AUTHOR=Hosang Thomas J. , Fischer Rico , Pomp Jennifer , Liepelt Roman TITLE=Dual-Tasking in the Near-Hand Space: Effects of Stimulus-Hand Proximity on Between-Task Shifts in the Psychological Refractory Period Paradigm JOURNAL=Frontiers in Psychology VOLUME=9 YEAR=2018 URL=https://www.frontiersin.org/journals/psychology/articles/10.3389/fpsyg.2018.01942 DOI=10.3389/fpsyg.2018.01942 ISSN=1664-1078 ABSTRACT=

Two decades of research indicate that visual processing is typically enhanced for items that are in the space near the hands (near-hand space). Enhanced attention and cognitive control have been thought to be responsible for the observed effects, amongst others. As accumulating experimental evidence and recent theories of dual-tasking suggest an involvement of cognitive control and attentional processes during dual tasking, dual-task performance may be modulated in the near-hand space. Therefore, we performed a series of three experiments that aimed to test if the near-hand space affects the shift between task-component processing in two visual-manual tasks. We applied a Psychological Refractory Period Paradigm (PRP) with varying stimulus-onset asynchrony (SOA) and manipulated stimulus-hand proximity by placing hands either on the side of a computer screen (near-hand condition) or on the lap (far-hand condition). In Experiment 1, Task 1 was a number categorization task (odd vs. even) and Task 2 was a letter categorization task (vowel vs. consonant). Stimulus presentation was spatially segregated with Stimulus 1 presented on the right side of the screen, appearing first and then Stimulus 2, presented on the left side of the screen, appearing second. In Experiment 2, we replaced Task 2 with a color categorization task (orange vs. blue). In Experiment 3, Stimulus 1 and Stimulus 2 were centrally presented as a single bivalent stimulus. The classic PRP effect was shown in all three experiments, with Task 2 performance declining at short SOA while Task 1 performance being relatively unaffected by task-overlap. In none of the three experiments did stimulus-hand proximity affect the size of the PRP effect. Our results indicate that the switching operation between two tasks in the PRP paradigm is neither optimized nor disturbed by being processed in near-hand space.