AUTHOR=Huang Jing , Hegele Mathias , Billino Jutta TITLE=Motivational Modulation of Age-Related Effects on Reaching Adaptation JOURNAL=Frontiers in Psychology VOLUME=9 YEAR=2018 URL=https://www.frontiersin.org/journals/psychology/articles/10.3389/fpsyg.2018.02285 DOI=10.3389/fpsyg.2018.02285 ISSN=1664-1078 ABSTRACT=

Previous studies have provided consistent evidence that adaptation to visuomotor rotations during reaching declines with age. Since it has been recently shown that learning and retention components of motor adaptation are modulated by reward and punishment, we were interested in how motivational feedback affects age-related decline in reaching adaptation. We studied 35 young and 32 older adults in a reaching task which required fast shooting movements toward visual targets with their right hand. A robotic manipulandum (vBOT system) allowed measuring reaching trajectories. Targets and visual feedback on hand position were presented using a setup that prevented direct vision of the hand and projected a virtual image by a semi-silvered mirror. After a baseline block with veridical visual feedback we introduced a 30° counterclockwise visuomotor rotation. After this adaptation block we also measured retention of adaptation without visual feedback and finally readaptation for the previously experienced rotation. In the adaptation block participants were assigned to one of three motivational feedback conditions, i.e., neutral, reward, or punishment. Reward and punishment feedback was based on reaching endpoint error. Our results consistently corroborated reduced motor learning capacities in older adults (p < 0.001, η2 = 0.56). However, motivational feedback modulated learning rates equivalently in both age groups (p = 0.028, η2 = 0.14). Rewarding feedback induced faster learning, though punishing feedback had no effect. For retention we determined a significant interaction effect between motivational feedback and age group (p = 0.032, η2 = 0.13). Previously provided motivational feedback was detrimental for young adults, but not for older adults. We did not observe robust effects of motivational feedback on readaptation (p = 0.167, η2 = 0.07). Our findings support that motor learning is subject to modulation by motivational feedback. Whereas learning is boosted across both age groups, retention is vulnerable to previously experienced motivational incentives in young adults. In summary, in particular older adults benefit from motivational feedback during reaching adaptation so that age-related differences in visuomotor plasticity, though persisting, can be attenuated. We suggest that the use of motivational information provides a potentially compensatory mechanism during functional aging.