were permitted to
manipulate the sliders and monitor changes through the display.
The answer to the task was given by drawing lines linking the
diagrams to indicate the association between the inputs (sliders)
and outputs. The correct solution is shown in Figure 1. The
“reset” button undid previous simulations by clearing the display
and resetting the sliders to their initial status. No limit was

2The dataset is available at http://www.oecd.org/pisa/data/pisa2012database-
downloadabledata.htm.
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TABLE 1 | Countries and economies with sample sizes.

Country and economy Sample size

Australia 1,855

Austria 442

Belgium 726

Bulgaria 988

Canada 1,516

Chile 526

Chinese Taipei 494

Columbia 736

Croatia 962

Czechia 1,526

Denmark 636

Estonia 464

Finland 1,769

France 429

Germany 430

Hong Kong 433

Hungary 424

Ireland 407

Israel 440

Italy 453

Japan 1,005

Korean 449

Macao 519

Malaysia 938

Montenegro 917

Netherland 891

Norway 401

Poland 379

Portugal 486

Russia 504

Serbia 867

Shanghai-China 408

Singapore 469

Slovak 485

Slovenia 667

Spain 885

Sweden 418

Turkey 998

United Arab Emirates 1,023

United States 425

Uruguay 966

imposed on the number of steps of manipulation or rounds
of exploration. Also, no time constraint was imposed on each
item; however, the total test time of a test cluster (problem-
solving items) was limited to 20 min. Either one or two clusters
were randomly given to a participant depending on different
assessment designs (Organisation for Economic Co-operation
and Development [OECD], 2014b). The order of items in a
cluster was fixed, and a former item could not be resumed once
the next item had begun. According to different assignments of
clusters, the position of Climate Control Task 1 varied across
test forms. For this item, the average time spent by students

was 125.5 s and the median time was 114.5 s; 95% of examinees
spent from 22.2 s to 290.2 s on the item; only 1,149 participants
(about 3.8% of the total sample) finished the task in 30 s or
less, with a 5.1% rate of correctness. Given these results, later
sections of the paper assume that the item is not considered as
speeded for this sample in general and position effects, if any, are
negligible. However, the analysis of the current study conducted
without considering the speeded issue which should be noted as
a limitation and further investigated by future research.

Items like Climate Control Task 1 are constructed using
the MicroDYN approach (Greiff et al., 2012) that combines
the use of the theoretical framework of linear structural
equation models to systematically construct tasks (Funke, 2001)
with multiple independent tasks to increase reliability. Briefly
speaking, a system of causal relations (e.g., the first slider controls
temperature) is embedded in a scenario that allows participants to
explore input variables and observe the corresponding changes of
output variables through a graphical representation. No specific
prior domain knowledge is required for this type of task in
general. However, examinees need to gain and have command of
the knowledge by exploring and experimenting before providing
appropriate answers. For such tasks, a strategic knowledge for
effective exploration is crucially important (Greiff et al., 2015)—
that is, the VOTAT (vary one thing at a time; Tschirgi, 1980)
strategy; this term is also known as the control-of-variable
strategy (Chen and Klahr, 1999) in developmental psychology.

In PISA 2012, a partial credit assignment – 0 for incorrect,
1 for partially correct, and 2 for correct – was used to score
the responses of Climate Control Task 1. Partial credit was
given if a student explored the simulation by using the VOTAT
strategy efficiently – only varying one control at a time when
trying to change the status of each control individually at least
once, regardless of actions being in adjacent attempts or in a
round before resetting – but failed to correctly represent the
association in a diagram.

To show that the VOTAT strategy is strongly related
to performance on the item, Greiff et al. (2015) restricted
polytomous responses as dichotomous by treating partially
correct as incorrect and then investigated the association between
the dichotomous responses with the indicator of applying the
VOTAT strategy efficiently alongside other covariates. Following
the same settings, the present study explored the association
between the binary responses and the indicator of the use of
the VOTAT strategy together with other covariates created from
the process data to find out (1) whether the current partial
scoring rubric was still supported by the prediction model (i.e.,
random forests)—namely, whether the VOTAT variable was still
the most associated factor with responses while interacting with
other covariates – and (2) whether the rubric was still sufficient
compared with the new predictor features extracted from the
process data. It should be noted that the restriction of response
variable may not be applicable for items that are intended to
measure a construct other than the interactive complex problem-
solving (Cheng and Holyoak, 1985; Funke, 2001) skills or
constructed without using the MicroDYN approach.

