AUTHOR=Tanaka-Ishii Kumiko TITLE=Long-Range Correlation Underlying Childhood Language and Generative Models JOURNAL=Frontiers in Psychology VOLUME=9 YEAR=2018 URL=https://www.frontiersin.org/journals/psychology/articles/10.3389/fpsyg.2018.01725 DOI=10.3389/fpsyg.2018.01725 ISSN=1664-1078 ABSTRACT=
Long-range correlation, a property of time series exhibiting relevant statistical dependence between two distant subsequences, is mainly studied in the statistical physics domain and has been reported to exist in natural language. By using a state-of-the-art method for such analysis, long-range correlation is first shown to occur in long CHILDES data sets. To understand why, generative stochastic models of language, originally proposed in the cognitive scientific domain, are investigated. Among representative models, the Simon model is found to exhibit surprisingly good long-range correlation, but