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Conventional differential item functioning (DIF) approaches such as logistic regression

(LR) often assume unidimensionality of a scale and match participants in the reference

and focal groups based on total scores. However, many educational and psychological

assessments are multidimensional by design, and a matching variable using total scores

that does not reflect the test structure may not be good practice in multidimensional

items for DIF detection. We propose the use of all subscores of a scale in LR and

compare its performance with alternative matching methods, including the use of total

score and individual subscores. We focused on uniform DIF situation in which 250,

500, or 1,000 participants in each group answered 21 items reflecting two dimensions,

and the 21st item was the studied item. Five factors were manipulated in the study:

(a) the test structure, (b) numbers of cross-loaded items, (c) group differences in latent

abilities, (d) the magnitude of DIF, and (e) group sample size. The results showed that,

when the studied item measured a single domain, the conventional LR incorporating

total scores as a matching variable yielded inflated false positive rates (FPRs) when two

groups differed in one latent ability. The situation worsened when one group had a higher

ability in one domain and lower ability in another. The LR using a single subscore as

the matching variable performed well in terms of FPRs and true positive rates (TPRs)

when two groups did not differ in either one latent ability or differed in one latent ability.

However, this approach yielded inflated FPRs when two groups differed in two latent

abilities. The proposed LR using two subscores yielded well-controlled FPRs across all

conditions and yielded the highest TPRs. When the studied itemmeasured two domains,

the use of either the total score or two subscores worked well in the control of FPRs and

yielded similar TPRs across conditions, whereas the use of a single subscore resulted

in inflated FPRs when two groups differed in one or two latent abilities. In conclusion,

we recommend the use of multiple subscores to match subjects in DIF detection for

multidimensional data.

Keywords: multidimensionality, differential item functioning, logistic regression, group impact, matching variables

INTRODUCTION

Differential item functioning (DIF) is commonly assessed to examine the prerequisite of test
fairness (Stark et al., 2006) and has become routine practice in large-scale educational assessments
such as the Trends in Mathematics and Science Study (TIMSS) and the Programme for
International Student Assessment (PISA). The presence of DIF indicates an unequal probability
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that two groups will accurately answer or endorse an item, where
participants in both groups have the same levels of ability.

Multidimensionality is common in educational and
psychological tests. All abilities measured by these tests are
intentional, and studies that use exploratory factor analysis often
report an underlying multidimensional construct in the data
(Mazor et al., 1995; Adams et al., 1997). Multidimensionality
data can be categorized into two types: between-item and
within-item multidimensionality (Wang et al., 1997). A
test comprising several subtests that measure distinct latent
abilities, and in which test items reflect a single construct,
represents a simple test structure and yields between-item
multidimensional data. The TerraNova Multiple Assessment
Test and the Minnesota Multiphasic Personality Inventory
are two representative examples of between-multidimensional
tests. On the other hand, within-item multidimensionality, or
complex structure, refers to items within a test measuring two
or more dimensions and providing information for at least
two domains of a scale. For instance, in Teacher Education
and Development Study in Mathematics, 72 items measure a
unidimensional construct of mathematics content knowledge,
and 32 items measure both mathematics content knowledge and
mathematics pedagogical content knowledge (Blömeke et al.,
2011), yielding within-item multidimensional data. Although
within-item multidimensionality commonly occurs in empirical
studies, researchers often eliminate these cross-loaded items in
subsequent analyses, thereby implying that certain information
may be missed.

A common practice in DIF research is to use a unidimensional
calibration to yield a reference composite of the underlying
multiple dimensions for the entire test (Mazor et al., 1998).
The unidimensional approach of DIF detection is feasible
for analyzing between-multidimensional data because a
between-multidimensional scale can be decomposed into
multiple unidimensional subscales. Given the assumption of
unidimensionality of a scale, when an item measures at least one
secondary dimension (in addition to the primary dimension
the measurement is intended to measure) and two groups of
examinees differ in their underlying ability distribution of the
secondary dimensions, DIF occurs (Ackerman, 1992; Bolt and
Stout, 1996; Roussos and Stout, 1996; Walker and Gocer Sahin,
2017). Using the multidimensional item response theory (IRT;
Shealy and Stout, 1993; Walker and Gocer Sahin, 2017), the
expected difference of scores between the reference (R) and focal
(F) groups for an item under consideration can be expressed in
the following manner:

ER (η|θ) − EF (η|θ) = (µηR − µηF )+ θ

(

ρR

σηR

σθR

− ρF

σηF

σθF

)

+

(

µθFρF
σηF

σθF

− µθRρR
σηR

σθR

)