Table 2 shows a section of the postprocessed log file—
that is, a readable process dataset whose entries are actions
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FIGURE 1 | A snapshot of the problem-solving item Climate Control in PISA 2012.

listed in chronological order. The even number indicates the
actions belong to a certain test taker. The type of action,
as well as the corresponding timestamp, was recorded for
each action. Among the action types, “apply” represents
actions related to manipulation of sliders because, after setting
sliders, a test taker needed to hit the “apply” box, as
shown in Figure 1, to see the changed value of temperature
and humidity displayed. The changed status of sliders was
recorded in the columns “top slider,” “central slider,” and
“bottom slider.” The value of status ranges from −2 to
2. Similarly, the action type “diagram” represents drawing
a line to link diagrams, as shown at the bottom right of
Figure 1. The six-digit binary string shown in the table was
used to record the association among diagrams that has been
established. For example, “100101” indicates that the top slider
controls temperature, whereas the central and bottom sliders
control humidity.

To facilitate the analysis, observed sequences of actions were
collapsed into respective strings. To obtain such a string, each
type of action is abbreviated using a single capital letter: “S” for
“start,” “E” for “end,” “R” for “reset,” “A” for “apply,” and “D” for
“diagram.” It should be noted that consecutive “D” actions were
collapsed into a single “D” action because information related to
drawing lines to connect the diagrams is not of central interest in

the present study. For the sequence of actions shown in Table 2,
it can be simplified as “SRAAAAARDE.”

Feature Generation
In this study, features (predictor variables) extracted from the
process data can be summarized in three categories: variables
extracted from action sequences using n-gram methods, behavior
indicators, and time-related variables.

N-gram methods decode a sequence of actions into mini-
sequences (e.g., a string of n letters in length where the
letters remain in the same order as the original sequence of
actions) and document the number of occurrences of each
mini-sequence. Unigrams, analogous to the language sequences
in NLP, are defined as “bags of actions,” where each single
action in a sequence collection represents a distinct feature.
However, unigrams are not informative in term of transitions
between actions. Bigrams and trigrams are considered in this
study, with action sequences broken down into mini-sequences
containing two and three ordered adjacent actions. Note that
the n-gram method is productive in creating features based
on sequence data without loss of much information about the
order of sequence. This class of methods has become widely
accepted for feature engineering in fields such as NLP and
genomic sequence analysis and was recently applied to analyze
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TABLE 2 | An example of process data for a test taker solving the climate control item.

Event Time Event_order Event_ type Top_ slider Central_slider Bottom_slider Temp_value Humid_value Diag_state

