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In the context of designing multimodal social interactions for Human–Computer
Interaction and for Computer–Mediated Communication, we conducted an experimental
study to investigate how participants combine voice expressions with tactile stimulation
to evaluate emotional valence (EV). In this study, audio and tactile stimuli were presented
separately, and then presented together. Audio stimuli comprised positive and negative
voice expressions, and tactile stimuli consisted of different levels of air jet tactile
stimulation performed on the arm of the participants. Participants were asked to
evaluate communicated EV on a continuous scale. Information Integration Theory
was used to model multimodal valence perception process. Analyses showed that
participants generally integrated both sources of information to evaluate EV. The main
integration rule was averaging rule. The predominance of a modality over the other
modality was specific to each individual.

Keywords: voice expressions, tactile stimulation, emotional valence, multisensory information integration,
affective computing

INTRODUCTION

Introducing emotion into Human–Computer Interaction (HCI) and Computer–Mediated
Communication (CMC) is becoming an important opportunity with much potential. In fact,
emotions constitute a prominent phenomenon in human life. They influence our perceptions, the
way to communicate and how we make decisions (Lewis et al., 2010). Researchers in Affective
Computing propose to study and design systems that recognize, process, and simulate human
affects (Scherer et al., 2010). Emotion communication involves several non-verbal communication
channels that can be used separately or simultaneously. Most research in Affective Computing has
focused on the study of visual and audio signals. Haptic cues have been neglected even though
recent research in psychology has demonstrated that touch is a powerful means of detecting
and displaying emotions (Patel, 2013). Recently, haptic platforms were developed in order to
maintain physical contact between remote people or between humans and autonomous agents like
virtual avatars or robots (Haans and IJsselsteijn, 2005). Haptic devices exploit two types of haptic
feedback: tactile and kinaesthetic feedback. The associated research has focused on the qualitative
evaluation of these devices, for instance, the study of the usefulness of haptic platforms during
interpersonal communications. However, very few studies have investigated how the generated
haptic cues are perceived by users in these contexts (HCI and CMC) (Haans and IJsselsteijn, 2005).
Modeling the relationship between the physical features of the stimulation and the emotional
percept from haptics among participants is crucial for designing credible signals for HCI and CMC
platforms. Such models may increase the communication capacities with telepresence systems, and
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the emotional expressivity of virtual agents, by effectively
introducing a sensory channel that can physically convey
additional information related to the social and emotional
messages. In particular, these models could be used to haptically
modulate the perception of emotions conveyed with another
sensory channel. For instance, emotional dimensions (e.g.,
valence) of the facial expression of a virtual agent could possibly
be modulated by suitable haptic feedback.

Based on an interdisciplinary approach (psychology,
neuroscience, and computer science) inspired by previous
research in Affective Computing (Scherer et al., 2010), this
paper investigates how tactile and audio sources of information
displayed by a system are combined and weighted by participants
in the context of an emotional HCI interaction. We focus
on modeling the integration mechanisms underlying the
combination of voice and touch information in the perception
of Emotional Valence (EV). EV is one of the major three
dimensions that constitute the theoretical model of emotion
called PAD (Russell and Mehrebian, 1977). This model describes
emotions using three uncorrelated and continuous bipolar
dimensions (i.e., scales): Pleasure (P, also called Valence): degree
of well-being (unpleasant – pleasant); Arousal (A): degree of
mental or physical activity (relaxed – activated); and Dominance
(D): degree of control of a situation (feeling of being controlled –
being in control). Modeling voice and touch integration of
emotional cues by future users along these dimensions should
enhance the design of future multimodal mediated affective
platforms.

In the presented experiment, audio stimuli consisted of acted
emotional speech extracted from a validated corpus (Bänziger
et al., 2012). Tactile stimulation was designed in a previous study
and exploits a novel tactile stimulation strategy based on an air
jet system (Tsalamlal et al., 2013). This stimulation strategy does
not require any physical contact between the participant and the
hardware device. The interface can be used to stimulate different
and large areas on the body (e.g., the whole forearm). Moreover,
it is possible to generate low amplitude forces, which might
be more efficient for stimulating mechanoreceptors involved in
tactile affective communication. The design of the tactile stimuli
consisted of identifying the physical parameters of the air jet
stimulation (i.e., physical intensity and speed (Tsalamlal et al.,
2015).

During the experiment, participants were asked to evaluate the
EV of unimodal (voice or tactile) and bimodal (voice combined
with tactile) stimuli. Using the collected data, we studied how
participants perceived and integrated bimodal emotional cues
within a framework called Information Integration Theory (IIT)
(Anderson, 1981).

The rest of the paper is organized as follows. The review
section addresses both the psychological and technological
aspects of emotion communication with haptic feedback. In
Section “Theoretical BASES”, we introduce the theoretical
concepts involved in this study, including the PAD model of
emotion and IIT. Section “Materials and Methods” describes
the protocol of the experiment and Section “Results” discusses
the results. The last section highlights future directions and
concludes the paper.

LITERATURE REVIEW

Display and Perception of Emotions
Communication of emotions through facial expressions has been
widely studied (most often for basic emotion categories) (Ekman
and Friesen, 1975; Carroll and Russell, 1996; Adolphs, 2002).
It was observed that people effectively express and recognize
different distinct emotions using this modality. Other studies
have shown that some emotions and their dimensions can also
be conveyed through other channels. For instance, voice is an
effective modality to convey some cues related to arousal, valence
and specific emotion categories through acoustic properties
(Scherer, 2003; Callaway and Sima’an, 2006). Many studies
have investigated acoustic features that describe or categorize
emotion vocal expressions. Most acoustic parameters are derived
from fundamental frequency (F0), amplitude, duration, or
measures derived from spectral analyses (Pierre-Yves, 2003).
Touch has received less attention than have facial expression
or voice. Recently, researchers have nevertheless showed that
touch effectively supports affective cues. For example, Bailenson
et al. (2007) conducted two experimental studies to highlight the
physical features engaged in the haptic expression of different
emotions. In the first experiment, participants were asked to use
a joystick with two degrees of freedom/force-feedback to express
seven emotions. In the second experiment, a group of participants
was asked to recognize expressions of emotions recorded during
the first experiment. The results showed variance in handshaking
behavior when different emotions were being expressed and this
variance can be quantified in meaningful ways. For example,
sadness was expressed in slow, steady, and short movements,
whereas joy was expressed in long, jerky, and fast movements.
Also, people were able to recognize the emotions expressed above
the chance level using the device. Using the same type of haptic
device but with three degrees of freedom, Gaffary et al. showed
that the intensity and duration of the stimuli can discriminate
between the expression of anger and joy (Gaffary et al., 2013).
Other works explored the hedonic aspects of tactile stimulation.
They demonstrated evidence of unmyelinated CT-fibers with a
particular potential to elicit pleasant or unpleasant subjective
perceptions (McGlone et al., 2007; McCabe et al., 2008; Olausson
et al., 2010; Ackerley et al., 2013; Gordon et al., 2013).

In everyday life, people may communicate emotion using
different channels simultaneously. For example, we may display
facial expression of happiness and talk with prosody expressing
joy. Recently, a few studies have explored the multimodal
aspect of affective expressions and perceptions. The majority
of these studies considered the combination of face and voice
(Campanella and Belin, 2007). The results of these studies suggest
that congruency in information between facial expression and
affective prosody facilitates behavioral reactions to emotional
stimuli (Massaro and Egan, 1996; Dolan et al., 2001; Edwards
et al., 2002; Shackman and Pollak, 2005). Also, the information
obtained via one modality may influence the information
processing in another modality (de Gelder and Vroomen, 2000;
Ethofer et al., 2006). Generally, these studies observed that
facial expression is more important than is voice for judging a
portrayed emotion. However, App et al. (2011) investigated the
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hypothesis that different emotions are most effectively conveyed
through specific non-verbal channels of communication. The
authors stated that the social function of an emotion predicts
its primary channel. The body might promote social status
emotions, the face might support survival emotions, and touch
might support intimate emotions.

Some studies have considered touch combined with other
modalities for the expression and perception of emotions
(Bickmore et al., 2010; Gaffary et al., 2014). The authors of these
studies found that participants based their judgment on facial
expressions to evaluate the valence of emotions, whereas the
haptic modality was used to assess the arousal and dominance
dimensions of the emotions. Surprisingly, there is no work that
addresses the combination of voice and touch in the course
of emotion perception. Modeling this combination process is
crucial for designing efficient systems that are able to recognize
and display affective cues from touch and audio streams. For
example, during human–robot interaction, robots could exploit
audio and haptic signals to recognize the emotion displayed by
the user. To capture these signals, the robot must be equipped
with audio and touch (i.e., tactile, force) sensors. Furthermore,
in return, the robot may display affective messages using touch
and audio feedback simultaneously. In the context of the design
of a platform for multimodal communication of emotions, the
current paper proposes studying and modeling the integration
process of emotion perception of a tactile stimulation and voice
emotional expression. Our approach consists in: (1) defining a
theoretical model of emotion to measure subjective perception
of voice and touch expressions, (2) defining the appropriate
framework for modeling the combination process of voice and
touch, and (3) conducting an experimental study to highlight how
a group of participants combine and weight bimodal cues for the
perception of emotion.

Haptic Devices for Emotion
Communication
Several studies have proposed the use of existing haptic interfaces
or novel devices for social and emotional communication. This
section presents a review of those devices for both long distance
interpersonal communication and interaction with autonomous
agents.