, (1)

where µ indicates the mean ability, σ is the standard deviation
(SD), and ρ is the correlation between the primary (θ) and
secondary abilities (η). The expected difference, a plausible DIF,
can vary conditionally on the two distributions of θ. When two
groups have identical SDs of θ (σθR = σθF ) and of η (σηR = σηF )

as well as the same relationship between two latent abilities (ρR =

ρF), Equation (1) becomes

ER (η|θ) − EF (η|θ) = (µηR − µηF )− ρ
(

µθR − µθF

)

. (2)

Equation (2) illustrates the presence of DIF depending on the
magnitude of the group difference in the averages of two latent
abilities and the correlation between two dimensions. When
µηR 6= µηF

, DIF is most likely to occur when ρ
(

µθR − µθF

)

has
a different sign andmagnitude fromµηR −µηF (Ackerman, 1992;
Roussos and Stout, 1996). DIF may occur when the correlations
between θ and η are not identical for the two groups and the
two groups differ in the means of θ. In addition, even when θ

is held constant, DIF may occur due to the difference between
individuals’ secondary abilities from two different groups.

Equation (2) also suggests that DIF is less likely to occur when
ρ

(

µθR − µθF

)

has the same sign as µηR −µηF . Specifically, when
two groups have identical ability distributions of η under either
condition of (1) a zero correlation between θ and η, or (2) an
identical distribution of θ for the two groups, DIF will not occur.

In conclusion, Equations (1) and (2) imply that, when
assessing DIF in a multidimensional scale, all the measured latent
traits should be jointly considered (Ackerman, 1992; Roussos
and Stout, 1996; Yao and Li, 2015); otherwise, the conclusion
of measurement invariance could be biased. Specifically, when
a DIF-free item measures a second intended-to-be-measured
domain, but the multidimensional structure is ignored in the
matching variable, this item would be mistakenly classified as
DIF. On the other hand, regardless of the dimensionality of
the studied item, when certain anchored items are within-
item multidimensional but are ignored, the matching variable is
contaminated and then leads to biased DIF detection.

Conventional DIF practices assume unidimensionality of a
scale and use the total score to match respondents from different
groups on a common metric. For a test developed to measure
more than one latent trait, however, the total score might not
provide sufficient information to describe the multidimensional
distributions of latent traits, unless the latent traits are highly
correlated. When a total score is composed of two poorly
correlated subscores, the relationship between the total score
and either subscore would be severely attenuated, which could
reduce the representativeness of a matching variable and, in turn,
decrease the accuracy of the DIF assessment.

In addition, even when two groups show two distinct
multidimensional ability distributions, the interpretation of the
total score may differ for the two groups across all ability
levels. Suppose that examinees A and B differ in the two-
dimensional traits, their abilities are denoted as (−1, 1) and (1,
−1), respectively, and their overall performance (total score)
is estimated to be equal. In reality, examinee A will have
a lower probability than examinee B of accurately answering
items that measure the first domain and will show a higher
probability of correctly answering items that reflect the second
domain. Thus, if total scores serve as a matching variable
to place the two participants from different groups on the
same scale, then uncontrolled between-group ability differences
between these two domains may yield inaccurate DIF detection
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(Mazor et al., 1995). Yao and Li (2010, 2015) found that fitting a
unidimensional IRT to multidimensional data yielded an inflated
false positive rate (FPR), where the item was detected as DIF
when two groups have different abilities and suggested the use
of multidimensional IRT. Therefore, it is concluded that the
necessity of a matching variable could accurately reflect test
dimensions.

Previous studies have suggested the use of a multidimensional
framework (e.g., Zwick and Ercikan, 1989; Clauser et al., 1991;
Mazor et al., 1998; Walker and Gocer Sahin, 2017) for DIF
detection by using a matching alternative, other than total scores,
in the Mantel-Haenszel (MH) approach (Mantel and Haenszel,
1959; Holland and Thayer, 1988), the simultaneous item bias test
(SIBTEST, Shealy and Stout, 1993), and the logistic regression
(LR) approach (Swaminathan and Rogers, 1990; Rogers and
Swaminathan, 1993). For example, Ackerman and Evans (1994)
used an arbitrary 64 units in the two-dimensional latent trait
space in the MH approach as an alternative and compared its
performance with that of conventional matching variables (total
scores). In their study, two-dimensional data were generated
for 30 items, in which two items measured a single domain,
while others reflected different degrees of two domains. Both the
MH and SIBTEST procedures using total scores as a matching
variable yielded severely inflated type I errors, but inflation was
eliminated when multiple subdomain scores were used as a
matching variable. Studies also found that items with higher
loadings from one specific domain were consistently identified
as DIF items when the subdomain score of the other domain
was used for matching (Ackerman and Evans, 1994; Walker
and Gocer Sahin, 2017). Similar results have been found in the
LR procedure as well (Zwick and Ercikan, 1989; Mazor et al.,
1998). The LR approach is generally recommended because it
is readily expandable to include more than one ability estimate
for matching, whereas the MH approach becomes increasingly
cumbersome and arbitrary when handling two or more ability
estimates (Mazor et al., 1998).