START_ITEM 1288.1 1 start NULL NULL NULL NULL NULL NULL

ACER_EVENT 1291.9 2 reset 0 0 0 25 25 NULL

ACER_EVENT 1338.4 3 apply 1 1 1 27 28 NULL

ACER_EVENT 1346.8 4 apply 1 1 2 29 33 NULL

ACER_EVENT 1350.1 5 apply 1 2 2 31 36 NULL

ACER_EVENT 1354.5 6 apply 2 2 2 35 36 NULL

ACER_EVENT 1361.1 7 apply 2 1 1 36 36 NULL

ACER_EVENT 1361.1 8 reset 0 0 0 25 25 NULL

ACER_EVENT 1375.3 9 diagram NULL NULL NULL NULL NULL 000000

ACER_EVENT 1376.2 10 diagram NULL NULL NULL NULL NULL 000000

ACER_EVENT 1400.1 11 diagram NULL NULL NULL NULL NULL 000000

ACER_EVENT 1402.1 12 diagram NULL NULL NULL NULL NULL 000001

ACER_EVENT 1406.8 13 diagram NULL NULL NULL NULL NULL 000001

ACER_EVENT 1408.4 14 diagram NULL NULL NULL NULL NULL 000101

ACER_EVENT 1410.2 15 diagram NULL NULL NULL NULL NULL 000101

ACER_EVENT 1410.6 16 diagram NULL NULL NULL NULL NULL 100101

END_ITEM 1416.1 17 end NULL NULL NULL NULL NULL NULL

“Event” and “event_type” indicate the type of the current action. “Time” and “event_num” show the time point and order of the current action. “Top_slider,” “central_ slider,”
and “bottom_ slider” provide information about the status of each control. “Temp_value” and “humid_value” give the simulated results. “diag_state” gives information on
the linking among diagrams. Each type of event is abbreviated using a single capital letter: “S” for “start,” “E” for “end,” “R” for “reset,” “A” for “apply,” and “D” for
“diagram.” Data source: This table is extracted from “Log-file databases for released PISA 2012 computer-based items data for problem solving” at http://www.oecd.
org/pisa/pisaproducts/database-cbapisa2012.htm.

process data in large-scale assessment (He and von Davier,
2015, 2016). For example, an n-gram can break the action
string “SRAAAAARDE” into “S(1), A(5), R(2), D(1), E(1)”
for unigrams, “SA(1), AR(1), AA(4), RA(1), RD(1), DE(1)”
for bigrams, and “SRA(1), RAA(1), AAA(3), AAR(1), ARD(1),
RDE(1)” for trigrams, where the numerals in brackets represent
the number of occurrences.

Behavior indicators can also be generated from sequences of
actions. Changes to input variables (the positions of controls)
shed light on participants’ problem-solving strategies and
behaviors. As discussed earlier, partial credit was given to
students who explored the connection between the inputs and
outputs by utilizing the VOTAT (vary one thing at a time)
strategy across the three controls at least once. Greiff et al.
(2015) treated this scoring rubric as an indicator variable
(i.e., VOTAT) and showed that it was highly associated with
the probability of answering this item correctly and overall
performance on the test.

This study created an ordinal categorical variable with four
levels – from 0 to 3 – each number indicating on how many
controls a student has used the VOTAT strategy. This ordinal
variable was referred to as “VOTAT group” in the analysis.
Another variable named “VOTAT num” was created to count
the number of times that a student used the VOTAT strategy
regardless of which control he or she applied the strategy
to. Additionally, the order of “A” and “D” in a sequence of
actions could convey information about examinees’ decisiveness
or hesitancy of their decision-making process. For example,
the action string “SRAAAAARDE” can be categorized as a
meta-strategy “AD sequence,” implying the examinee “draws”
the diagrams right after “applying” the simulations on sliders

rather than jumping back and forth between applying sliders and
drawing diagram lines.

Table 3 shows the distribution of the AD sequence variable,
where N indicates the cases in which participants did not
conduct an experiment or generate diagrams. Note that the AD
sequence’s having an undue number of levels not just hindered
interpretation but also caused data sparsity in analysis that
followed. Thus a “compact” version of AD sequence with fewer
levels was created as shown in Table 4. Figure 2 illustrates how to
create the contracted levels in Table 4 by a tree-like diagram.

Process data also provide rich information related to time.
Process data includes timestamps of actions, allowing the time
spent on a specific action to be calculated by taking the difference
of the time of two adjacent actions. Several time-related predictor
variables can be generated as follows. “A time” and “D time”
indicate the accumulated time spent on manipulating controls
and drawing diagrams, respectively. For example, for an action
sequence “SADRE,” “A time” is the time used after hitting the
“start” box and before hitting the “apply” box; “D time” is the
time spent after hitting the “apply” box and before drawing a line
among diagrams. By a similar token, “E time” records the time
spent after conducting the last action before hitting the “end” box.
A special case is “R time,” which represents the time spent after
hitting the “reset” box but before conducting the next Action.
“time_bf_action” records the time span between “start” and the
first action after “start,” which can be considered as the time spent
on reading and perceiving the task.

Given the feature generation method described above, 77
variables were created from the process data (a snapshot of the
process data is presented as Table 2), as presented in Table 5.
Note that time-related features in this study were binned with
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TABLE 3 | All levels of AD sequence with sample size and percentage of
correctness.