Mediated Interpersonal Communication With Touch
Many studies have investigated the use of haptics for mediated
communication with both kinaesthetic and tactile feedback.
Tactile perception involves the cutaneous senses. It allows us to
feel contact with objects, textures, reliefs or even the rigidity of
an object. However, the tactile devices are more popular than
kinaesthetic devices, probably because actuation technologies like
tactile-vibrators are easier to integrate into portable systems. It
was observed that vibration could help users to convey presence,
emotion, and empathy during mediated interaction. The devices
based on vibrotactile simulation may have many forms. For
example, the CheekTouch device (Park, 2010) provides tactile–
mediated communication via a mobile phone. The tactile
feedback is applied on the user’s cheek and corresponds to the
remote partner’s multi-finger input expressed on another mobile

phone. The authors designed different affective touch behaviors
like pinching and stroking. The user study suggested that this
tactile stimulation technique was positively evaluated. The TaSSt
(Huisman et al., 2013) is a tactile device that enables two people
to communicate different types of touch at a distance. The first
part of the device is a touch-sensitive surface where a user
can express patterns of touch. The second part is composed
of a grid of vibrotactile actuators that are able to render the
patterns to the remote partner. An initial evaluation of the
device revealed that this approach was capable of displaying some
touch patterns like pressing and poking. Using the same type of
display but covering a larger surface, a teleconferencing system
named The HugMe platform (Cha et al., 2008) enables the haptic
feedback to convey affection and intimacy. A suit that embeds
vibrotactile actuators provides the haptic stimulation. An active
user can see and touch a remote passive user. Some research
investigates other tactile stimulation techniques. For instance, the
UltraHaptics (Obrist et al., 2015) exploits ultrasound transducers
to generate focused air pressure waves on the human hand.
This mid-air tactile stimulation technique was used to design an
emotional tactile stimulus by asking a group of participants to
control the parameters of the tactile stimulation from the device
according to a series of displayed pictures. The assessment of
the tactile stimulus by a second group shows that this approach
communicates well the emotional arousal, but less the EV.

Kinaesthetic-based systems are less popular. These types of
devices cannot be portable and may present physical constraints
that limit the quality of the interaction. For example, Alhalabi
and Horiguchi (Alhalabi Osama and Susumu, 2001) used
PHANToMs haptic arms to design the Tele-Handshake platform
that enables people to touch and shake hands from a distance.
The user study showed that even if the forces were accurately
transferred between partners, the handshake was not perceived
as realistic. Tsetserukou and Neviarouskaya (2010) proposed
a novel system to enhance emotional cues during mediated
communication in videogames and virtual environments (ex.,
Second Life). The system was based on a model of affect analysis
that automatically recognizes emotions from text. Then, the
identified emotion is communicated through a haptic device by
simulating a human hug.

Touch Communication With Autonomous Agent
Today, many H–CI applications involve using intelligent agents
to provide social presence. These agents can express different
aspects of emotions mainly using facial expression, gesture, and
speech. Recently, different studies have investigated social and
affective touch interactions between humans and virtual agents
or social robots. For example, Bickmore et al. (2010) designed a
virtual agent capable of physically touching users in synchrony
with other non-verbal channels of communication. The agent
was composed of an animated human like face displayed on
a monitor fixed on the top of a human mannequin. Touch
behaviors were conveyed via an air bladder that squeezes a user’s
hand. The authors observed that when touch is used in the
context of an empathic and comforting interaction, there is a
better perception of the relationship with the agent. Mitsunaga
et al. (2006) developed a human-size humanoid robot called
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“Robovie-IV.” The robot has the capability to interact with
users via different channels: voice, gesture, and haptic. It was
equipped with layers of tactile sensors embedded in a soft
skin in order to make it sensitive to haptic interactions. These
authors conducted a long-term experiment in their office to
evaluate and enhance the interaction abilities of the robot. Based
on human–animal interaction studies, Yohanan and MacLean
(2011) developed a robot that mimics a small pet interacting with
users through touch. Using different tactile sensors, the robot
can measure the touch patterns displayed by users and execute
some behavior. The authors conducted an experimental study to
determine the patterns that participants would likely use when
conveying different emotions. The results documented which
gestures and physical properties the human was more likely to
use and for which specific emotions. The “Probo” is another
animal-like robotic companion capable of active relational and
affective touch–based interactions (Saldien et al., 2008). This
huggable device was developed to increase the wellbeing of
hospitalized patients. An experimental study was conducted to
highlight the role of this social robot in robot-assisted therapy
with autistic children. The results showed that, in specific
situations, the social performance of autistic children improves
when using the robot Probo as a medium for social storytelling
compared to when a human reader tells the stories (Vanderborght
et al., 2012). In the field of Human–Robot Interaction, some
research specifically focused on the design of devices and control
algorithms that generate humanlike handshake interactions
(Avraham et al., 2012). Ammi et al. (2015) conducted a study
to highlight how the physical features of a robot handshake (i.e.,
exerted force, stiffness of movement) influence the participants’
perception of a robot’s facial expressions. The results related
to the multimodal condition clearly showed that introducing
high values for grasping force and stiffness of movement for the
three investigated emotions leads to the increase of the perceived
arousal and dominance compared to a visual-only condition.

The design of systems that include touch as a means of
mediated affect communication is still at its starting age.
Researchers have to face methodological constraints related to
the study of human touch interactions, in addition to the
technical aspects. The majority of actual haptic devices must be
physically connected to the user through mechanical systems.
These systems are often intrusive, limiting the comfort and
the transparency of the interaction, especially in the context of
affective communication. Based on the results of some relevant
studies highlighting the role of touch in the perception of social
and affective behaviors, here we investigate a new form of
tactile stimulation for affective communication. This technique
does not require any physical contact with any structure. It
can be used to stimulate different and large areas on the body
(e.g., the whole forearm) in safety. Our air jet system permits
generating continuous low amplitude forces that can be especially
effective in activating tactile afferents (Gordon et al., 2013). In
a previous study (Tsalamlal et al., 2013), we highlighted the fact
that manipulating the air jet stimulation parameters enabled the
participants to discriminate affective perceptions. More precisely,
this work showed a strong link between the intensity of the
air jet tactile stimulation and the perception of valence, arousal

and dominance dimensions. When the intensity is high, the
tactile stimulus is perceived unpleasant, dominant with a high
arousal, and when the intensity is low, the tactile stimulus is
perceived pleasant with low arousal. Generally, touch is used
simultaneously with other modalities to communicate affective
messages. In the study described in this paper, we explore how
touch is combined with voice over the course of the perception
of EV.

THEORETICAL BASES

PAD: A Dimensional Model of Emotion
One goal of our research is to build a computational model of
bimodal emotion perception. This model could be implemented
in future autonomous agents capable of the recognition and
display of combined voice and touch emotional cues. In
consequence, it is essential to select a theory of emotion that
allows for the implementation of such models. In the literature
related to the study of emotions, we find different psychological
theories (ex., discrete emotion theories, dimensional theories,
and appraisal theories) that are relevant for designing affective
computing systems (Scherer et al., 2010). This diversity of
approaches to emotion reflects the complexity of emotional
phenomena. For our research, the dimensional theories of
emotion appear to be most appropriate. These theories argue that
emotions can be represented or discriminated by their position in
a continuous dimensional space such as the 3D PAD model.

These dimensions corresponds to Pleasure (or valence
measure), Arousal (or level of activation measure), and
Dominance (or control measure) (Bradley, 1994; Cao et al., 2008).
To build our model, we focus on the relationship between the
physical parameters of audio streams and tactile stimulations,
and the corresponding subjective emotional perception. In
dimensional approaches to emotion, emotion is represented
on continuous scales (dimensions), and thus can be mapped
on continuous physical features, like tactile stimulation (e.g.,
airflow rate) or an audio stream (e.g., fundamental frequency,
F0). Manipulating continuous dimensions (compared to emotion
categories) should facilitate the design of the computational
mode for audio–haptic communication.

Information Integration Theory: A
Framework for Modeling the Integration
of Audio and Touch Stimulation
Norman H. Anderson (Zalinski and Anderson, 1989; Anderson,
1996) proposed the IIT to describe and model how a person
evaluates and integrates information from two or more sources
to make an overall judgment. The theory focuses on evaluating
the unobservable psychological processes involved in making
complex judgments.

The IIT was developed around three psychological processes
(or functions): valuation, integration, and action (response
production). The psychological structure of this integration
approach is illustrated in Figure 1. The valuation function V
corresponds to the transformation of the physical stimulus value
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FIGURE 1 | Schematic diagram of the Information Integration Theory, adapted from Anderson (1996).

(For example, 8TSHI) into a subjective value (here 9TSHI)
mapped on the response scale (here from −100 to 100). This
valuation is operated separately for each informational source.
These psychological stimuli are combined by the integration
function I (For example, 9TSHI and 9ASJoy combined into
9TSHI−ASJoy) to yield an implicit psychological response that is
then transformed by the response function R into an observable
response measure (here, EV).

Functional measurement was developed as a part of IIT
to identify the integration function I (Anderson, 1982, 1971;
Zalinski and Anderson, 1989; Oliveira et al., 2005). It uses
a class of algebraic rules (cognitive algebra) to model this
integration function: adding, multiplying, averaging (with equal
or differential weighting), etc. Functional measurement lies in the
experimental study of the cognitive algebra. In other words, it is
the methodology used to investigate the theoretical framework
(an algebraic model of judgment) provided by IIT. Accordingly,
based on the graphical pattern displayed by the empirical data
and the statistical analyses, one can determine the rules displayed
by participants to integrate sources of information to evaluate a
complex phenomenon.

A central distinction in IIT is that between value and weight.
As Anderson (1971) put it: “Each piece of information is
represented by two parameters: a scale value, s, and a weight, w.
The value is the location of the informational stimulus along the
dimension of judgment. The weight represents the psychological
importance of the information. It is important to note that both
s and w will depend on the dimension of judgment as well as

the individual” (p.172). In model terms, valuation comprises the
determinants and the measurement of the w and s parameters,
whereas integration involves the ways in which stimuli are
combined.

