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Survey data in social, behavioral, and health sciences often contain many variables (p).

Structural equation modeling (SEM) is commonly used to analyze such data. With a

sufficient number of participants (N), SEM enables researchers to easily set up and reliably

test hypothetical relationships among theoretical constructs as well as those between

the constructs and their observed indicators. However, SEM analyses with small N or

large p have been shown to be problematic. This article reviews issues and solutions for

SEM with small N, especially when p is large. The topics addressed include methods for

parameter estimation, test statistics for overall model evaluation, and reliable standard

errors for evaluating the significance of parameter estimates. Previous recommendations

on required sample size N are also examined together with more recent developments.

In particular, the requirement for N with conventional methods can be a lot more than

expected, whereas new advances and developments can reduce the requirement for N

substantially. The issues and developments for SEM with many variables described in

this article not only let applied researchers be aware of the cutting edge methodology for

SEM with big data as characterized by a large p but also highlight the challenges that

methodologists need to face in further investigation.

Keywords: structural equation modeling, small sample size, parameter estimates, test statistics, stand errors

1. INTRODUCTION

Many important attributes in the social, behavioral, and health sciences cannot be observed
directly. Examples of such attributes include happiness, depression, anxiety, cognitive and social
competence, etc. They are typically measured by multiple indicators that are often subject to
measurement errors. Structural equation modeling (SEM) has become a major tool for examining
and understanding relationships among latent attributes. Existing SEM methods are developed
using asymptotics by assuming a large number of observations (N) and a small number of variables
(p). However, with survey data or data collected using questionnaires, p can be rather large while N
may be limited due to the high costs associated with obtaining a sufficient number of participants in
the data collection. In such instances, blindly applying SEM methods developed using asymptotics
can easily either result in misleading results or in unattainable parameter estimates due to non-
convergences in computation. This article reviews the development of methods that aim to address
small sample issues in SEM particularly when large numbers of variables are involved.
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Note that a small or large sample size in SEM and other
statistical modeling is relative to the number of variables, a
method that works well with a small sample size is also expected
to work well with a large number of variables. While our
focus is mainly on methodology development, we will also
discuss various recommendations on required sample size N
in the SEM literature. These recommendations are typically
based on limited simulation results using the method of normal-
distribution-based maximum likelihood (NML). In particular,
the requirement for N with the conventional NML method can
be a lot more than expected to obtain reliable results, whereas
new advances and developments can reduce the requirement for
N substantially. We hope that our discussion of the various pros
and cons of different methods will make researchers be aware of
the potential problems and issues that might arise when using
SEM with many variables, and the information offered would
allow them to identify a method that is most suitable for their
research when facing a data set with either a small N or a large p.

Let S be a sample covariance matrix based on a sample
of size N with p variables. Currently, the most widely used
method for SEM analysis is to fit S by a structural model using
NML. Overall model evaluation is conducted by comparing
the likelihood ratio statistic Tml against the nominal chi-
square distribution or by some fit indices such as root
mean square error of approximation (RMSEA, Steiger and
Lind, 1980), and/or the comparative fit index (CFI, Bentler,
1990). Standard errors of parameter estimates are obtained
by inverting the normal-distribution-based information matrix.
When data are normally distributed and the sample size is
sufficiently large, the NML procedure is expected to perform
well. In practice, data tend to be non-normally distributed
(Micceri, 1989). Under such circumstance one may choose
the Satorra-Bentler rescaled and adjusted statistics for overall
model evaluation, and the sandwich-type covariance matrix
for computing standard errors of parameter estimates (Satorra
and Bentler, 1994). However, these procedures are not reliable
when the number of variables p is relatively large, since their
validity is justified by asymptotics. In particular, when p is
large, the conventional SEM methods as implemented in most
available software may fail to generate a set of parameter
estimates due to the non-convergence that might occur during
computation. Additionally, the likelihood ratio statistic may
reject the correct model 100% of the time even when data are
normally distributed.