AD Behavior Total Correct Percentage (%)

AD 6490 2377 36.63

ADA 1118 522 46.69

ADAD 2996 1648 55.01

ADADA 697 401 57.53

ADADAD 8004 6470 80.83

ADADADA 1648 1459 88.53

ADADADAD 777 558 71.81

ADADADADA 250 188 75.20

ADADADADAD 167 115 68.86

ADADADADADA 64 41 64.06

ADADADADADAD 74 53 71.62

ADADADADADADA 29 17 58.62

ADADADADADADAD 15 8 53.33

ADADADADADADADA 8 6 75.00

ADADADADADADADAD 6 2 33.33

ADADADADADADADADA 7 3 42.86

ADADADADADADADADAD 4 1 25.00

ADADADADADADADADADA 3 1 33.33

ADADADADADADADADADADAD 1 0 0.00

ADADADADADADADADADADADA 1 1 100.00

ADADADADADADADADADADADADA 1 0 0.00

ADADADADADADADADADADADADADA 1 1 100.00

ADADADADADADADADADADADADADAD 1 1 100.00

DA 803 123 15.32

DAD 398 137 34.42

DADA 232 74 31.90

DADAD 190 91 47.89

DADADA 108 40 37.04

DADADAD 345 259 75.07

DADADADA 124 76 61.29

DADADADAD 84 54 64.29

DADADADADA 38 18 47.37

DADADADADAD 22 11 50.00

DADADADADADA 27 7 25.93

DADADADADADAD 11 5 45.45

DADADADADADADA 10 0 0.00

DADADADADADADAD 10 7 70.00

DADADADADADADADA 12 2 16.67

DADADADADADADADAD 6 2 33.33

DADADADADADADADADA 8 0 0.00

DADADADADADADADADADA 3 2 66.67

DADADADADADADADADADAD 1 0 0.00

DADADADADADADADADADADA 3 2 66.67

DADADADADADADADADADADAD 2 1 50.00

DADADADADADADADADADADADA 6 3 50.00

DADADADADADADADADADADADAD 1 0 0.00

DADADADADADADADADADADADADAD 1 1 100.00

DADADADADADADADADADADADADADADA 3 0 0.00
DADADA

N 5414 267 4.93

equal percentiles in terms of their frequencies – the frequency
of each bin ranges from 10 to 25% of the sample depending
on the variables. This was done essentially due to the nature of

TABLE 4 | All contracted levels of AD sequence with sample size and
percentage of correctness.

Total Correct Percentage (%)

Incomplete 5414 267 4.93

Start from D 2448 915 37.38

AD only 6490 2377 36.63

1<=AD<3 4811 2571 53.44

AD>=3 11061 8925 80.69

the tree models: continuous variables are discretized to find the
best “split” point, as discussed in previous sections. This inherent
discretization mechanism tends to create data sparsity when
the distribution of a continuous variable is “discontinued” (i.e.,
having extreme low density at the area between modes), which
increases the chance of encountering a computation failure.
Therefore, to reduce this chance, practitioners “stabilize” the
distributions of these “discontinued” variables by binning before
feeding the variables to fit the algorithm. In this study, binning
was also applied to n-gram features with levels having sparse
sample sizes. However, it should be noted that binning entails a
risk of losing information about these variables.

Feature Selection
Feature selection was conducted using the R package
randomForest (Liaw and Wiener, 2002). The selection began
with seeking the random forest algorithm having the optimal
complexity to fit the dataset. In this study, the complexity of the
random forest algorithm is characterized by combinations of
number of trees (ntree) and number of predictor variables used
to grow a tree (mtry). Empirical studies (Breiman, 2001; Mitchell,
2011; Janitza and Hornung, 2018) showed that mtry and ntree are
more influential than other factors in controlling the complexity
of the random forest algorithm. In this study the size of a tree
(i.e., the number of generations or the total number of nodes)
was not restricted and the number of branches used at each split
was fixed at 2. The present study was focused on exploring the
combinations of mtry and ntree, where ntree = 100, 300, 500, and
mtry = 4, 6, 8, 10, 12.