IIT has been used to explain emotion recognition of
naturalistic expressions (Oliveira et al., 2007; Courbalay et al.,
2016; Pereira et al., 2016; Silva and Oliveira, 2016). Most of
the studies used realistic virtual human characters allowing
for precise control of facial expression and body posture. It
has been shown that, in static facial expressions, the different
activated pain relevant muscles are integrated visually using
summative-subtractive rules when judging either “expressed
intensity,” “naturalness of the pain expression,” “dosage of
analgesia required to stop pain,” or “dosage of analgesia required,
also accounting for the trustworthiness of the expression”
(Oliveira et al., 2007). In contrast, when combining sources
of information carried by different body parts, such as
facial expression and body posture, averaging seems to be
the predominant integration rule (Courbalay et al., 2016;
Silva and Oliveira, 2016). It is the case when judging the
intensity, valence, or arousal of the combination of face
and body expressing basic emotions (e.g., happiness, anger,
and sadness) or so-called social self-conscious emotions such
as shame and pride (Courbalay et al., 2016). Averaging is
also prevailing when estimating back pain intensity from
the facial expression and body posture of virtual character
performing a trunk flexion–extension movement (Prigent et al.,
2014).
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In the next sections, we explain how we used this theory for
exploring the perception of audio and haptic expressive stimuli.

MATERIALS AND METHODS

Objective
We conducted an experimental study to highlight the integration
processes of air jet tactile stimulation together with voice
expressions over the course of perceiving EV. We focused on
the valence dimension instead of arousal or dominance because
valence has not yet been thoroughly researched but nevertheless
seems promising and important for H–CI.

The experimental protocol was based on the IIT framework.
We presented a set of stimuli to a group of participants and
recorded their rating of EV. The collected data were analyzed
using functional measurements.

Participants
23 participants (18 males and five females aged between 21 and
55 years old) took part in this study. All participants were right-
handed. None of the subjects had neurological or physical injuries
that would affect the sensitivity of the arm or audition. Subjects
gave informed consent prior to testing, and the institutional
internal review board of the laboratory (IRB) approved this study
design.

Experimental Platform
Two types of stimuli were presented to the participants: (1) voice
expressions and (2) air jet tactile stimulations. Voice expressions
consisted of pseudo speech sentences uttered with prosody.
The voices were synthesized and then subjected to a morphing
operation to obtain different levels of prosody. Section “Studied
Conditions and Stimuli” details the methodology to generate the
audio stimuli. The expressions were presented using headphones
(SENNHEISER HD 280 PRO). The tactile stimulation was
presented using the air jet system (Silva and Oliveira, 2016).
This tactile system comprised a rotating air nozzle and airflow
regulator. The air nozzle was actuated with a motor controlled in
position and velocity. The rotation of the nozzle was controlled at
the motor axis. This rotation enabled the diffusion of air along the
arm of the participant (Figure 2). The flow controller accurately
regulated the flow rate of the outlet air jet (MFC Bukert 8711,
up to 50l/min ± 0.02). An air compressor provided sufficient air
pressure to the system (i.e., four bars). The nozzle, mounted on a
motor, was placed inside a box where the participant laid his or
her arm on a support. A software triggered the tactile stimuli and
the audio samples. After each stimulus, participants rated its EV
using a track bar displayed on the screen that was controlled by a
mouse (see Figure 2).

Hypotheses
Based on existing studies evaluating EV of tactile and audio
stimuli (see section “Literature Review”), we formulated several
hypotheses.

H1. Unimodal estimations:

(A) The levels of tactile stimulation are well-discriminated
on the EV dimension.

(B) The levels of audio stimulation are well-discriminated
on the EV dimension.

H2. Bimodal estimations:

(A) Participants base their judgments on both modalities
(weighting each information) to evaluate EV.

(B) Participants give higher importance (greater weight) to
audio stimulation when evaluating valence.

(C) Participants integrate the two modalities according to an
algebraic rule.

Studied Conditions and Stimuli
Unimodal Conditions
Audio stimuli (8AS) consisted of samples of acted speech.
The methodology used for collecting the speech signals was
based on the GEMEP corpus (Bänziger et al., 2012). The
digital samples (32 bit, mono, 44.1 kHz sampling rate) were
recorded with a male adult speaker uttering a pseudo speech
sentence (“nekal ibam soud molen!”). To perform this utterance,
the speaker was provided with a list of short illustrative
descriptions of the meaning of the emotion term and three
scenarios for each of three emotion categories. The studied
emotions consisted of anger (negative EV), joy (positive EV)
and neutrality (no EV). These three categories enable us to
study the perception of positive vs negative emotions. After
the voices were recorded in the studio of the laboratory, we
selected one sample for each of the two emotions, as well as
neutrality. Then, the three selected samples were normalized for
power (RMS). The expressions ranged from 1200 to 1400 ms
duration. To obtain intermediate stimuli levels, voice morphing
was performed using the STRAIGHT programmed in Matlab
(MathWorks) between the neutral expression and the two
emotional expressions. STRAIGHT (Kawahara and Irino, 2005;
Kawahara and Morise, 2011) performs an instantaneous pitch-
adaptive spectral smoothing in each stimulus for separation of
contributions to the voice signal arising from the glottal source
(including F0) versus supralaryngeal filtering (distribution of
spectral peaks, including the first formant, F1). For example,
STRAIGHT has been used to show that averaging voices with
auditory morphing increases vocal attractiveness (Bruckert et al.,
2010). We manually identified time-frequency landmarks in
each stimulus to be put in correspondence across the neutral
and anger voices, and then across the neutral and joy voices.
Morphed stimuli were then generated by resynthesizing based on
the interpolation (linear for time; logarithmic for F0, frequency,
and amplitude) of these time–frequency landmark templates.
Finally, we obtained five voice expressions, ranging from anger
(maximum negative valence = 8AS−100%) to joy (maximum
positive valence = 8AS+100%), corresponding to 8AS−100%,
8AS−50%, 8AS0%, 8AS+50%, and 8AS+100%. We conducted a
preliminary experiment to examine how the generated voice
stimuli were perceived among a group of 15 adult participants.
Each stimulus was repeated 6 times and presented in a random
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FIGURE 2 | Experimental platform. Participants perceived tactile stimuli on the forearm with the air jet system and audio stimuli (voice expressions) with headphones.

order. After each stimulus, participants were asked to evaluate
the emotion valence using a track-bar ranging from very
positive to very negative. We performed a repeated-measures
analysis of variance (ANOVA) on participants’ mean rating,
with a significance threshold set at p < 0.05. We found
a significant difference between the levels of voice stimuli
[F(4,56) = 88.93, ε = 0.40, p < 0.001, and η2

p = 0.86]. Post
hoc tests (with a Bonferroni corrected p < 0.05/10) revealed
that each level was significantly different from each other level.
More precisely, valence ratings increased linearly with audio
levels [F(1,14) = 117.50, p < 0.001]. This linear trend, showed
that perceived EV follows qualitatively and proportionally the
morphing continuum of the 8AS (EV = 0.58 ∗ 8AS – 0.14, and
R2 = 0.98).

Tactile stimuli (8TS) consisted of air jet tactile stimulation
applied on the forearm. The controlled parameters of the tactile
stimulation were i) the levels of air jet flow rate, and ii) the levels
of movement speed of the rotating nozzle. Three types of tactile
stimuli were presented to participants: (1) a tactile stimulus of a
high intensity level (8TSHI), corresponding to a high flow rate
(50 nl/min corresponding to blowing force of 0.682N) together
with a high movement velocity (12 rad/s), (2) a tactile stimulus of
a medium intensity level (8TSME), corresponding to a medium
flow rate (25 nl/min corresponding to blowing force of 0.341)
with a null movement velocity, and (3) a tactile stimulus of a
low intensity level (8TSLO), corresponding to a low flow rate
(7.5 nl/min corresponding to blowing force of 0.172N) with a

slow movement velocity (0.6 rad/s). These parameters of the air
jet were chosen according to a previous study that related the
air jet tactile features and the perceived valence (Tsalamlal et al.,
2013). This previous study (Tsalamlal et al., 2013) showed that
8TSHI was perceived with a negative valence, 8TSME was rated
as neutral, and 8TSLO was rated positively. The number of levels
of tactile stimuli (3 levels) is different from the number levels of
audio stimuli (5 levels) because intermediate tactile levels were
not clearly discriminated by participants.

Bimodal Condition
Audio-tactile stimuli (8ASTS) consisted of audio stimuli (8AS)
presented simultaneously with tactile stimuli (8TS). Each audio
stimulus type was combined with all of the tactile stimulus types:
five audio expressions ∗ three tactile levels.

Measures
After each stimulus, participants evaluated EV on a continuous
scale (a track bar) ranging from very negative (−100) to very
positive (+100) (see Figure 3).

Procedure
The participants were seated in front of a desk with the tactile
device, a screen, and a computer mouse. Then, the headphone
was set. A practice session of six stimuli was completed to ensure
that participants understood the course of the experiment. In this
session, the extreme values of the different stimuli were displayed.
Participants had to maintain their left forearm inside the box

FIGURE 3 | Experimental protocol. Participants perceived stimuli during 3s, then they evaluated Ev on a continuous scale with a track bar.
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where the tactile device was produced (Figure 2). Participants
were instructed to keep the same body position during the whole
experiment.

The experiment comprised six blocks of stimuli. The unimodal
conditions consisted of 30 8AS stimuli (five levels ∗ six
repetitions) and 18 8TS stimuli (three levels ∗ six repetitions).
The bimodal conditions consisted of 90 8ASTS stimuli (five
audio ∗ three haptic ∗ six repetitions). Participants performed a
total of 138 trials (without including the practice session trials).
Each trial lasted 3 s. In bimodal stimuli, the tactile stimulation
lasted 3 s, whereas the audio stream started 1 s after the tactile
stimuli onset, with a duration ranging from 1200 to 1400 ms. The
sequence of bimodal and unimodal blocks was ordered randomly
across participants. Participants used their right arm to indicate
their responses with the mouse. After each stimulus, participants
moved the track bar on the screen with the mouse to provide their
rating of EV.