Although the above findings are strongly supportive of the
use of a matching variable that more closely approximates the
underlying test structure, several factors have not been carefully
considered in these studies.

The first concern is the composite of a matching alternative
used in these studies. To assess DIF in multidimensional data,
Ackerman and Evans (1994) used true values of different latent
abilities to match participants. This approach is not applicable in
practice, however, because one would never know a participant’s
“true” ability beforehand. Some studies (e.g., Mazor et al., 1995;
Clauser et al., 1996) have suggested the use of all summed scores
of subtests as matching variables and have assumed that all
items were designed to assess a single domain (i.e., between-
item multidimensionality). However, the tests in these studies
were within-itemmultidimensional, and cross-loaded items were
not counted in both domains but in one only. In other words,
these within-dimensional items were not accurately counted
in previous studies. Therefore, their findings did not provide
strong evidence for the use of alternatives in practice. How
the dimensionality of the test structure interacts with matching
variables in DIF detection remains unclear.

The second concern is impact on the mean ability in terms
of group differences in the mean ability. Walker and Gocer
Sahin (2017) reported that, when conditioning on the primary
domain, a small mean difference in the secondary dimension
could causeDIF independently of the relations between or among
domains. Such findings may suggest that DIF will not occur when
conditioning on both the primary and secondary dimensions
simultaneously. In other words, if a matching variable (or
variables) could accurately reflect the test structure and match
participants on the same metric in the primary and secondary
domains, it is possible that the items are not mistakenly identified
as DIF items. Hence, the use of different matching variables could
result in different conclusions in DIF detection. These inferences
must be investigated before any suggestions for practical use can
be made.

To the best of our knowledge, most researchers have
studied DIF issues in unidimensional data. For between-
item multidimensional data, items are grouped as multiple
unidimensional subscales, and DIF analyses are conducted for
each subscale. Existing literature has not adequately addressed
within-item multidimensional data in DIF analyses. The present
study examines (1) the impact of dimensionality in DIF detection
when tests are designed to measure two domains and (2) the
impact of group mean differences in one or both latent abilities.
The calculations for two subtest scores were revised to accurately
reflect the underlying test structure, and the performance
of this method was compared to that of other matching
alternatives. Factors such as test structure (both within- and
between-multidimensionality), group means of latent abilities,
and percentage of cross-loaded items in a test were manipulated
to account for these factors’ influence on and interactions
with the dimensionality of a matching variable. Models that
incorporated a matching variable closely approaching that of the
test structure were expected to yieldmore satisfactory results than
models that failed to account for underlying domains.

LOGISTIC REGRESSION (LR) FOR
DETECTING DIFFERENTIAL ITEM
FUNCTIONING

LR is a viable and flexible procedure for detecting DIF that
does not require specific forms of item response function
or large sample sizes (Narayanan and Swaminathan, 1994).
It also demonstrates computational simplicity and is easily
implementable using commercial software (e.g., SPSS, SAS, or
STATA) or free software (e.g., R) without additional effort or
knowledge. Mazor et al. (1995) have suggested that the LR
procedure can readily be expanded to explicitly include two
or more domains and is therefore particularly suitable for the
analysis of multidimensional data. Thus, the present study only
focuses on the impact of the abovementioned factors on LR
in DIF detections. The LR procedure can be denoted in the
following manner:

log

[

P (Y = 1|Gi,Xi)

P (Y = 0|Gi,Xi)

]

= β0 + β1Xi + β2Gi + β3GiXi. (3)
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Equation (3) states that a person i belonging to group G
has a probability of accurately answering a question against
a probability of answering incorrectly; X indicates the ability
level measured by a test (a matching variable), which is usually
the observed total test score; and GX is the interaction of the
grouping membership and the test score. If β2 6= 0 and β3 = 0,
then an item shows uniform DIF, thereby implying that item
difficulty parameters differ among groups. If β3 6= 0, then non-
uniform DIF has occurred, and item discrimination parameters
differ across groups. Because uniform DIF is a more commonly
investigated phenomenon, the present study only examines
uniform DIF. Equation (3) could be extended to incorporate
the scores of multiple dimensions in the LR procedure, in the
following manner:

log

[

P (Y = 1|Gi,X1i, . . . ,Xni)

P (Y = 0|Gi,X1i, . . . ,Xni)

]

= β0 +
∑N

n= 1
β1nXni

+β2Gi, (4)

where Xni is the sum of scores in the nth dimension for person i
(i.e., the nth subscore of the test).