Cross-Validation
A typical way to find the optimal model complexity (i.e., the
combination of tuning parameters) is to compare the fitted
models by their validation error. The validation error is obtained
by holding out a subset of the sample (validation set), using the
retained sample (training set) to fit the classification algorithm,
and then estimating the prediction error by applying the fitted
algorithm to the validation set. To efficiently utilize data with a
limited size, practitioners (Breiman and Spector, 1992; Kohavi,
1995) have recommended five- or ten-fold cross-validation. In
the case of five-fold cross-validation, the data is split into five
roughly equal parts. A loop of validations is then conducted –
each part is labeled as the validation set once to estimate the
prediction error of the random forest model fitted using the
other four parts. In a data-rich situation, Hastie et al. (2009)
recommended to isolate an additional set (the test set) from
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All Cases
(30,224, 15,055, 49.81%)

AD only
(6,490, 2,377, 36.63%)

Start From A
(22,362, 13,873, 62.04%)

Complete
(24,810, 14,788, 59.60%)

Incomplete
(5,414, 267, 4.93%)

1 <= AD < 3
(4,811, 2,571, 53.44%)

AD >= 3
(11,061, 8,925, 80.69%)

Start From D
(2,448, 915, 37.38%)

FIGURE 2 | A tree-based diagram for contracted levels of the AD sequence. Indices in parentheses are sample size, number of correct responses, and conditional
probability of correctness, respectively, for each class or contracted class of the “AD sequence” variable.

the sample before conducting cross-validation. This set is used
to compute the prediction error for the final chosen model. It
can also be considered as an assessment of the generalization
performance of the chosen model on independent data. The
present study randomly selected roughly 10% of the sample
(3,000 students) as the test set; the rest was separated into five
folds for the training-validation purposes.

Variable Selection and Backward Elimination
The core idea of validation is to keep the validation sample from
being “seen” by the model training process. Such a principle must
also be obeyed when variable selection is involved. An example of
violating this rule would be to conduct variable selection based
on the whole sample before tuning model parameters based on
cross-validation (Hastie et al., 2009).

The variable selection implemented in the current study is
based on the recursive feature elimination in Guyon et al. (2002)
that iteratively rules out features at the lower end of the
ranking criterion. Together with random forests, recursive

TABLE 5 | Variables generated from process data of climate control task 1.

Total Generated Features

Unigram 3 D, R, A

Bigram 16 DD, AA, RA, AR, AD, DA, AE, SD, SA, DR, DE, RD,
RE, RR, SR, SE

Trigram 48 ADD, AAR, SRD, DDR, AAE, DRE, AAA, ARD, SDR,
ADE, RAA, RRE, DDD, DAR, ARR, DAA, RDA, RRA,
DAD, SDA, RRR, AAD, RAD, RRD, ADR, ARE, DRR,
RDE, DRR, SRA, ADA, SAR, SRE, ARA, RAR, SDE,
DRA, RDD, RDR, SDD, DAE, SAR, DDA, DRD, SRR,
SAA, SAD, RAE

Behavioral
indicators

4 AD sequence, VOTAT group, VOTAT num, n_actions

Time-related
features

6 D time, A time, R time, E time, total time,
time_bf_action.

Total 77

feature elimination has been successfully employed in genome-
wide association studies (e.g., Jiang et al., 2009). The variable
selection approach suggested in the present study is not just an
application of recursive feature elimination using the random
forest algorithm with a specific focus on the process data, but a
modification with an emphasis on end-to-end cross-validation.

Box 1 outlines the suggested backward elimination algorithm
for variable selection. Note that to prevent variable selection
(i.e., ranking) from seeing the data used for model training
(i.e., parameter tuning in this study), the training-validation
dataset was divided into five disjoint subsets in this recursive
selection process so that at each backward elimination parameter
tuning can be conducted using four of the subsets of data
while variable ranking can be performed separately based
on the other subset. This suggested approach follows the
principles of variable selection for study design recommended by
Brick et al. (2017).

