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For the last 30 years, non-invasive brain stimulation (NIBS) approaches, using transcranial
magnetic stimulation (TMS) and transcranial direct or alternating current stimulation (TCS),
have treated the brain as a black box, ignoring its internal state at the time of stimulation.
While inter-individual variability is long known to undermine the replicability of NIBS effects
(Figure 1A), intra-individual variability across and within sessions has only recently gained
attention (Ziemann and Siebner, 2015). NIBS effects are state-dependent on a time scale of
minutes to hours, depending on the immediate history of neural activity (Silvanto et al., 2008)
and synaptic plasticity (Ziemann and Siebner, 2008; Karabanov et al., 2015). However, brain states
also change on the time scale of seconds to milliseconds, as neurons are heavily influenced by the
temporospatial dynamics of spontaneous network activity, governed by rhythmic fluctuations in
neural excitability (Buzsáki and Draguhn, 2004; Schroeder and Lakatos, 2009) under the control of
ascending neuromodulatory systems and thalamo- and cortico-cortical projections (Lee and Dan,
2012; Harris, 2013; Zagha and McCormick, 2014). Frequency, amplitude, and phase of neuronal
oscillations constitute transient local, network, or even global brain states that not only determine
the fate of incoming sensory stimuli (VanRullen and Koch, 2003; Sadaghiani et al., 2010), but
also affect both the immediate (“online”) neuronal response to NIBS and the subsequent after-
effects (“offline”) resulting from NIBS-induced synaptic changes. It has therefore been suggested
to not only optimize NIBS protocols based on neuroimaging data to account for individual
differences in functional neuroanatomy (Bergmann et al., 2016; Thut et al., 2017) but also to take the
current oscillatory brain state into account (Bergmann et al., 2016; Karabanov et al., 2016; Zrenner
et al., 2016). Technical advances allow to assess ongoing multi-channel EEG data in real-time
(Bergmann et al., 2012b; Thies et al., 2018; Zrenner et al., 2018) and modify stimulation parameters
on the fly (Habibollahi Saatlou et al., 2018) to apply brain state-dependent brain stimulation
(BSDBS).

OPEN-LOOP VS. CLOSED-LOOP BSDBS

BSDBS is often equated with closed-loop stimulation, which is not justified in most cases
(Figure 1B). A closed-loop circuit in the strict sense continuously monitors a specific parameter of
a system (e.g., a certain state-space of the brain) and adjusts a control signal (e.g., brain stimulation)
accordingly to achieve and maintain a desired set-point of the monitored parameter (e.g., a specific
brain state), just like a thermostat measures room temperature and regulates hot water influx to a
radiator in order to achieve and maintain a predefined room temperature. But if the control signal
has no effect on the monitored parameter (e.g., if brain stimulation does not effectively alter the
monitored brain state), the loop remains open, even though the stimulation was applied in a brain
state-dependent fashion.
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FIGURE 1 | Principal scenarios of brain stimulation with respect to the current brain state. (A) Standard NIBS approaches treat the brain as a static “black box” (left),

disregarding its variable internal state and may hence result in highly variable stimulation effects. In contrast, treating the brain as the dynamic system it actually is

(right) may reveal very different (state-dependent) effects, but each of them being more homogenous. (B) Open-loop brain state-independent brain stimulation

neglects the current brain state; no neuroimaging method and no real-time system is necessary to control the stimulation. Open-loop brain state-dependent brain

stimulation (BSDBS) uses concurrent neuroimaging (e.g., EEG) and real-time signal analysis to monitor the current brain state and to adjust and trigger brain

stimulation accordingly, however, without systematically changing the monitored target brain state (e.g., TMS triggered by the amplitude or phase of a certain EEG

oscillation to assess state-specific corticospinal excitability but without considerable effect on the monitored oscillation). Closed-loop BSDBS additionally requires that

the monitored brain state is actually changed by the stimulation, allowing to control the expression of a certain brain state.

APPLICATIONS FOR BSDBS

While BSDBS may have the potential to reduce the variability
of NIBS effects (Figure 1A), it first and foremost provides a
unique opportunity to study the neurophysiology and function
of brain states, in particular neuronal oscillations. NIBS in
general can be used online to quantify network properties
(such as cortical excitability or connectivity), interfere with task-
related neuronal activity (to impair behavioral performance),

or modulate the level and timing of neuronal activity (e.g.,
to entrain neuronal oscillations and affect associated cognitive
function); alternatively, NIBS can also be used offline to change

synaptic efficacy, inducing LTP- and LTD-like changes in cortical
excitability and connectivity (for a conceptual introduction to