Suppose that a test comprises two subscales, and that some
items are designed to measure two domains. When both
between- and within-item multidimensionality might occur in

the matching variable and the item under consideration, four
conditions exist, as depicted in Figure 1. The first condition is
a between-between condition (named B-B), in which all items
measure a single domain; the second is within-between (named
W-B), in which some items of the matching variable measure
two domains, while others and the items under consideration
reflect a single domain. The third is between-within (named
B-W), where all but the item under consideration measure a
single domain; the last is within-within (W-W), where some
items of a matching variable and the item under consideration
measure two domains and the remaining items measure one
domain only. Note that when within-multidimensionality occurs
in the matching variable, any items that measure two domains
should be double counted in the summed scores of the first
and second domains because they simultaneously measure two
latent abilities. Consequently, four models can be used for DIF
assessment, including model 1 (using a total score, in other
words, the sum score of domain 1 plus the sum score of domain
2), model 2a (using the sum score of domain 1), model 2b
(using the sum score of domain 2), and model 3 (using the two
subscores, the sum score of domain 1 and the sum score of
domain 2, together).

In cases where the tested item measures domain 1 ability (e.g.,
B-B and W-B conditions), models 1, 2a, and 3 will yield accurate

FIGURE 1 | Test structure of a matching variable and an item under consideration. Y indicates an item under consideration; (A) B-B indicates between-item

multidimensionality of a matching variable with a between-item multidimensional item under consideration; (B) W-B indicates within-item multidimensionality of a

matching variable with a between-item multidimensional item under consideration; (C) B-W indicates between-item multidimensionality of a matching variable with a

with-item multidimensional item under consideration; and (D) W-W indicates within-item multidimensionality of a matching variable with a within-item multidimensional

item under consideration.
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DIF detection when no impacts have occurred in the primary
and secondary domains. Because impacts and the correlation
between two domains both increase, model 3 becomes the
only model to use an effective matching variable to provide
sufficient information that can accurately locate participants in
the same scale for comparison. It will yield satisfactory results.
The performances ofmodels 1 and 2a, however, will be influenced
by the number of cross-loaded items within the test as well as
by the relationships among subdomains; they will yield inflated
type I error rates. On the other hand, when the tested item
measures both domain 1 and domain 2 abilities (e.g., B-W and
W-W conditions), the use of total scores or using two subdomain
scores simultaneously will accurately match participants in the
primary and secondary domains and yield more accurate DIF
detection; on the other hand, since models 2a and 2b could
not provide sufficient information of dimensionality, they would
perform poorly. A series of simulations was conducted to test the
above hypotheses.

SIMULATION STUDY DESIGN

Several simulation studies were conducted to detect uniform
DIF in two-dimensional data. Item responses were simulated
according to the multidimensional three-parameter logistic
model in uniform DIF setting, in the following manner:

P
(

Yij = 1
)

= γj + (1− γj)×
exp

(

∑D
d= 1 αjdθid − βj

)

1+ exp
(

∑D
d= 1 αjdθid − βj

) , (5)

where θid is the dth ability of person i, αjd is the slope of
dimension d of item j, and βj and γj are the difficulty and
guessing parameters, respectively, of item j. Twenty-one items
were designed to measure (1) either one ability only or (2) both
abilities. Specifically, the first 20 items were DIF-free items and
were, therefore, used as the matching variable (termed anchor
items), and the final item was under suspicion. The first half
of the anchor items was designed to measure the first domain,
and the second half to measure the second domain. Under
conditions in which 4 anchor items measured both domains,
the first 8 anchor items measured the first domain, items 9–12
measured both domains, and items 13–20 reflected the second
domain only. When there were 8 cross-loaded items, items 1–6
assessed the first domain, items 7–14 measured both, and items
15–20 measured the second domain. Difficulty parameters were
generated from N(0,1). Discrimination parameters followed a
log-normal distribution, with a mean of 0 and variance of 0.3,
and all guessing parameters were fixed at 0.2. When there was
no group difference (termed “impact” in DIF detection) in both
latent abilities, the ability of the two domains followed a bivariate
normal distribution with a mean vector of 0 and variance of 1,
and the covariance between two domains was set at 0.2 for both
the focal and reference groups. When impact existed, the mean
vector wasmanipulated (see point 5 for details). Five independent
factors were manipulated:

• The number of dimensions measured by the item under
consideration (one or two domains);

• Numbers of cross-loaded anchor items (0, 4, or 8 items);
• The magnitudes of DIF (the item difficulty for the focal group

was 0.3 or 0.5 higher than those for the focal group to present
medium and large DF sizes, respectively; Gonzalez-Roma
et al., 2006);

• The sample size in each group of examinees (250, 500, or
1,000); and

• Impact at (0, 0), (0.5, 0), or (0.5, −0.5) for the focal and
reference groups in the primary and secondary domains,
respectively, by manipulating the deviation from the mean of
the mean vector.

A total of 1,000 replications were conducted under each
condition. Any FPRs and true positive rates (TPRs) of items
under consideration were computed. The nominal alpha level
was 0.05. When the item under consideration measured one
domain (domain 1), the performance of models 1, 2a, and 3
was compared; when the tested item measured two domains, the
performance of the four alternatives was evaluated.

RESULTS

Figure 2 depicts the FPRs when the item under consideration
measured a single domain (domain 1); Figures 2A–C show that
the three alternatives yielded satisfactory FPRs of 0.05 when
the reference and focal groups had identical ability distributions
in the primary and secondary domains and their performance
was not influenced by the number of cross-loaded anchor items
or group size. Figures 2D–F show that when the two groups
differed in the primary dimension, models 2a and 3 showed
good control of FPRs, but model 1 yielded severely inflated
FPRs across conditions and the inflation increased as group sizes
increased. When the two groups differed in both the primary and
secondary domains, model 3 still showed satisfactory FPRs across
conditions (Figures 2G–I). However, Model 2a yielded inflated
FPRs when anchor items measured two dimensions, and the
inflation increased as the number of cross-loaded anchor items
increased. Model 1 performed even more poorly: FPRs were
severely inflated when impacts occurred in both dimensions,
regardless of the number of cross-loaded anchor items, and
inflation worsened as group sizes increased.

Figure 3 depicts TPRs under medium DIF conditions, when
the tested item measured a single dimension. Figures 3A–C
show that regardless of test structures and the number of cross-
loaded anchor items, the LR approach that incorporated varied
matching variables showed similar TPRs when there was no
impact (around 0.2 for a group size of 250, 0.4 for a group
size of 500, and almost 0.6 for a group size of 1,000). As group
sizes increased, TPRs increased. Figures 3D–I indicate that
model 3 yielded consistent TPRs and patterns across conditions,
and TPRs reached 0.7 at the acceptable level (Cohen and
Cohen, 1983) when group sizes were 1,000. Model 1, however,
consistently yielded low TPRs (0.1 or below) when there was
an impact in the primary domain as well as impacts in both
dimensions (TPRs = 0.05–0.27). The performance of model
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FIGURE 2 | False positive rates when the tested item measured one single domain. For model 1, total scores served as a matching variable; for model 2a, the subset

score of domain 1 was used to match participants; model 3 used two subset scores as a matching variable. Model 2b was excluded because the tested item did not

measure the second domain. (A) Impact = (0,0), Sample = 250; (B) Impact = (0,0), Sample = 500; (C) Impact = (0,0), Sample = 1,000; (D) Impact = (0.5,0),

Sample = 250; (E) Impact = (0.5,0), Sample = 500; (F) Impact = (0.5,0), Sample = 1,000; (G) Impact = (0.5, −0.5), Sample = 250; (H) Impact = (0.5, −0.5),

Sample = 500; (I) Impact = (0.5, −0.5), Sample = 1,000.

FIGURE 3 | True positive rates when the tested item measured one single domain and DIF magnitude was 0.3. Fore model 1, total scores served as a matching

variable; for model 2a, the subset score of domain 1 was used to match participants; model 3 used two subset scores as matching variable. Model 2b was excluded

because the tested item did not measure the second domain. (A) Impact = (0,0), Sample = 250; (B) Impact = (0,0), Sample = 500; (C) Impact = (0,0),

Sample = 1,000; (D) Impact = (0.5,0), Sample = 250; (E) Impact = (0.5,0), Sample = 500; (F) Impact = (0.5,0), Sample = 1,000; (G) Impact = (0.5, −0.5),

Sample = 250; (H) Impact = (0.5, −0.5), Sample = 500; (I) Impact = (0.5, −0.5), Sample = 1,000.
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2 was influenced by impacts and the number of cross-loaded
anchor items. When an impact occurred in the primary domain,
compared to conditions of no impacts, model 2 yielded slightly
decreasing TPRs, as more anchor items measuring both domains
were involved. When impacts occurred in both domains, TPRs
fell when more anchor items were cross-loaded; performance
further deteriorated when 40% of anchor items (8 items) were
cross-loaded in the two domains.