As indicated by Box 1, the backward elimination also
documents how the validation performance of the fitted model
changes as the number of features reduces, which was illustrated
in Figure 3. The number of selected features was decided by
drawing a cutoff line around where the first large drop in

BOX 1 | Backward elimination algorithm for feature selection.
randomly split the training-validation dataset into 5 disjoint subsets.
X1, . . . , X5 are sets of covariates; they are all same with 77 covariates at the
beginning;
repeat the followings until the covariate sets X1, . . . , X5 are empty:

for k in {1, 2, . . . , 5}:
hold the k-th dataset out for ranking;

for each combination of mtry and ntree:
conduct a five-fold cross-validation using the other 4 datasets and
covariates left in Xk ;
obtain cross-validated prediction error e for the current combination;

find the optimal mtry and ntree by comparing e across all combinations;
fit a random forest using the k-th dataset and the optimal parameters;
obtain the importance rank and remove the least important feature from Xk .

end
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prediction performance begins (i.e., 49 in Figure 3). Setting
this cutoff line here is like selecting the number of factors
using the scree plot (Cattell, 1966). Given this threshold number
(i.e., 77− 49 = 28), five sets with 28 selected features were
obtained, and their intersection gives the final selected set of
features (26 features).

The backward elimination in Box 1 has five separated iterative
variable ranking processes, which could be somehow regarded
as an implicit self-validation. However, the determination of the
cut-off line shared by the five ranking processes (i.e., the feature
screening) should be further validated if data are rich enough.
Instead of having one training-validation set, five disjointed
training-validation sets (notice this is different from the five
shown in Box 1) were established after the test set was held out.
Backward elimination shown in Box 1 was conducted for each
of the five sets. Accordingly, five sets of final selected features
were obtained. Table 6 shows the intersection of these five sets
of selected features.

The backward elimination in Box 1 was structured using
a nested loop that might cause inefficiency. Practitioners can
increase the number of features eliminated for each round
to reduce computation burden. Plus, as noted by Breiman
(2001), the value of mtry set around the square root of the
number of predictors seems to have minimal effect on validation
performance; to increase computational efficiency, one can utilize

FIGURE 3 | Prediction performance versus number of eliminated predictors
for a backward elimination. Dashed lines record the change of validation
performance (classification accuracy) for each training set as the number of
eliminated feature increases; the bold solid line represents the average
performance for five-fold; the vertical dashed line (the number of excluded
features=49) indicates where a large reduction of prediction performance
begins.

TABLE 6 | Features selected through the five-fold validated backward elimination.

21 features D, AD sequence, VOTAT num, DD,
DDD, VOTAT group, DDE, RA, AD, R,
D time, R time, n_actions, A, AAA,
ADD, AR, DA, ADR, DRA, DR.

Boldfaced cases indicate features considered redundant. Such features are
removed from the set of selected features for analysis that follows.

this deterministic way to adapt the value of mtry. In addition,
to further increase algorithmic efficiency, researchers (Breiman,
2001; Nicodemus and Malley, 2009; Zhang et al., 2010; Goldstein
et al., 2011; Oliveira et al., 2012) recommended employing
out-of-bag error as an alternative to cross-validation error.
Simulation studies (Mitchell, 2011; Janitza and Hornung, 2018)
showed that although out-of-bag error tends to overestimate
true error rate when “n<<p”—that is, the sample size is
far less than the number of predictors, the overall validation
performance is not substantially affected by means of out-of-
bag error to determine model complexity. The present study
also performed a backward elimination boosted by using the
above suggestions, which obtained consistent results with the
plain approach shown in Box 1 in terms of variable selection.
Such results were not presented in the manuscript for the
sake of simplicity.

RESULTS

The final set of selected features includes ordinal and binary
categorical variables. Pairwise associations among these ordinal
variables were measured using the Goodman-Kruskal gamma (γ;
Goodman and Kruskal, 1954) with value from −1 (discordant)
to 1 (concordant). Given the measure, the final set can be
further reduced by removing the redundant features highly
related to others.