RESULTS

Functional measurement analyses were performed to identify the
integration process used by participants to combine 8AS and
8TS. This approach was based on both the visual inspection
of graphical patterns (called integration graphs) and statistical
analyses. First, we highlighted the average response of the
group of participants. Then, we examined the responses on an
individual level to the different bimodal combination strategies
displayed by each participant.

Global Analyses
Integration Graphs
Figure 4 provides a classical illustration of the data. The mean
EV rating is expressed as a function of each stimulus category
in terms of physical scale (8). In contrast, Figure 5 illustrates
the integration graph of the same data, where the mean EV

FIGURE 4 | Integration graphs of mean participants’ EV responses expressed as a function of the physical scale (8) for each stimulus category.

FIGURE 5 | Integration graphs of mean participants’ EV responses expressed as a function of their subjective (9) scaling for each stimulus category. 9-values
correspond to marginal mean of EV ratings according each 8 level.

Frontiers in Psychology | www.frontiersin.org 8 October 2018 | Volume 9 | Article 1966

https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-09-01966 October 10, 2018 Time: 14:47 # 9

Tsalamlal et al. Modeling Emotional Valence Integration

rating is expressed as a function of the subjective valence
scaling (9AS) of the audio-physical stimuli (8AS) and of the
different levels of tactile stimuli 8TS. Subjective values (9) are
approximated by the marginal means of the responses given by
participants for each physical 8 condition (Anderson, 1996),
p.73). Accordingly, each coordinate along the 9AS−100% to
9AS+100% abscissa of Figure 5 is the functional estimate of the
physical stimulus values ranging from 8AS−100% to 8AS+100%
in Figure 4. For example, for extreme negative audio stimuli
(8AS−100%), participants estimated EV as follows: −60 when
presented alone (8 no-TS), −70 when presented with high
intensity tactile stimulation (8TSHI),−52 with medium intensity
tactile stimulation (8TSME) and −40.4 with low intensity tactile
stimulation (8TSLO) (see Figure 4: Left panel). Accordingly, the
corresponding subjective value of 9AS−100% (i.e., 9min) was
−55, computed as the marginal mean of −60, −40.4, −51.8,
and −70 (see Figure 5: Left panel). Data and computation of
all our factorial plots are available from https://1drv.ms/f/s!Ar7_
iO4FFoZMmliQTjv-OejI6K91.

Statistical Analyses
To support observations made using integration graphs, the
data were analyzed using classical statistics. We performed
ANOVAs followed by post hoc pairwise (Bonferroni corrected)
comparisons to study the effect of each experimental factor
(audio and tactile stimuli) on the perception of valence. The
significance threshold was set at p < 0.05. Moreover, we
report effect size measures such as η2

p for ANOVAs, R2 for
linear trends, and Cohen’s d (with 95% confidence interval) for
differences between independent or paired samples. Finally, in
order to reduce Type I errors (due to violations of the sphericity
assumption), we applied Greenhouse-Geisser corrections to the
ANOVA degrees of freedom, and provide the corresponding
epsilon value.

Unimodal stimuli
Separate repeated-measures ANOVAs were performed on the
participants’ EV responses for the audio and tactile unimodal
blocks. The following within-subjects’ factors were considered
for analysis: unimodal TS with three levels (8TSHI , 8TSME, and
8TSLO) and unimodal AS with five levels (8AS−100%, 8AS−50%,
8AS0%, 8AS+50%, and 8AS+100%). For unimodal TS, the results
showed significant differences for EV between the three different
TS [F(2,44) = 101.41, ε = 0.64, p < 0.001, and η2

p = 0.82].
8TSHI were perceived as negative (i.e., unpleasant) (M =−53.45,
SD = 30.35); 8TSME were perceived as neutral (M = −2.23,
SD = 12.54); and 8TSLO were perceived as positive (i.e., pleasant)
(M = 42.60, SD = 18.61). Post hoc analyses (with Bonferroni
corrected alpha = 0.05/3) revealed that all pairwise comparisons
were statistically significant (all ps < 0.001). These results are
consistent with the above-mentioned hypothesis, H1.A.

For unimodal 8AS, the results showed a main effect of AS
[F(4,88) = 123.48, ε = 0.38, p < 0.001, and η2

p = 0.85] due to a
significant linear increase in EV with the five different levels of
AS [F(1,22) = 161.94, p < 0.001, and R2 = 0.98]. Post hoc tests
(with Bonferroni corrected alpha = 0.05/10) indicated that all
pairwise comparisons of EV ratings for the different intensities

of audio stimulation were statistically significantly different from
each other (all ps < 0.001). These results are consistent with the
above-mentioned hypothesis, H1.B., and the preliminary study
(see section “Studied Conditions and Stimuli”).

Functional measurement plots offer direct access to the
internal scale range corresponding to the valuation process of
IIT. This scale range (i.e., the difference between 9min and
9max) quantifies the effect size of each source of information
(AS and TS) on the estimation of the EV of the multimodal
stimulus. Figure 5 illustrates the fact that the overall effect of AS
(9AS+100% minus 9AS−100%) on EV was much greater than that
the effect of TS (9TSHI – 9TSLO). Due to individual differences
in the modality effect, the relative importance of each modality
when making EV judgments will be examined in the next section
(see section “Individual Analyses”).

Bimodal stimuli
The pattern in the integration graph is a direct picture of
the experimental effects. Therefore, the rule by which two
modalities are integrated to form the one EV response can
be diagnosed from those factorial plots (Anderson, 1996). The
interaction patterns displayed in Figures 4, 5 are consistent
with an averaging rule observed for combining both AS and
TS. According to IIT, averaging is suggested by parallel lines
for bimodal conditions, together with a crossover line for
the unimodal condition (Anderson, 1982, 1996; Zalinski and
Anderson, 1989). Parallelism pattern supports an adding-type
rule (whether adding or averaging), as if the participant assigns
values to each modality and adds them to determine EV. Under
an adding hypothesis, the information added by a given modality
should have the same directional effect at all the line points.
To paraphrase (Zalinski and Anderson, 1989; Anderson, 1996),
the solid lines of Figures 4, 5 would lie above the dashed line,
if the added information was positive; whereas the solid lines
would lie above the dashed line, if the added information was
negative. Therefore, the adding hypothesis does not account for
the crossover of the dashed line.

However, a straightforward account of the crossover is
provided by the averaging hypothesis. The dashed lines of
Figures 4, 5 indicate that information of each modality alone
(unimodal stimuli) is near neutral in net value, corresponding
to the midpoint of the response scale (i.e., close to EV = 0).
Therefore, if this information was averaged, the points of the solid
lines would be pulled in toward the center of the graph. As a
consequence, it would average up the low levels of each modality
and average down the high levels, thereby creating the dashed line
crossover (Zalinski and Anderson, 1989; Anderson, 1996).

In order to provide a first statistical support to the averaging
hypothesis, we performed two-way repeated-measures ANOVAs
on participants’ ratings of the stimuli, with two within-subjects’
factors (TS and AS) considered for the analysis. However, the
number of levels of each factor varied with the interaction graph
under examination. The ANOVA on data from Figure 4 Left
panel considered AS with five levels (−100%, −50%, 0%,+50%,
and +100%), and TS with four levels (HI, ME, LO, and
no-TS). The results showed a significant main effect of AS
[F(4,88) = 107.51, ε = 0.39, p < 0.001, and η2

p = 0.83] and
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TS [F(3,66) = 31.34, ε = 0.60, p < 0.001, and η2
p = 0.59], and

an interaction between both factors [F(12, 264) = 4, ε = 0.34,
p < 0.001, and η2

p = 0.15] on the perceived EV. The ANOVA
on data from Figure 4 Right panel considered TS with three
levels (HI, ME, and LO), and AS with six levels (−100%, −50%,
0%,+50%,+100%, and no-AS). The results showed a significant
main effect of TS [F(2,44) = 75.38, ε = 0.66, p < 0.001, and
η2

p = 0.77] and AS [F(5,110) = 83.76, ε = 0.36, p < 0.001,
and η2

p = 0.79], and an interaction between both factors
[F(10,120) = 23.57, ε = 0.35, p < 0.001, and η2

p = 0.52] on the
perceived EV. Finally, in order to test the parallelism hypothesis,
a last ANOVA considered AS with five levels (from −100%
to+100%) and TS with three levels (HI, ME, and LO), i.e.,
without the no-AS and the no-TS levels. The results showed
that the main effects remained significant [TS: F(2,44) = 38.20,
ε = 0.65, p < 0.001, and η2

p = 0.63; AS: F(4,88) = 91.68, ε = 0.39,
p < 0.001, and η2

p = 0.81], and that the interaction turned out
non-significant [F(8,176) = 2.51, ε = 0.38, p = 0.068, n.s., and
η2

p = 0.10], thereby supporting the parallelism of the bimodal
lines in Figures 4, 5.

Discussion
For unimodal conditions, participants were able to discriminate
between different levels of EV according to the various levels
of AS and TS. The validation of H1.A suggests that the air
jet stimulation communicates different levels of valence. The
controlled stimulation parameters of the air jet stimulation
(i.e., air flow rate and nozzle movement velocity) influence
participant’s perception of EV. This result is consistent with
our previous study (Tsalamlal et al., 2013). The validation of
H1.B suggests that the morphing operation of voice was efficient
since it produces distinct intermediate levels of EV. Based
on the literature, the discrimination of natural prosodic voice
stimuli was predictable (Bänziger et al., 2009, 2012). However,
our ability to discriminate morphed levels was not obvious
a priori.

Integration graphs, together with the statistical analyses,
highlight the fact that participants based their judgment on
both voice expression and tactile stimulation to evaluate EV.
The overall pattern of factorial plots suggests that the main
integration rule was averaging. Moreover, the results showed that
the internal (subjective) scale for voice expression was larger
than was the tactile stimulation scale. This difference may be
explained by the quality of the expressions. The voice expressions
that we designed are close to natural expressions (except that
they did not correspond to syntactically and semantically correct
sentences), whereas air jet stimulation might be perceived as
being quite different from everyday haptic stimulation. Still, our
results suggest that air jet stimulation provides an effective means
of mediating emotion communication.