Figures 4A–C show that when there was large DIF and no
impact, the three models yielded similar TPRs (around 0.5 for
a group size of 250, 0.8 for a group size of 500, and almost 1.0
for a group size of 1,000), and TPRs reached satisfactory levels
when group sizes were 500 or 1,000. Figures 4D–I show that
the performance of model 3 was not influenced by conditions or
impacts and yielded almost identical TPRs as in Figures 4A–C.
The performances ofmodels 1 and 2a were influenced by impacts.
When an impact occurred in the primary domain, TPRs inmodel
1 were lower than TPRs when there was no impact; since more
anchor items measured more than one domain, TPRs increased
slightly (Figures 4D–F) and reached acceptable levels (≈ 0.7)
when both group sizes were 1,000. However, TPRs in model 1
fell close to the nominal level when impacts occurred in both
domains (Figures 4G–I). Moreover, when impacts occurred,
model 1 consistently yielded the lowest TPRs compared to the
other two models (Figures 4D–I). Model 2a’s performance was
related to both impacts and the number of cross-loaded anchor

items. As the number of cross-loaded anchor items increased,
TPRs decreased but were at acceptable levels when group sizes
were 500 or 1,000 and impact occurred in the primary domain.
However, TPR became lower when impacts occurred in both
the primary and secondary domains, and only when no cross-
loaded anchor items and group sizes of 500 or group sizes of 1,000
and cross-loaded anchor items of 4 or fewer, TPR were 0.8 or
above.

Figures 5–7 describe the performance of four LR procedures
under conditions where the item under consideration measured
two domains. When no impact occurred, the four models yielded
similar FPRs and their performance was not influenced by group
size or the number of cross-loaded anchor items (Figures 5A–C).
Models 1 and 3 were robust when impacts occurred in domain
1 and showed good control of FPRs when the items under
consideration were within-multidimensional (Figures 5D–F).
However, once impacts occurred, models 2a and 2b yielded
inflated FPRs, particularly when impacts occurred in both the
primary and secondary domains (Figures 5G–I). As more cross-
loaded anchor items became involved, FPRs diminished but were
still far beyond the nominal level of 0.05.

Figure 6 shows TPRs when medium DIF occurred under
various conditions. The four models yielded almost identical
TPRs when no impact occurred across conditions, and
TPRs increased from 0.15 to 0.56 as sample sizes increased
(Figures 6A–C). Results also showed that the performances of

FIGURE 4 | True positive rates when the tested item measured one single domain and DIF magnitude was 0.5. Fore model 1, total score served as a matching

variable; for model 2a, the subset score of domain 1 was used to match participants; model 3 used two subset scores as a matching variable. Model 2b was

excluded because the tested item did not measure the second domain. (A) Impact = (0,0), Sample = 250; (B) Impact = (0,0), Sample = 500; (C) Impact = (0,0),

Sample = 1,000; (D) Impact = (0.5,0), Sample = 250; (E) Impact = (0.5,0), Sample = 500; (F) Impact = (0.5,0), Sample = 1,000; (G) Impact = (0.5, −0.5),

Sample = 250; (H) Impact = (0.5, −0.5), Sample = 500; (I) Impact = (0.5, −0.5), Sample = 1,000.
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FIGURE 5 | False positive rates when the tested item measured two domains. Fore model 1, total score served as a matching variable; for model 2a, the subset score

of domain 1 was used to match participants; for model 2b, the subset score of domain 2 used to match participants; model 3 used two subset scores as a matching

variable. (A) Impact = (0,0), Sample = 250; (B) Impact = (0,0), Sample = 500; (C) Impact = (0,0), Sample = 1,000; (D) Impact = (0.5,0), Sample = 250; (E)

Impact = (0.5,0), Sample = 500; (F) Impact = (0.5,0), Sample = 1,000; (G) Impact = (0.5, −0.5), Sample = 250; (H) Impact = (0.5, −0.5), Sample = 500; (I)

Impact = (0.5, −0.5), Sample = 1,000.