Among all pairs, “DD” was highly associated with “DDD”(γ =
0.76); “AR” and “RA” was associated with γ = 0.71; other well-
associated pairs (γ > 0.6) included “AD sequence” with “AD,”
“AD sequence” with “DA,” “AD” with “ADD,” “DRA” with “ADR,”
“DRA” with “DR,” and “DD” with “DDE.”3 It is not surprising
that “AD sequence” was highly correlated with “AD” and “DA.”
“AD sequence” was preferred since it covered more information
than “AD” and “DA” do, as discussed earlier. “DDD” was greatly
associated with “DD;” trigram was preferable in this case since
it contained more detailed information. “DDE” conveyed trivial
information compared to “DD” and “DDD,” as did “ADD” to
“AD.” “AR” and “RA” covered similar information, as did “DRA”
with “DR” and “ADR;” the one with higher rank of permutation
importance was preferred. In sum, eight features (boldfaced in
Table 6) were excluded: “AD,” “DA,” “ADD,” “DDE,” “DRA,”
“AR,” “DD,” and “DR.”

With the 13 remaining features, a random forest was fitted
with the parameter set where ntree = 100 and mtry = 4.
The parameter combination was chosen based on validation
performance of the test set that had been held out at the
beginning. Applying the test set here was necessary since the
association measured above was based on the entire validation-
training sample, which means that variables selected using γ had
already “seen” the validation data. Similarly, another random
forest was fitted with 77 features; the parameter set was tuned
using the test data, where ntree = 300 and mtry = 9. Here the
Goodman-Kruskal tau (τ; Goodman and Kruskal, 1954) was used

3As a reminder, “D” refers to drawing the diagram, “A” to applying the simulations
on the slider, “S” to start, and “R” to reset.

Frontiers in Psychology | www.frontiersin.org 11 November 2019 | Volume 10 | Article 2461

https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-10-02461 November 21, 2019 Time: 12:26 # 12

Han et al. Feature Extraction for PISA Process Data

to measure the proportional reduction of incorrect prediction for
the full and the reduced model, respectively, with regard to the
random guess based on observed distribution of responses, where
τ77 = 0.810 and τ13 = 0.797. In this regard, the reduced model
performed decently in comparison to the full model.

Features of the simple model ranked by the permutation
importance measure are shown in Table 7. Unigram “D,” “R,”
and “A” ranked high in the list since they are basic elements
constituting action sequences. Furthermore, “D” and “R” are
not just fundamental but also imply a student’s decisiveness.
Using only a few necessary steps of drawing arrows or applying
the reset function only a limited number of times might
indicate confidence in providing a correct solution. “VOTAT
group” and “VOTAT num” are both critical as shown in
the list, which is consistent with the results found by Greiff
et al. (2015). The top-ranked “AD sequence” indicates that
contracting levels shown in Figure 2 work fine in summarizing
students’ behaviors on experimenting. Grams such as “AAA,”
“ADR,” and “RA” offer interesting perspectives. For instance,
students having a large number of “AAA” tended to show
certain patterns in their actions: drawing diagrams right after
applying experiments (i.e., the level “AD only” in the feature
“AD sequence”) and applying the VOTAT scheme across the
three sliders. In further investigating these students, we found
that they attempted to create an increasing or decreasing slope
of the value of temperature or humidity in the display by
repeatedly hitting the “apply” box while fixing the sliders at one
particular status, indicating a relatively sophisticated behavior
of solving the problem. Frequent usage of “ADR” and “RA”
indicated participants utilized the reset function to assist their
experimenting and exploration on inputs. “D time” and “R time”
can be regarded as time spent on deliberation.

DISCUSSION

The aim of the present study is to pedagogically suggest an
integrated approach to analyze action sequences and other

TABLE 7 | Features ranked by permutation importance measure (mean
decrease accuracy).