Individual Analyses
The global analyses described above suggest that participants
used an averaging rule to combine incoming information from
both AS and TS. However, the global averaging integration
of the two modalities might result in different integration
rules at the individual level. We examined factorial plots and

performed ANOVAs at the individual level to study individual
differences in the multimodal integration process. First, we
performed a clustering operation to classify participants into
different groups that display similar integration patterns within-
group, but also include differences between groups. Then, we
conducted functional measurement analyses on each group to
examine its integration process. All the program and data files
are available from https://1drv.ms/f/s!Ar7_iO4FFoZMmliQTjv-
OejI6K91, together with an Appendix explaining how the results
were obtained.

Cluster Analysis
To examine if different participants displayed different modes
of integration (tested algebraic rules: adding, averaging and
multiplying), we performed a clustering analysis on the group of
participants on the basis of their response patterns. In the context
of IIT, previous research (Hofmans and Mullet, 2013) proposed
the use of an agglomerative hierarchical clustering procedure,
together with the centroid agglomerative algorithm (distance
between two clusters is defined as the difference between the
centroids, i.e., the cluster averages). This algorithm includes
all data points and is less affected by outliers than are other
hierarchical methods. After visual inspection of the individual
graphical analysis, we opted for a three-cluster solution. Two
clusters contained more than one participant. Cluster 1 included
17 participants, cluster 2 included five participants.

Integration Graphs
Figures 6, 7 represent integration graphs of participants’ mean
EV from Clusters 1 and 2, respectively, as a function of their
subjective (9) scaling for each stimulus category. For the sake
of simplicity, we did not display participants’ mean EV as a
function of the physical scale (8) for each stimulus category.
The factorial patterns of the first cluster closely resemble those
of Figure 4, with near-parallel lines for bimodal rating, and a
crossover dashed line for the unimodal condition (see Figure 6).
Cluster 1 included 80% of the participants. The second cluster
shows different response patterns (see Figure 7). In this cluster,
the positive levels of AS stimuli within each TS level are not
well discriminated, as illustrated in Figure 7 Left panel by the
bundled points along the TS lines, close to the midpoint of the
response scale. Moreover, in contrast to Cluster 1, the subjective
scaling range for each modality (9max minus 9min) is rather
similar between AS and TS (just slightly greater for TS). Although
the pattern displayed by Cluster 1 is a signature of an averaging
integration rule, this is less obvious for Cluster 2, especially
from visual inspection of Figure 7 Right panel showing no
crossover line for unimodal TS stimuli (no-AS level). To support
the integration rules deduced from the graphical patterns, we
conducted ANOVAs on each cluster, with a significance threshold
set at p < 0.05.

Statistical Analyses
We followed the same logic as the statistical analyses for bimodal
stimuli on the overall data.

Cluster 1: the ANOVA on the data displayed as a function
9AS (see Figure 6: Left panel) revealed main effects of AS
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FIGURE 6 | Mean integration graphs of Cluster 1 participants as a function of their subjective (9) scaling for each stimulus category.

FIGURE 7 | Mean integration graphs of Cluster 2 participants as a function of their subjective (9) scaling for each stimulus category.

[F(4,64) = 190.71, ε = 0.64, p < 0.001, and η2
p = 0.92] and TS

[F(3,48) = 22.16, ε = 0.69, p < 0.001, and η2
p = 0.58], as well as

an interaction between both factors on perceived valence [F(12,
192) = 3.68, ε = 0.32, p = 0.011, and η2

p = 0.19]. The ANOVA
on the EV data displayed as a function 9TS (see Figure 6: Right
panel) revealed a significant main effect of TS [F(2,32) = 87.09,
ε = 0.59, p < 0.001, and η2

p = 0.85] and AS [F(5,80) = 155.04,
ε = 0.59, p < 0.001, and η2

p = 0.91], and an interaction between
both factors [F(10, 160) = 31.25, ε = 0.41, p < 0.001, and
η2

p = 0.66]. Finally, in order to test the parallelism hypothesis, a
last ANOVA considered all the levels of both factors (AS and TS)
but the unimodal stimuli (no-AS and no-TS). The results showed
that the main effects remained significant [TS: F(2,32) = 34.76,
ε = 0.58, p < 0.001, and η2

p = 0.68; AS: F(4,64) = 160.92, ε = 0.68,
p < 0.001, and η2

p = 0.91], and that the interaction turned
out non-significant [F(8,128) = 2.38, ε = 0.34, p = 0.088, n.s.,

and η2
p = 0.13], thereby supporting the near-parallelism of the

bimodal lines in Figure 6.
Cluster 2: the ANOVA on the data displayed as a function

9AS (see Figure 7: Left panel) revealed main effects of the two
factors AS [F(4,16) = 50.95, ε = 0.63, p < 0.0001, and η2

p = 0.93]
and TS [F(3,12) = 16.35, ε = 0.42, p = 0.008, and η2

p = 0.80],
as well as a non-significant interaction between both factors on
perceived valence [F(12,48) = 2.97, ε = 0.19, and p = 0.097,
n.s.] although its effect size remained substantial (η2

p = 0.43).
The ANOVA on the data displayed as a function 9TS (see
Figure 7: Right panel) revealed a significant main effect of TS
[F(2,8) = 13.41, ε = 0.55, p = 0.018, and η2

p = 0.77] and AS
[F(5,20) = 28.63, ε = 0.55, p < 0.001, and η2

p = 0.88], and a
non-significant interaction between both factors [F(10,40) = 1.07,
ε = 0.18, p = 0.38, n.s., and η2

p = 0.21]. Finally, in order to
test the parallelism hypothesis, a last ANOVA considered all the
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levels of both factors (AS and TS) but the unimodal stimuli.
The results showed that the main effects remained significant
[TS: F(2,8) = 16.91, ε = 0.59, p < 0.01, and η2

p = 0.81; AS:
F(4,16) = 53.62, ε = 0.63, p < 0.001, and η2

p = 0.93], and
that the interaction remained non-significant [F(8,32) = 2.06,
ε = 0.26, p = 0.186, n.s., and η2

p = 0.34], thereby supporting the
near-parallelism of the bimodal lines in Figure 7.

Integration graphs, together with the statistical analyses,
indicate that the two groups of participants based their judgment
on both voice expressions and tactile stimulations to evaluate
EV. However, while there is clear evidence that participants
from Cluster 1 integrated both sources of information using
an averaging rule, it is less clear cut for Cluster 2 besides
the no-TS crossover line for the data displayed as a function
9AS (see Figure 7: Left panel). Therefore, we evaluated the
goodness of fit of the averaging model to the data using dedicated
software.

Model Fitting
The results showed that the integrated response 9R is a
consequence of an averaging rule type (Equation 1). The
averaging model states that 9R is a weighted sum of single
modality values divided by the sum of the weights. If the levels
of a factor do not have the same weight, then this factor is called
Differentially Weighted and the integration rule becomes non-
linear. If all of the levels of a factor have the same weight (within
AS or TS), then this factor is called Equally Weighted. However,
these weights do not need to be the same for each factor. The
sum of weights in the denominator has the same value in each
cell of the design and can be absorbed into an arbitrary scale unit.
Accordingly, this model has a linear form.

9R =
w09s0 +

∑
wi9si

w0 +
∑

wi

Where:
9Si: are the scale values of a single stimulus variable.
ωi: denotes the weight of each value.
The initial state of the process is represented by ω0 and 9S0.

The initial state enables the model to take into account the set-
size effect in which pieces of added information of equal values
can produce a more extreme response. After the identification
of the averaging rule based on functional measurement, it was
necessary to verify that the model presented a good fit to the
data. We used the R-Average software program (Vidotto et al.,
2010), which independently estimates the weight and scale values
of the stimuli. Estimation was performed on a single-subject
basis, resting on the equal weight averaging model (EAM).
Goodness-of-fit was evaluated using separate repeated measures
ANOVAs over the residuals left by the model tested for each
cluster:

• Cluster 1: The ANOVA on the residuals of the data
displayed as a function 9AS (see Figure 6: Left panel)
revealed that the main effects of TS and AS were canceled
out (respectively, F(3,48) < 1, n.s., and F(4,64) < 1, n.s.), as
well as the TS ∗ AS interaction [F(12,192) = 2.06, ε = 0.32,
p = 0.10, n.s., and η2

p = 0.11]. Similarly, the ANOVA on

the residuals of the data displayed as a function 9TS (see
Figure 6 Right panel) revealed that the main effects of TS
and AS were canceled out (respectively, F(2,32) < 1, n.s.,
and F(5,80) < 1, n.s.), as well as the TS ∗ AS interaction
[F(10,160) = 1.54, ε = 0.41, p = 0.13, n.s., and η2

p = 0.09].
• Cluster 2: The ANOVA on the residuals of the data

displayed as a function 9AS (see Figure 7: Left panel)
revealed that the main effects of TS and AS were canceled
out in the residuals (respectively, F(3,12) < 1, n.s., and
F(4,16) < 1, n.s.), as well as the TS ∗ AS interaction
[F(12,48) = 1.67, ε = 0.19, p = 0.24, n.s., and η2

p = 0.29].
Similarly, The ANOVA on the residuals of the data
displayed as a function 9TS (see Figure 7: Right panel)
revealed that the main effects of TS and AS were canceled
out (respectively, F(2,8) < 1, n.s., and F(5,20) < 1, n.s.), as
well as the TS ∗ AS interaction [F(10,40) < 1, n.s.].

These results are consistent with our hypothesis H2.C that
participants integrated both modalities according to an algebraic
rule, namely the equal weight averaging rule.

