AUTHOR=Scherer Klaus R. , Ellgring Heiner , Dieckmann Anja , Unfried Matthias , Mortillaro Marcello TITLE=Dynamic Facial Expression of Emotion and Observer Inference JOURNAL=Frontiers in Psychology VOLUME=10 YEAR=2019 URL=https://www.frontiersin.org/journals/psychology/articles/10.3389/fpsyg.2019.00508 DOI=10.3389/fpsyg.2019.00508 ISSN=1664-1078 ABSTRACT=

Research on facial emotion expression has mostly focused on emotion recognition, assuming that a small number of discrete emotions is elicited and expressed via prototypical facial muscle configurations as captured in still photographs. These are expected to be recognized by observers, presumably via template matching. In contrast, appraisal theories of emotion propose a more dynamic approach, suggesting that specific elements of facial expressions are directly produced by the result of certain appraisals and predicting the facial patterns to be expected for certain appraisal configurations. This approach has recently been extended to emotion perception, claiming that observers first infer individual appraisals and only then make categorical emotion judgments based on the estimated appraisal patterns, using inference rules. Here, we report two related studies to empirically investigate the facial action unit configurations that are used by actors to convey specific emotions in short affect bursts and to examine to what extent observers can infer a person's emotions from the predicted facial expression configurations. The results show that (1) professional actors use many of the predicted facial action unit patterns to enact systematically specified appraisal outcomes in a realistic scenario setting, and (2) naïve observers infer the respective emotions based on highly similar facial movement configurations with a degree of accuracy comparable to earlier research findings. Based on estimates of underlying appraisal criteria for the different emotions we conclude that the patterns of facial action units identified in this research correspond largely to prior predictions and encourage further research on appraisal-driven expression and inference.