The issue of small N with a relatively large p has been
discussed by many authors in the extant literature (e.g., Barrett
and Kline, 1981; Bentler and Chou, 1987; Jackson, 2001; de
Winter et al., 2009; Xing and Yuan, 2017), in some cases aiming
to reduce the requirement for N or to give a rule of thumb
on the required sample size for properly conducting SEM.
We try to provide an overview of up-to-date developments
in methodology by addressing small sample issues in SEM.
They include procedure for addressing the problems of near
singular covariance matrix due to small N, obtaining more
efficient parameter estimates with non-normally distributed data,
improving the performance of test statistics, and procedures for
more accurate standard errors (SEs). In the rest of the article, we

first discuss various recommendations related to required sample
sizes, including those proposed for exploratory factor analysis.
Then we turn our attention to parameter estimation, where we
discuss recent developments related to the use of ridge methods
as well as penalized likelihoods. Overall model evaluation is
discussed next, whereupon we review ad-hoc corrections as well
as principled corrections to the likelihood ratio statistic and
to the Satorra and Bentler’s rescaled statistic. Standard errors
are discussed subsequently, and includes a discussion of some
advances that have been recently made. A real data example is
presented next, contrasting conventional methods with recently
developed new methods. Finally, we present some general
recommendations, highlight some limitations, and conclude with
emphasizing important remaining challenging issues in need of
future attention.

2. AD-HOC RECOMMENDATIONS
CONCERNING SAMPLE SIZE

Many scholars have studied sample size issues in SEM and factor
analysis. Earlier research noted that reasonable results could
be obtained in SEM analyses when N is <200 (Gerbing and
Anderson, 1985), or at least above 100 (Boomsma, 1985). While
these recommendations were supported by Monte Carlo results,
the number of variables in these studies was rather small. Bentler
and Chou (1987) subsequently noted that sample size N should
instead be considered relative to the number of parameters q,
and the ratio of N:q can be as low as 5:1 for normally distributed
data, and 10:1 for arbitrary distributions. However, recent studies
have suggested that, as p increase, we in fact need an N that is
much large than 200 in order for Tml to perform as expected.
In particular, it was found that at the nominal level of 5%, Tml

rejected a correct model 100% when N = 200 and p = 90
(Moshagen, 2012); and rejected correct models around 85%when
N = 1,000 and p = 120 (Shi et al., 2018). In addition, the studies
by Jackson (2001), Moshagen and Shi et al. indicated that the
behavior of Tml is little affected by the number of parameters.

The issue of not having sufficiently large sample sizes has
also been a major concern in exploratory factor analysis (EFA)
since most well-known psychological scales contain many items,
Within the context of EFA, the recommendations are quite
varied, including for example for N to be above 100 and even
up to above 1000 (Guilford, 1954; Kline, 1979; Gorsuch, 1983;
Comrey and Lee, 1992), In terms of the ratio N/p, it has been
suggested as needing to be anywhere from above 1.2 to up to
10 (Everitt, 1975; Cattell, 1978; Barrett and Kline, 1981; Gorsuch,
1983; Arrindell and van der Ende, 1985).MacCallum et al. (1999),
however, argued that the necessary N is in fact dependent on
other conditions in addition to N/p, including communality
and the number of indicators per factor. These results were also
confirmed by Preacher and MacCallum (2002) and Mundfrom
et al. (2005). Interestingly, de Winter et al. (2009) noted that
N can be much smaller than p if both the size of communality
and the number of indicators per factor are high. However,
the discussion and recommendations concerning the required
sample size needed in EFA are mostly for the purpose of factor
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recovery1 instead of overall model evaluation or inference of
parameter estimates.