Feature Mean decrease accuracy

D 0.199

VOTAT group 0.056

AD sequence 0.042

VOTAT num 0.023

R 0.022

R time 0.018

DDD 0.017

n_actions 0.015

RA 0.014

A 0.013

D time 0.009

AAA 0.008

ADR 0.007

information extracted from process data. Feature generation and
selection are two essential parts of the suggested approach and
should be treated with equal importance. Features in this study
were created following both top-down and bottom-up schemes.
The former generates features based on hypotheses that might
be developed by item designers and content experts. The latter,
as an example, extracts features by utilizing n-gram methods
and related methods breaking up the action sequences. Thus,
n-gram translates the action sequences into mini-sequences along
with their frequencies. Features generated by both schemes
are presented in the final set of selected predictive features.
The random forest algorithm was implemented in the feature
selection part, which simultaneously handled (1) a massive
number of categorical predictor variables, (2) the complexity
of the variable structure, and (3) model/variable selection in
a computationally efficient way. The utility of the suggested
approach has been illustrated by implementing it in a publicly
available dataset.

The suggested approach is not free from limitations. First,
the feature generation process involves breaking up action
sequences into mini-sequences encoded as n-grams, suggesting
that the information contained in the order of the action
sequences – for example, the “longer term” dependencies
among actions – would not be completely preserved and
exploited. As an outcome, only limited amounts of behavioral
indicators are generated; information embedded in students’
action sequences might not be fully utilized. For example, the
range of states of controls explored by a student is a variable
likely associated with the response variable. Technically speaking,
to preserve more “complete” information when analyzing action
sequences, sequence-mining approaches (e.g., SPADE; Zaki,
2001) employed to find common subsequences provide a possible
alternative. Also, ideas stemming from cognitive and learning
studies offer a theoretical basis of creating features from action
sequences; for example, some studies (Jiang et al., 2015, 2018)
employed sequential pattern mining to analyze learning skills and
performance in immersive virtual environments.

Second, most features, if not all, are ordinal categorical
variables representing frequency. As noted in the previous
section, some variables present in excessive levels could cause
an issue of data sparsity when conducting the random forest
algorithm. This study used equal-percentile binning to address
this issue at the expense of losing information provided by
the original variables. The sensitivity of binning needs to be
further investigated.

Third, the CART-based random forest algorithm using the
Gini-impurity index to split nodes (e.g., the randomForest R
package used in this study) implemented in this study is
generally a suboptimal choice. Strobl et al. (2007) showed that
the algorithm tends to favor categorical variables with extensive
levels as well as a cluster of variables that are highly correlated.
The modified random forest algorithm proposed by Strobl
et al. (2007) using the conditional inference tree introduced by
Hothorn et al. (2006) should be explored in the context of process
data for future studies.

Fourth, even though the efficiency of the suggested backward
elimination can be increased by using several steps noted in the
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previous section, the computation burden is still a concern for
the present study. Backward elimination with the specifications
shown in Box 1 was validated using a five-fold dataset, which took
about 19,872 s in total on a Mac Pro desktop with a 3.5 GHz CPU
and 16 GB of RAM.

Fifth, like other data-driven algorithms, the random forest
approach is not straightforward regarding model interpretation.
For example, hypothesis tests on marginal effects of features are
not sustained in random forests; the directions of marginal effects
are not directly accessible, either. Friedman (2001) suggested
plotting the partial dependence between the feature and the
outcome variable (logit is used if the outcome variable is
categorical) to access the marginal effects. This display method
has been implemented in the R package randomForest as the
function partialPlot. It is sensible to apply models with more
restricted functional forms, such as linear models, to conduct an
ad hoc analysis based on the selected features.

Sixth, the random forest algorithm is a data-driven method
that is sensitive to sample characteristics. Meanwhile, PISA is
an international large-scale assessment involving mixed-type
forms of tests and multistage sampling designs. The question on
how the sampling designs affect the analysis using data-driven
methods (i.e., random forests) in terms of estimation stability
is beyond the scope of this study. It is appealing that future
methodological research could provide guidance concerning the
correct use of cross-validation in different test designs.

Last, the exploratory nature of the suggested approach comes
with the purpose of the study. Although interesting patterns of
behaviors have been found by the suggested approach, it is still
difficult to test a cognitive or psychometric theory with it.

The suggested method offers an alternative to the generation
and selection of informative features from a massive amount
of process data, given the increasing attention to exploring the
usage of process data along with response data in large-scale
assessments. Generalizability of the method can be explored
by applying it to multiple tasks constructed using a similar

approach such as MicroDYN and comparing it with other
variable-selection approaches in terms of practical significance.
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