NIBS approaches see Bergmann et al., 2016). Importantly, all
these strategies can be also employed in a brain state-dependent
manner to study neuronal oscillations. Real-time EEG-triggered
TMS has been used to quantify the excitability profile of
specific oscillations: corticospinal excitability is larger during

the peak (up-state) than the trough (down-state) of the sleep
slow oscillation (<1Hz) (Bergmann et al., 2012a), whereas it

is increased during the trough compared to the peak of the
8–14Hz sensorimotor mu-alpha rhythm (Zrenner et al., 2018)

and is positively related to mu-alpha amplitude (Thies et al.,
2018). TMS may also be used to interfere with information
processing that is time-locked to specific oscillatory events or

phases to probe their causal role for a cognitive function, such
as memory reactivation during slow oscillation-spindle-ripple

coupling (Staresina et al., 2015) or visual processing during
alpha-gamma coupling (Jensen et al., 2014). Eventually, BSDBS
may also be used to modulate, i.e., up- and down-regulate
neuronal oscillations via the repeated time-locked stimulation

of specific oscillatory phases, in analogy to the EEG-triggered

auditory closed-loop modulation of sleep slow oscillations (Ngo

et al., 2013). Recent TACS studies demonstrated feasibility of

semi-closed-loop BSDBS (with brain state monitoring being
interrupted during TACS application due to massive stimulation

artifacts) for slow oscillations (Ketz et al., 2018) and spindles

(Lustenberger et al., 2016), as well as tremor modulation (using

peripheral accelerometry as a proxy for the neuronal tremor
signal) (Brittain et al., 2013). But also offline BSDBS has been
developed: Inspired by seminal work in rodents demonstrating
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that LTP- and LTD-like plasticity can be induced by bursts of

electric stimulation timed to the peak or trough of the ongoing

hippocampal theta oscillation (Huerta and Lisman, 1995, 1996),
Zrenner et al. (2018) recently used EEG-triggered TMS bursts to

induce phase-dependent plasticity in the human motor cortex
with respect to the sensorimotor mu-alpha rhythm (Zrenner
et al., 2018). Repeatedly targeting the more excitable oscillatory
phase, one may tap into the same neural mechanism that
underlies the proposed role of cross-frequency phase-amplitude
coupling (PAC) in synaptic plasticity (Bergmann and Born,
2018).

CHALLENGES AND FUTURE
PERSPECTIVES FOR BSDBS

So far BSDBS mainly relies on EEG due to its high temporal
resolution, the ease of application and real-time data extraction,
and its principal compatibility with NIBS. However, similar
(MEG) or complementary (fMRI or fNIRS) neuroimaging
techniques should be employed for BSDBS in the future,
even though their combination with NIBS is more challenging
(Bergmann et al., 2016). The accessibility of deep brain
structures together with its excellent spatial resolution and
whole brain coverage renders fMRI a highly promising tool
to extract more complex brain states, e.g., using multi-voxel
pattern classification, even though its low temporal resolution
prevents a direct assessment of most neuronal oscillations.
Regarding real-time signal analysis, the major challenge is
to improve oscillatory brain-state extraction by developing
better temporal and spatial filters, and more robust signal
forecasting, which can be particularly demanding for oscillations
with low signal-to-noise-ratio, non-sinusoidal waveforms, and
high variability in amplitude and frequency over time. Also

the spatial component of brain states and the adaptation of
stimulation parameters should be considered. Automated robotic
coil navigation (Harquel et al., 2017) or novel multi-channel coils

(Koponen et al., 2018) principally allow to select stimulation
sites in real-time, e.g., to follow traveling waves or to target
different network nodes. Also NIBS intensity or frequency can
be adapted online, e.g., to compensate spontaneous fluctuations
in excitability or oscillatory frequency. Yet, the most important
challenge will be to develop truly closed-loop BSDBS (Figure 1B)
that allows to continuously monitor the brain signals of interest,
while concurrently applying NIBS to achieve and maintain the
desired brain state and to control perception or behavior. The
successful real-time removal of TMS/TCS stimulation artifacts
(Walter et al., 2012; Herring et al., 2015; Rogasch et al., 2017)
and EEG correlates of multisensory co-stimulation during TMS
(Herring et al., 2015; Conde et al., in press) and TCS (Schutter,
2016; Herring et al., 2018) is therefore a core developmental goal
for the near future.

BSDBS is still in its very early stage, and many exciting
applications yet remain to be uncovered. Importantly, to
exploit the full potential of this novel technique, it needs
to be applied in a hypothesis-driven manner, with a decent
neurophysiological understanding of the target brain state,
and carefully adapted to the research question at hand.
It should not be considered as a new standard formula
to improve any NIBS setup, but as an important step
toward a higher degree of flexibility, specificity, and precision
in NIBS.
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