While factor recovery in EFA might seem conceptually
different from the issue of statistical inference in SEM or CFA,
and the main focus in this article is model estimation and
evaluation, our discussion and review will inevitably provide
insight on inference issues in EFA as well. In particular, because
factor recovery is closely related to standard errors of factor
loading estimates, conditions or methods corresponding to more
efficient parameter estimates will yield better factor recovery in
EFA. For example, Yuan et al. (2010) have shown that standard
errors (SEs) of factor loading estimates in CFA increase with
the size of error variances, and decreases with the number of
indicators per factor and the size of factor loadings other than
that corresponding to the SE itself. We would expect these
results also hold for standard errors of factor loading estimates
in EFA. However, smaller values of SEs in EFA andmore accurate
estimates of SEs are two different concepts. Also, the conditions
on p and m (the number of factors) that yield smaller SEs for
parameter estimates are different from the conditions that lead
to more reliable test statistics for overall model evaluation. For
example, Shi et al. (2018) found that the distribution of Tml is
little affected by the number of indicators per factor (p/m), and
the performance of Tml becomes worse when p increases while
holding N constant.

In summary, recommendations on required sample sizes in
the literature of SEM and EFA are all simply ad-hoc conjectures.
Although they might be based on small simulation studies with
variedN but limited values of p, they are not justified statistically,
nor generalizable to conditions with large p, as also noted by Yang
et al. (2018).

3. PARAMETER ESTIMATION

A SEM model can be formulated according to theory or
information gained at the exploratory stage with EFA. Once a
model is formulated, we need to obtain parameter estimates
before model evaluation. We discuss several major methods
in this section, including normal distribution based maximum
likelihood (NML), generalized least squares (GLS), the Bayesian
approach, penalized likelihood, and some related methods to
yield more stable/efficient parameter estimates.

3.1. NML and Ridge ML
The most widely used method for parameter estimation in SEM
is NML, which is equivalent to minimizing the discrepancy
function

Fml(θ) = tr(S6−1(θ))− log |S6−1(θ)| − p (1)

1Factor recovery is commonly measured by a so-called congruence coefficient

(https://en.wikipedia.org/wiki/Congruence_coefficient), which is a formula

parallel to the product-moment correlation between the population factor

loadings and their sample counterparts without centralizing at the mean.

Preacher and MacCallum (2002) used root mean squared differences between

the population correlations and model implied correlations for measuring factor

recovery.

for estimating θ , where 6(θ) is the structural model. Unlike
in linear regression where there is an analytical formula for
estimating the regression coefficients, we have to use an iterative
procedure to minimize Fml(θ), and the Fisher-scoring algorithm
(see Lee and Jennrich, 1979) is typically used for such a purpose.
Small N or large p can cause various problems when minimizing
Fml(θ), including near singular covariance matrices due to not
having enough distinct observations and slower convergence due
to large sampling errors. When a sample does not contain a
sufficient number of distinct cases, the sample covariance matrix
S is near singular (not full rank). Then, the iteration process
for computing the NML estimates can be very unstable, and it
may take literally hundreds of iterations to reach a convergence
(Yuan and Bentler, 2017). When S is literally singular, equation
(1) is not defined, and other methods for parameter estimation
will likely break down as well. Even when the sample size is
quite large, S can be near singular in real data analysis due to
multi-collinearity (Wothke, 1993), especially when p is large. A
great deal of research has been directed to address the problems
encountered with near singular covariance matrices, and to
increase the chance and speed of convergence in computation at
the same time.

When S is singular, the program LISREL (Jöreskog and
Sörbom, 1993) provides an option of ridge SEM by replacing
the S in the NML discrepancy function in Equation (1), with
S + kdiag(s11, . . . , spp), where k > 0 and sjj is the sample
variance of the jth variable. However, statistical properties
of the resulting ridge parameter estimates and test statistics
have not been obtained analytically or asymptotically. Through
empirical studies, McQuitty (1997, p. 251) concluded that
“there appears to be ample evidence that structural equation
models should not be estimated with LISREL’s ridge option
unless the estimation of unstandardized factor loadings is
the only goal." A ridge technique that is different from
the one implemented in LISREL was developed by Yuan
and Chan (2008). They proposed to replace S in equation
(1) by Sa = S + aI and recommended choosing a =