Measure of Importance of the Modalities
Figure 8 presents the average estimated weights. A first analysis
showed that each of the four mean values was significantly
different from zero, whether for Cluster 1 [TS: t(16) = 5.61,
p < 0.001, Cohen’s d = 1.36 with 95%CI = (0.68, 2.02); AS:
t(16) = 9.47, p < 0.001, Cohen’s d = 2.30 with 95%CI = (1.38,
3.21)], or for Cluster 2 [TS: t(4) = 2.55, p = 0.021, Cohen’s
d = 1.64 with 95%CI = (0.21, 3.01); AS: t(4) = 3.37, p = 0.0039,
Cohen’s d = 2.68 with 95%CI = (0.69, 4.67)]. Given the robustness
of these differences (all ds > 0.80), we can confidently assume
that participants based their judgments on both modalities to
evaluate EV, thereby validating our hypothesis H2.A. Moreover,
none of Cohen’s d confidence intervals included 0.20, suggesting
that the contribution of each modality is not small in the parent
population.

Weights are obtained on a ratio scale (Anderson, 1982),
thus allowing for direct comparisons within the groups. For
the participants from Cluster 1, the weight of voice stimuli
was higher than the weight of the tactile stimuli [t(16) = 7.42,
p < 0.001, Cohen’s d = 1.80 with 95%CI = (1.01, 2.57)]. For
Cluster 2, the weights of the voice and tactile stimuli were not
significantly different [t(4) = 0.36, p = 0.74, n.s.]. However,

FIGURE 8 | Mean individual weights (±SD) for TS and AS in the averaging
model fit of each cluster.
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the non-significant finding in Cluster 2 does not exclude the
possibility that a difference might exist in the parent population
that was not detectable given the small number of participants
in Cluster 2. The observed effect in Cluster 2 is a slightly
greater weight in favor to tactile stimuli (0.17 unit of weight)
over voice stimulation. In comparison, Cluster 1 shows a 18
times greater difference (2.89 units of weight), in favor of voice
stimulation, along the lines of hypothesis H2.B. Therefore, we
conducted fiducial Bayesian analyses (Lecoutre and Poitevineau,
2014) on the data of Cluster 2 in order to estimate in the
parent population the magnitude of the effect, if any. Results
indicated that there is a 95% probability (or guarantee) that,
in the parent population, the effect observed in Cluster 2 is
smaller than 1.35 unit of weight in absolute value, i.e., whether
tactile>voice, or voice>tactile. In order words, if there is a greater
weight in favor to tactile stimuli over voice stimulation in the
parent population, at best, it will be about 8 times greater than
what we observed in Cluster 2. In contrast, fiducial Bayesian
analyses on the data of Cluster 1 showed that there is a 95%
guarantee that, in the parent population, the effect observed
in Cluster 1 is greater than 2.21 units of weight. In other
words, if there are individuals in the parent population giving
more weight to tactile than voice stimulation, this effect will
be much smaller in magnitude than that for voice over tactile
stimulation.

To make way for comparisons across groups, the values were
normalized per subject to their total sum (including w0, a weight
parameter of the averaging model not reported here). Values
represent the average relative importance (varying between 0
and 1) of each level in each factor. Overall, touch had a greater
importance for Cluster 2 than for Cluster 1 [t(20) = 3.46,
p = 0.003, Cohen’s d = 1.76 with 95%CI = (0.61, 2.88)]. Overall,
the importance of voice was greater for Cluster 1 than for Cluster
2 [t(20) = 5.40, p < 0.001, Cohen’s d = 2.75 with 95%CI = (1.42,
4.03)].

Finally, all the significant differences reported
in this subsection passed the Bonferroni corrected
alpha = 0.05/8 = 0.0063, but the mean TS weight for Cluster 2
compared to zero. However, the fact that its Cohen’s d confidence
intervals did not include 0.20 suggests that the contribution
of this modality cannot be deemed negligible in the parent
population.

Discussion
Both the visual inspection of factorial plots and the clustering
analysis enabled to identify the two groups of participants that
accounted for all the individual integration patterns, except
for one participant. The first group was composed of 4/5 of
the participants, whereas the second group involved 1/5 of
the participants. Functional analyses showed that these groups
presented different types of averaging patterns (Figure 8).
A dedicated model fitting software showed that EAM was the best
fitted model for both groups. Further analysis of the residuals
left by the model confirmed the goodness of fit. For each
group, the weights of each audio and tactile modality were
calculated. The two differed in the evolution of EV according
to AS and TS. The first group gave higher importance to the

audio modality when combining voice expression and tactile
stimulation, whereas the second group gave similar importance
to both modalities.

GENERAL DISCUSSION

Most studies about multimodal perception have focused on the
investigation of audio and visual signals. The haptic cues have
received less attention. This lack of interest may be due to two
main factors. First, the design of haptic stimulation suitable
for emotion communication is very challenging. Second, there
are methodological obstacles in the study of touch such as the
difficulty to observe and analyze the social haptic interaction (ex.,
intrusiveness of sensors), and the difficulty to elicit spontaneous
affective haptic behavior during classical experiments (i.e.,
controlled experiment, adherence to the context). Furthermore,
most studies that address touch affective communication have
considered this modality alone.

We proposed the use of an air jet tactile stimulation for
conveying affective touch stimuli. This stimulation strategy
does not require any physical contact between the user and
mechanical structures. It also permits the generation of low
amplitude forces that might be suitable to communicate affective
features.

The present paper presented an experimental study that aimed
at highlighting how air jet tactile stimulation is combined with
audio cues when estimating EV. Three types of stimuli were
presented to participants (i.e., vocal expressions of emotion,
tactile stimulations, and combined voice and tactile stimuli).
The responses of participants were analyzed using functional
measurements. The results revealed that both groups of
participants effectively discriminated EV from audio and tactile
stimuli.

For unimodal tactile stimulation, low intensity TS were
perceived more positively than medium and high intensity
stimuli. High intensity TS were perceived more negatively than
medium and low intensity stimuli. These results are consistent
with previous research investigating the relationships between
tactile physical features and the evaluation of valence (Tsalamlal
et al., 2013). Along the same lines, researchers have demonstrated
the existence of nerve endings located in the skin that effectively
convey the sensory signal to the hedonic nervous system that
processes the feelings of pleasure directly produce hedonic values
(Hertenstein, 2002). Regarding unimodal audio stimulation,
the anger expression was rated negatively, and expressions of
joy were rated positively. Generally, the rating of valence was
proportional to the morphing level of the expression. These
results underline the role of vocal expression in communicating
emotions (Juslin and Laukka, 2003). The STRAIGHT program
was definitely a useful tool for performing vocal morphing to
produce intermediate emotional levels.

Regarding bimodal stimuli, the functional measurement
approach revealed that participants combined voice and
touch stimulations with an equal weight averaging rule.
Cluster analyses revealed an averaging pattern. Most of
the participants (80%) presented linear evolution of EV
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ratings according to the audio stimuli. Some participants
presented curved evolution of EV ratings according to the audio
stimuli. The first group showed a predominance of the audio
channel over the tactile stimulation for estimating EV. The
second group gave similar importance to the two modalities since
not all audio stimuli were discriminated. Future research should
address several issues. Integration of audio-tactile expressions
coming from the same source (e.g., using haptic expressions
of emotion generated by users (Gaffary et al., 2013; Bailenson
et al., 2007)) should be investigated. In addition, studies should
highlight individual differences in the integration of the different
modalities over the course of EV perception. Finally, the effects
of gender, age, and personality traits on sensitivity to social touch
and social voice (Kreiman et al., 1992; Gallace and Spence, 2010)
should be examined.

CONCLUSION

Considering all the results of our study, we conclude that
touch conveyed by haptic devices should play a major role
in affective communication. Even if our tactile stimulation
technique (i.e., tactile stimulation using air jet) is unusual, our
results revealed that it could effectively communicate EV. Using
two channels simultaneously changed the perception of emotions
compared to a unimodal channel of communication. Obviously,
in multimodal social interactions the interpretation of affect is
modulated by the context in which the stimulations (whether
visual, audio, and/or tactile) take place, and the familiarity or
relationship with person, or artificial agent, may it be a virtual
human (Oker et al., 2015) or humanoid robot (Artstein et al.,
2016). Therefore, future research is needed to evaluate to what
extent context might override subtle differences in stimulus
qualities.

This study highlighted the usefulness of formal algebraic
models for representing the processes underlying multimodal
emotional information integration. Such results might be useful
for designing and integrating tactile stimulation in multimodal
emotional communication platforms (for example for long
distance mediated communication or an expressive virtual agent
(Courgeon and Clavel, 2013). Our study may also contribute
to the design a computational model that will allow for
automatic recognition and display of affective cues through touch
simultaneously conveyed with other modalities.

ETHICS STATEMENT

Research ethics committee of Université Paris-Saclay.

AUTHOR CONTRIBUTIONS

YT contributed to global theoretical framework, implementation
of the platform, user study, data analysis, state of the art. M-AA
contributed to theoretical framework on Information Integration
Theory (IIT), data modeling with IIT, discussion of results, state
of the art. J-CM contributed to affective computing background,
recommendation of study design (protocol, measures, audio
stimuli design, etc.) state of the art. MA contributed to haptic
perception background, recommendations for study design
(hardware recommendations, tactile stimuli design, etc.) state of
the art.

FUNDING

YT received a Ph.D. grant from RTRA Digiteo.

REFERENCES
Ackerley, R., Eriksson, E., and Wessberg, J. (2013). Ultra-late EEG potential evoked

by preferential activation of unmyelinated tactile afferents in human hairy skin.
Neurosci. Lett. 535, 62–66. doi: 10.1016/j.neulet.2013.01.004

Adolphs, R. (2002). Recognizing emotion from facial expressions: psychological
and neurological mechanisms. Behav. Cogn. Neurosci. Rev. 1, 21–62. doi: 10.
1177/1534582302001001003

Alhalabi Osama, M., and Susumu, S. (2001). Tele-handshake: a cooperative shared
haptic virtual environment. Eurohaptics 2001, 60–64.