FIGURE 6 | True positive rated when the tested item measured two domain and DIF magnitude was 0.3. For model 1, total scores served as a matching variable; for

model 2a, the subset score of domain 1 was used to match participants; for model 2b, the subset score of domain 2 was used to match participants; model 3 used

two subset scores as matching variable. (A) Impact = (0,0), Sample = 250; (B) Impact = (0,0), Sample = 500; (C) Impact = (0,0), Sample = 1,000; (D)

Impact = (0.5,0), Sample = 250; (E) Impact = (0.5,0), Sample = 500; (F) Impact = (0.5,0), Sample = 1,000; (G) Impact = (0.5, −0.5), Sample = 250; (H)

Impact = (0.5, −0.5), Sample = 500; (I) Impact = (0.5, −0.5), Sample = 1,000.
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FIGURE 7 | True positive rates when the tested item measured two domains and DIF size was 0.5. For model 1, total scores served as a matching variable; for model

2a, the subtest score of domain 1 was used to match participants; for model 2b, the subset score of domain 2 was used to match participants; model 3 used two

subset scores as a matching variable. (A) Impact = (0,0), Sample = 250; (B) Impact = (0,0), Sample = 500; (C) Impact = (0,0), Sample = 1,000; (D)

Impact = (0.5,0), Sample = 250; (E) Impact = (0.5,0), Sample = 500; (F) Impact = (0.5,0), Sample = 1,000; (G) Impact = (0.5, −0.5), Sample = 250; (H)

Impact = (0.5, −0.5), Sample = 500; (I) Impact = (0.5, −0.5), Sample = 1,000.

models 1 and 3 were relatively consistent across impacts and
conditions and yielded increasing TPRs as group size increased.
When an impact occurred in domain 1, model 3 yielded slightly
higher TPRs (≈ 0.18 for sample sizes of 250, ≈ 0.34 for
sample sizes of 500, and ≈ 0.57 for sample sizes of 1,000)
than model 1 (Figures 6D–F). When impacts occurred in both
domains, model 1 yielded slightly higher TPRs (≈ 0.20 for sample
sizes of 250, ≈ 0.38 for sample sizes of 500, and ≈ 0.62 for
sample sizes of 1,000) than model 3 (Figures 6G–I). The same
patterns were found across the number of cross-loaded anchor
items, and TPRs were lower than the acceptable level of 0.7.
Model 2a consistently yielded the lowest TPRs when impacts
occurred, while model 2b yielded the highest TPRs when impacts
occurred. Because models 2a and 2b yielded severely inflated
FPRs when impacts occurred, TPRs became questionable in these
cases.

The above patterns were found in conditions in which large
DIF occurred (Figure 7); thus, we have not provided details on
those conditions in this paper. One noticeable difference related
to the impact of DIF magnitudes is that when DIF sizes were
large, both model 1 and 3 yielded TPRs nearly or higher than 0.7
when both group sizes were 500 or 1,000.

If we look at the combined findings under all conditions,
model 3 was robust against impacts and conditions and clearly
outperformed the other alternatives when scales were designed
to be multidimensional. Therefore, we suggest the use of model 3
for DIF detection.

DISCUSSION, CONCLUSION, AND
FUTURE WORK

The present study has confirmed the indications from previous
research on DIF in multidimensional data: a matching criterion
closer to the actual test structure may yield higher power in
DIF detection. We have substantially extended the existing
evidence on between- and within-item multidimensional data
and have further articulated the impact of deviation from
unidimensionality of the matching variable as well as various
issues of impacts and cross-loadings in latent abilities. The
test structures of the matching variable and the item under
consideration, group mean differences, and the number of
cross-loaded items in the matching variable were manipulated
to explore the importance of dimensionality of the matching
criterion for DIF assessment. The results have validated existing
findings and clarified the impact of multidimensionality on DIF
assessment under a variety of conditions, thereby confirming
the importance of the dimensionality of a matching variable
among different conditions and demonstrating that the matching
criterion that best reflected the test structure performed
consistently well across all conditions.

These simulation studies have suggested that once
the matching variable accurately reflects the underlying
multidimensionality of a scale (e.g., model 3), the model
will yield satisfactory FPRs and more accurate TPRs. Other
alternative models that incorporated total scores or a subdomain
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score yielded severely inflated FPRs and questionable TPRs when
impacts were involved and interacted with multidimensionality.
The suggested model (model 3) that incorporated multiple
subdomain scores was also robust against the impact of
differences in group mean ability and test structure. Compared
to conventional LR approaches, the proposed model consistently
yielded similarly, more satisfactory findings across conditions—
either between-item or within-item multidimensionality—
regardless of whether one or more impacts had occurred.