Ammi, M., Demulier, V., Caillou, S., Gaffary, Y., Tsalamlal, Y., Martin, J.-C.,
et al. (2015). “Haptic human-robot affective interaction in a handshaking social
protocol,” in Proceedings of the IEEE Human-Robot Interaction Conference,
Portland, OR.

Anderson, H. (1996). A Functional Theory of Cognition. London: Psychology Press.
Anderson, N. H. (1971). Integration theory and attitude change. Psychol. Rev. 78,

171–206. doi: 10.1037/h0030834
Anderson, N. H. (1981). Foundations of Information Integration Theory. New York,

NY: Academic Press.
Anderson, N. H. (1982). Methods of Information Integration Theory. New York:

Academic Press .
App, B., McIntosh, D. N., Reed, C. L., and Hertenstein, M. J. (2011). Nonverbal

channel use in communication of emotion: how may depend on why. Emotion
11, 603–617. doi: 10.1037/a0023164

Artstein, R., Traum, D., Boberg, J., Gainer, A., Gratch, J., Johnson, E., et al.
(2016). “Niki and Julie: a robot and virtual human for studying multimodal
social interaction,” in Proceedings of the 18th ACM International Conference on
Multimodal Interaction - ICMI 2016, Boulder.

Avraham, G., Nisky, I., Fernandes, H. L., Acuna, D. E., Kording, K. P., Loeb,
G. E., et al. (2012). Toward perceiving robots as humans: three handshake
models face the turing-like handshake test. IEEE Trans. Haptics 5, 196–207.
doi: 10.1109/TOH.2012.16

Bailenson, J. N., Yee, N., Brave, S., Merget, D., and Koslow, D. (2007). Virtual
interpersonal touch: expressing and recognizing emotions through haptic
devices. Hum. Comp. Interact. 22, 325–353.

Bänziger, T., Grandjean, D., and Scherer, K. R. (2009). Emotion recognition from
expressions in face, voice, and body: the Multimodal Emotion Recognition Test
(MERT). Emotion 9, 691–704. doi: 10.1037/a0017088

Bänziger, T., Mortillaro, M., and Scherer, K. R. (2012). Introducing
the Geneva multimodal expression corpus for experimental research
on emotion perception. Emotion 12, 1161–1179. doi: 10.1037/a002
5827

Bickmore, T. W., Fernando, R., Ring, L., and Schulman, D. (2010). Empathic touch
by relational agents. Affect. Comput. IEEE Trans. 1, 60–71. doi: 10.1109/T-
AFFC.2010.4

Bradley, M. (1994). Measuring emotion: the self-assessment manikin and the
semantic differential. J. Behav. Ther. Exp. Psychiatry 25, 49–59. doi: 10.1016/
0005-7916(94)90063-9

Frontiers in Psychology | www.frontiersin.org 14 October 2018 | Volume 9 | Article 1966

https://doi.org/10.1016/j.neulet.2013.01.004
https://doi.org/10.1177/1534582302001001003
https://doi.org/10.1177/1534582302001001003
https://doi.org/10.1037/h0030834
https://doi.org/10.1037/a0023164
https://doi.org/10.1109/TOH.2012.16
https://doi.org/10.1037/a0017088
https://doi.org/10.1037/a0025827
https://doi.org/10.1037/a0025827
https://doi.org/10.1109/T-AFFC.2010.4
https://doi.org/10.1109/T-AFFC.2010.4
https://doi.org/10.1016/0005-7916(94)90063-9
https://doi.org/10.1016/0005-7916(94)90063-9
https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-09-01966 October 10, 2018 Time: 14:47 # 15

Tsalamlal et al. Modeling Emotional Valence Integration

Bruckert, L., Bestelmeyer, P., Latinus, M., Rouger, J., Charest, I., Rousselet, G. A.,
et al. (2010). Vocal attractiveness increases by averaging. Curr. Biol. 20, 116–120.
doi: 10.1016/j.cub.2009.11.034

Callaway, C., and Sima’an, K. (2006). Wired for speech: how voice activates and
advances the human-computer relationship. Comput. Linguist. 32, 451–452.
doi: 10.1162/coli.2006.32.3.451

Campanella, S., and Belin, P. (2007). Integrating face and voice in person
perception. Trends Cogn. Sci. 11, 535–543. doi: 10.1016/j.tics.2007.
10.001

Cao, J., Wang, H., Hu, P., and Miao, J. (2008). “PAD model based facial expression
analysis,” in Advances in Visual Computing SE, ed. G. Bebis (Berlin: Springer),
450–459.

Carroll, J. M., and Russell, J. A. (1996). Do facial expressions signal specific
emotions? Judging emotion from the face in context. J. Pers. Soc. Psychol. 70,
205–218. doi: 10.1037/0022-3514.70.2.205

Cha, J., Eid, M., Rahal, L., and Saddik, A. E. (2008). “HugMe: an interpersonal
haptic communication system,” in Proceedings of the IEEE International
Workshop on Haptic Audio visual Environments and Games, 2008, Ottawa,
99–102. doi: 10.1109/HAVE.2008.4685306

Courbalay, A., Deroche, T., Descarreaux, M., Prigent, E., O’Shaughnessy, J., and
Amorim, M. A. (2016). Facial expression overrides lumbopelvic kinematics
for clinical judgements about low back pain intensity. Pain Res. Manag.
2016:7134825. doi: 10.1155/2016/7134825

Courgeon, M., and Clavel, C. (2013). MARC: a framework that features
emotion models for facial animation during human–computer interaction.
J. Multimodal User Interfaces 7, 311–319. doi: 10.1007/s12193-013-0124-1

de Gelder, B., and Vroomen, J. (2000). The perception of emotions by ear and by
eye. Cogn. Emot. 14, 289–311. doi: 10.1080/026999300378824

Dolan, R. J., Morris, J. S., and de Gelder, B. (2001). Crossmodal binding of fear in
voice and face. Proc. Natl. Acad. Sci. U.S.A. 98, 10006–10010. doi: 10.1073/pnas.
171288598

Edwards, J., Jackson, H. J., and Pattison, P. E. (2002). Emotion recognition via facial
expression and affective prosody in schizophrenia: a methodological review.
Clin. Psychol. Rev. 22, 789–832. doi: 10.1016/S0272-7358(02)00130-7

Ekman, P., and Friesen, W. V. (1975). Unmasking the Face: a Guide to Recognizing
Emotions From Facial Clues, No. 1968. Upper Saddle River, NJ: Prentice-Hall.

Ethofer, T., Anders, S., Erb, M., Droll, C., Royen, L., Saur, R., et al. (2006). Impact of
voice on emotional judgment of faces: an event-related fMRI study. Hum. Brain
Mapp. 27, 707–714. doi: 10.1002/hbm.20212

Gaffary, Y., Eyharabide, V., Martin, J.-C., and Ammi, M. (2013). Clustering
approach to characterize haptic expressions of emotions. ACM Trans. Appl.
Percept. 10, 1–20. doi: 10.1145/2536764.2536768

Gaffary, Y., Eyharabide, V., Martin, J.-C., and Ammi, M. (2014). The impact of
combining kinesthetic and facial expression displays on emotion recognition
by users. Int. J. Hum. Comput. Interact. 30, 904–920. doi: 10.1080/10447318.
2014.941276

Gallace, A., and Spence, C. (2010). The science of interpersonal touch: an overview.
Neurosci. Biobehav. Rev. 34, 246–259. doi: 10.1016/j.neubiorev.2008.10.004

Gordon, I., Voos, A. C., Bennett, R. H., Bolling, D. Z., Pelphrey, K. A., and Kaiser,
M. D. (2013). Brain mechanisms for processing affective touch. Hum. Brain
Mapp. 34, 914–922. doi: 10.1007/s00429-010-0262-0

Haans, A., and IJsselsteijn, W. (2005). Mediated social touch: a review of current
research and future directions. Virtual Real. 9, 149–159. doi: 10.1007/s10055-
005-0014-2

Hertenstein, M. J. (2002). Touch: its communicative functions in infancy. Hum.
Dev. 45, 70–94. doi: 10.1159/000048154

Hofmans, J., and Mullet, E. (2013). Towards unveiling individual differences in
different stages of information processing: a clustering-based approach. Qual.
Quant. 47, 455–464. doi: 10.1007/s11135-011-9529-7

Huisman, G., Darriba Frederiks, A., Van Dijk, B., Hevlen, D., and Krose, B.
(2013). “The TaSSt: tactile sleeve for social touch,” in Proceedings of the
2013 World Haptics Conference, Tokyo, 211–216. doi: 10.1109/WHC.2013.654
8410

Juslin, N., and Laukka, P. (2003). Communication of emotions in vocal expression
and music performance: different channels, same code? Psychol. Bull. 129,
770–814.

Kawahara, H., and Irino, T. (2005). “Underlying principles of a high-quality speech
manipulation system STRAIGHT and its application to speech segregation,” in

Speech Separation by Humans and Machines SE - 11, ed. P. Divenyi (Berlin:
Springer), 167–180.

Kawahara, H., and Morise, M. (2011). Technical foundations of TANDEM-
STRAIGHT, a speech analysis, modification and synthesis framework. Sadhana
Acad. Proc. Eng. Sci. 36, 713–727.

Kreiman, J., Gerratt, B. R., Precoda, K., and Berke, G. S. (1992). Individual
differences in voice quality perception. J. Speech Lang. Hear. Res. 35, 512–520.
doi: 10.1044/jshr.3503.512

Lecoutre, B., and Poitevineau, J. (2014). The Significance Test Controversy Revisited:
the Fiducial Bayesian Alternative. Berlin: Springer.

Lewis, M., Haviland-Jones, J. M., and Barrett, L. F. (2010). Handbook of Emotions.
New York, NY: Guilford Press.

Massaro, W., and Egan, P. B. (1996). Perceiving affect from the voice and the face.
Psychon. Bull. Rev. 3, 215–221. doi: 10.3758/BF03212421

McCabe, C., Rolls, E. T., Bilderbeck, A., and McGlone, F. (2008). Cognitive
influences on the affective representation of touch and the sight of touch in the
human brain. Soc. Cogn. Affect. Neurosci. 3, 97–108. doi: 10.1093/scan/nsn005

McGlone, F., Vallbo, A. B., Olausson, H., Loken, L., and Wessberg, J. (2007).
Discriminative touch and emotional touch. Can. J. Exp. Psychol. 61, 173–183.
doi: 10.1037/cjep2007019

Mitsunaga, N., Miyashita, T., Ishiguro, H., Kogure, K., and Hagita, N. (2006).
“Robovie-IV: a communication robot interacting with people daily in an office,”
in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots
and Systems, Madrid.

Obrist, M., Subramanian, S., Gatti, E., Long, B., and Carter, T. (2015). “Motions
mediated through mid-air haptics,” in Proceedings of the 33rd Annual ACM
Conference on Human Factors in Computing Systems, Pittsburgh, PA, 2053–
2062.

Oker, A., Prigent, E., Courgeon, M., Eyharabide, V., Urbach, M., Bazin, N., et al.
(2015). How and why affective and reactive virtual agents will bring new insights
on social cognitive disorders in schizophrenia? An illustration with a virtual
card game paradigm. Front. Hum. Neurosci. 9:113. doi: 10.3389/fnhum.2015.
00133

Olausson, H., Wessberg, J., Morrison, I., McGlone, F., and Vallbo, A. (2010). The
neurophysiology of unmyelinated tactile afferents. Neurosci. Biobehav. Rev. 34,
185–191. doi: 10.1016/j.neubiorev.2008.09.011

Oliveira, A., Fonseca, I., Teixeira, M., and Simões, F. (2005). “A functional
measurement approach to the Self-Assessment Manikin,” in Proceedings of the
21th Annual Meeting of the International Society for Psychophysics in Fechner
Day 2005, Traverse City, MI, 251–256.

Oliveira, A. M., De Sá Teixeira, N., Oliveira, M. P., Breda, S. J., and Da Fonseca, I.
(2007). Algebraic integration models of facial features of expression: a case
made for pain. Theor. Model. 12, 167–180.

Park, Y. (2010). “CheekTouch: an affective interaction technique while speaking on
the mobile phone,” in Proceedings of the Human Factors in Computer Systems,
Atlanta, GA, 3241–3246.

Patel, T. (2013). The Handbook of Touch. Berlin: Springer Publishing.
Pereira, T., Oliveira, A., and Fonseca, I. B. (2016). Brain activation follows adding-

type integration laws: brain and rating responses in an integration task with
pairs of emotional faces. Univ. Psychol. 15, 25–62. doi: 10.11144/Javeriana.
upsy15-3.bafa

Pierre-Yves, O. (2003). The production and recognition of emotions in speech:
features and algorithms. Int. J. Hum. Comput. Stud. 59, 157–183. doi: 10.1016/
S1071-5819(02)00141-6

Prigent, E., Amorim, M.-A., Leconte, P., and Pradon, D. (2014). Perceptual
weighting of pain behaviours of others, not information integration, varies with
expertise. Eur. J. Pain 18, 110–119. doi: 10.1002/j.1532-2149.2013.00354.x

Russell, J., and Mehrebian, A. (1977). Evidence for a three-factor theory of
emotions. J. Res. Pers. 11, 273–294. doi: 10.1016/0092-6566(77)90037-X

Saldien, J., Goris, K., Yilmazyildiz, S., Verhelst, W., and Lefeber, D. (2008). On the
design of the huggable robot probo. J. Phys. Agents 2, 3–11.

Scherer, K. (2003). Vocal communication of emotion: a review of research
paradigms. Speech Commun. 40, 227–256. doi: 10.1016/S0167-6393(02)00084-5

Scherer, K. R., Bänziger, T., and Roesch, E. (2010). A Blueprint for Affective
Computing: a Sourcebook and Manual. Oxford: Oxford University Press.

Shackman, E., and Pollak, S. D. (2005). Experiential influences on multimodal
perception of emotion. Child Dev. 76, 1116–1126. doi: 10.1111/j.1467-8624.
2005.00901.x

Frontiers in Psychology | www.frontiersin.org 15 October 2018 | Volume 9 | Article 1966

https://doi.org/10.1016/j.cub.2009.11.034
https://doi.org/10.1162/coli.2006.32.3.451
https://doi.org/10.1016/j.tics.2007.10.001
https://doi.org/10.1016/j.tics.2007.10.001
https://doi.org/10.1037/0022-3514.70.2.205
https://doi.org/10.1109/HAVE.2008.4685306
https://doi.org/10.1155/2016/7134825
https://doi.org/10.1007/s12193-013-0124-1
https://doi.org/10.1080/026999300378824
https://doi.org/10.1073/pnas.171288598
https://doi.org/10.1073/pnas.171288598
https://doi.org/10.1016/S0272-7358(02)00130-7
https://doi.org/10.1002/hbm.20212
https://doi.org/10.1145/2536764.2536768
https://doi.org/10.1080/10447318.2014.941276
https://doi.org/10.1080/10447318.2014.941276
https://doi.org/10.1016/j.neubiorev.2008.10.004
https://doi.org/10.1007/s00429-010-0262-0
https://doi.org/10.1007/s10055-005-0014-2
https://doi.org/10.1007/s10055-005-0014-2
https://doi.org/10.1159/000048154
https://doi.org/10.1007/s11135-011-9529-7
https://doi.org/10.1109/WHC.2013.6548410
https://doi.org/10.1109/WHC.2013.6548410
https://doi.org/10.1044/jshr.3503.512
https://doi.org/10.3758/BF03212421
https://doi.org/10.1093/scan/nsn005
https://doi.org/10.1037/cjep2007019
https://doi.org/10.3389/fnhum.2015.00133
https://doi.org/10.3389/fnhum.2015.00133
https://doi.org/10.1016/j.neubiorev.2008.09.011
https://doi.org/10.11144/Javeriana.upsy15-3.bafa
https://doi.org/10.11144/Javeriana.upsy15-3.bafa
https://doi.org/10.1016/S1071-5819(02)00141-6
https://doi.org/10.1016/S1071-5819(02)00141-6
https://doi.org/10.1002/j.1532-2149.2013.00354.x
https://doi.org/10.1016/0092-6566(77)90037-X
https://doi.org/10.1016/S0167-6393(02)00084-5
https://doi.org/10.1111/j.1467-8624.2005.00901.x
https://doi.org/10.1111/j.1467-8624.2005.00901.x
https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-09-01966 October 10, 2018 Time: 14:47 # 16

Tsalamlal et al. Modeling Emotional Valence Integration

Silva, D., and Oliveira, A. M. (2016). Do faces and body postures integrate similarly
for distinct emotions, kinds of emotion and judgment dimensions? Univ.
Psychol. 15, 1–21.

Tsalamlal, M., Ouarti, N., Martin, J.-C., and Ammi, M. (2015). Haptic
communication of dimensions of emotions using air jet based tactile
stimulation. J. Multimodal User Interfaces 9, 69–77. doi: 10.1007/s12193-014-
0162-3

Tsalamlal, M. Y., Ouarti, N., and Ammi, M. (2013). “Psychophysical study of air jet
based tactile stimulation’,” in Proceedings of the IEEE World Haptics Conference
(WHC), Piscataway, NJ, 639–644.

Tsetserukou, D., and Neviarouskaya, A. (2010). “World’s first wearable humanoid
robot that augments our emotions,” in Proceedings of the 1st Augmented Human
International Conference - AH’10 2010, New York, NY, 1–10.

Vanderborght, B., Simut, R., Saldien, J., Pop, C., Rusu, A. S., Pintea, S., et al. (2012).
Using the social robot probo as a social story telling agent for children with
ASD. Interact. Stud. 13, 348–372. doi: 10.1075/is.13.3.02van

Vidotto, G., Massidda, D., and Noventa, S. (2010). Averaging models: parameters
estimation with the r-average procedure. Psicol. Int. J. Methodol. Exp. Psychol.
31, 461–475.

Yohanan, S., and MacLean, K. E. (2011). The role of affective touch in human-robot
interaction: human intent and expectations in touching the haptic creature. Int.
J. Soc. Robot. 4, 163–180. doi: 10.1007/s12369-011-0126-7

Zalinski, J., and Anderson, N. H. (1989). “Measurement of importance
in multiattribute models,” in Conditioning, Cognition, and Methodology:
Contemporary Issues in Experimental Psychology, ed. J. B. Sidowski (Lanham,
MD: University Press of America), 177–215.

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2018 Tsalamlal, Amorim, Martin and Ammi. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with these
terms.

Frontiers in Psychology | www.frontiersin.org 16 October 2018 | Volume 9 | Article 1966

https://doi.org/10.1007/s12193-014-0162-3
https://doi.org/10.1007/s12193-014-0162-3
https://doi.org/10.1075/is.13.3.02van
https://doi.org/10.1007/s12369-011-0126-7
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles

	Modeling Emotional Valence Integration From Voice and Touch
	Introduction
	Literature Review
	Display and Perception of Emotions
	Haptic Devices for Emotion Communication
	Mediated Interpersonal Communication With Touch
	Touch Communication With Autonomous Agent


	Theoretical Bases
	PAD: A Dimensional Model of Emotion
	Information Integration Theory: A Framework for Modeling the Integration of Audio and Touch Stimulation

	Materials and Methods
	Objective
	Participants
	Experimental Platform
	Hypotheses
	Studied Conditions and Stimuli
	Unimodal Conditions
	Bimodal Condition

	Measures
	Procedure

	Results
	Global Analyses
	Integration Graphs
	Statistical Analyses
	Unimodal stimuli
	Bimodal stimuli

	Discussion

	Individual Analyses
	Cluster Analysis
	Integration Graphs
	Statistical Analyses
	Model Fitting
	Measure of Importance of the Modalities
	Discussion


	General Discussion
	Conclusion
	Ethics Statement
	Author Contributions
	Funding
	References