Our findings also indicate that when no impacts were
involved, all models yielded satisfactory FPRs across all
conditions, regardless of the number of cross-loaded anchor
items or the number of dimensions measured by the item under
consideration. The dimensionality of a matching variable did not
lead to inflated or deflated FPRs, as suggested in previous studies
(e.g., Mazor et al., 1995; Clauser et al., 1996). One possibility
for this discrepancy is the differing approaches to subtest score
estimation. Previous studies have treated cross-loaded items as
non-cross-loaded in DIF detection and have ignored the impact
of cross-loaded items in the use of multiple subtest scores as
a matching variable. Consequently, the matching criterion does
not reflect the test’s true underlying factor structure. In the
present study, the matching variable using two subtest scores
combined cross-loaded and non-cross-loaded items. Responses
to all cross-loaded items provided information about both
domains; these responses were combined with non-cross-loaded
items to calculate individual subtest scores. This method may
more accurately reflect the underlying test structure. Thus, the
evidence from the present study appears stronger than that from
other studies.

When an item under consideration was between-
item multidimensional and when impacts occurred, the
dimensionality of the matching criterion showed impacts on
the assessment of DIF detection. A matching variable that
approximated the test structure outperformed the other models
across all conditions, particularly when impacts occurred in both
the primary and secondary domains, where the reference group
had a higher mean ability in the primary domain and lower mean
ability in the secondary domain compared to the focal group. The
performance improvement when using multiple subtest scores
was profound. These findings also suggest that the conventional
LR approach (using total scores as a matching variable) was the
poorest performer and yielded inflated FPRs and the lowest TPRs
compared to other models. The conventional LR procedure failed
to accurately detect DIF items in between-itemmultidimensional
data when impacts occurred.

Consistent with previous studies (e.g., Li, 2014), the
magnitudes of DIF and group sizes showed impacts on TPRs
when LR was used in DIF assessments. The proposed model
yielded satisfactory TPRs (≥0.7) when group sizes were 1,000
regardless of the magnitudes of DIF, or when DIF sizes were large
and group sizes were 500 or larger. In other words, even though
the proposed model in general outperformed other alternatives,
it could not yield satisfactory TPRs of 0.7 when both DIF sizes
and group sizes were small. Researchers or practitioners need
to recruit enough sample sizes in order to achieve a desirable
power when implementing the proposed approach to detect DIF
in multidimensional data.

The impact of multidimensionality on the detection of non-
uniform DIF was not investigated in the present study; it is
worthy of being studied in future research. The present study
and previous studies (e.g., Yao and Li, 2015) have confirmed
that using a unidimensional approach would result in unequal
expected item scores for different groups, leading biased
conclusions in DIF assessment. We can foresee that the
performance of LR in detecting non-uniform DIF will be
influenced by the multidimensional structure as well. It must
be noted that when investigating non-uniform DIF on an item
measuringD constructs, there are a total of 3D possible outcomes.
For example, take a two-dimensional item including two slope
parameters, as in Equation (5). Consequently, there will be nine
(= 32) possible outcomes in non-uniform DIF detections: (1)
both the discriminations are identical for the two groups; (2)
both the discriminations are higher for the focal group; (3) both
the discriminations are higher for the reference group; (4) only
the first discrimination is higher for the focal group; (5) only the
first discrimination is higher for the reference group; (6) only
the second discrimination is higher for the focal group; (7) only
the second discrimination is higher for the reference group; (8)
the first discrimination is higher for the focal group, whereas the
second discrimination is higher for the reference group; and (9)
the first discrimination is higher for the reference group, whereas
the second discrimination is higher for the focal group. A two-
dimensional item would be flagged as non-uniform DIF in all
but the first outcomes. A more dedicated simulation study is
required to uncover how the multidimensionality could lead to
non-uniform DIF.

While the present study has comprehensively examined the
influence of several factors on the performance of the LR
procedure for uniform DIF detection in multidimensional data,
further investigations are still warranted. First, an identical
correlation between two latent variables for the two groups was
assumed in our simulations. The extent of the influence of
unequal correlations on the difference of item scores has not been
studied yet. Second, the power of the LR approach is undermined
by the percentage of DIF items in the matching variable. Future
studies should manipulate the percentage of DIF items in the
anchor variable to examine the influence of interactions on DIF
detection in multidimensional data. Finally, the present study
evaluated only the performance of the LR procedure; future
studies must compare LR performance with the performance of
the MH, SIBTEST, and multidimensional multi-group IRT (e.g.,
Yao and Li, 2010, 2015) in both simple and complex structured
data to provide further insights for practical use.
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