p/N. Let the resulting discrepancy function be denoted by
Fmla(θ), and call the procedure of minimizing Fmla(θ) ridge
ML. Yuan and Chan (2008) showed that both the speed
of convergence and convergence rate of the Fisher-scoring
algorithm in ridge ML are much higher than in ML. They
also showed that, with smaller Ns, ridge ML yields consistent

and more efficient parameter estimates θ̂a than ML even
when data are normally distributed. They further proposed a
rescaled statistic and sandwich-type SEs for model and parameter
evaluation. However, with this approach, the inferences are still
based on asymptotics. Furthermore, with typically non-normally
distributed data (Micceri, 1989), minimizing Fmla(θ) may not
generate most efficient parameter estimates of θ , because the
function does not account for possible skewness and kurtosis in
the sample.

In item factor analysis with ordinal data, the polychoric
correlation matrix R tends to be nonpositive definite because
different elements are computed using different pairs of variables.
One method of item factor analysis is to treat R as a covariance
matrix in the NML based method, and constrain all the diagonal
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elements of the structural model implied covariance matrix 6 at
1.0. This method has been recommended by Lei (2009) for SEM
analysis when the sample size N is not large enough. But it fails
when R is not positive definite. Yuan et al. (2011) generalized
the ridge ML method in Yuan and Chan (2008) for continuous
data to ordinal data by fitting a structural model to Ra = R +

aI via minimizing NML discrepancy function Fmla. Empirical
results indicated that ridgeML for ordinal data yields muchmore
efficient parameter estimates than ML for ordinal data when
modeling polychoric correlations. While Yuan et al. (2017) did
not compare ridge ML directly with the widely used methods of
least squares (LS) and diagonally weighted least squares (DWLS),
we would expect ridge ML to yield more efficient parameter
estimates than LS and DWLS, especially when N is small and p
is relatively large. However, like for NML with continuous data,
the sampling property of R is not accounted for in the stage of
parameter estimation with the ridge ML method.

3.2. GLS and Ridge GLS
Arruda and Bentler (2017) studied the normal-distributed-based
generalized-least-squares (GLS) method, and proposed to replace
the sample covariance matrix in the GLS weight matrix by a
regularized covariance matrix. While their development is to
improve the conditions of the weight matrix, they mostly focused
on the performance of GLS-type test statistics for overall model
evaluation with normally distributed data. We would expect
that this regularized GLS method would yield more efficient
parameter estimates thanNML orGLSwith large p. Further study
is needed.

A well-known development that considers the sampling
variability of the sample covariance matrix S is the generalized-
least-squares (GLS) method developed by Browne (1984), which
is also called the asymptotically distribution free (ADF) method.
Let s be the vector of non-duplicated elements in S, σ (θ) be the
structured counterpart of s, and Ŵ̂ be a consistent estimator of the
covariance matrix of N1/2s. The GLS/ADF discrepancy function
is given by

Fgls(θ) = (s− σ (θ))′W(s− σ (θ)), (2)

where W = Ŵ̂−1, with Ŵ̂ being the sample 4th-order moment
matrix (Mooijaart and Bentler, 2011). The GLS/ADF parameter
estimates are obtained by minimizing the function Fgls(θ) in
equation (2). While the GLS/ADF method enjoys the property
of yielding asymptotically most efficient estimator among all
methods of modeling S, its performance is rather poor unless the
sample size N is rather large and p is relatively small. Further
studies show that this is because Ŵ̂ is very unstable, especially
when Ŵ̂ is near singular with a large p and a relatively small N
(Yuan and Bentler, 1998; Huang and Bentler, 2015).

Note that the function Fgls(θ) in equation (2) becomes the LS
discrepancy function when W is replaced by the identity matrix
I. In contrast to the instability of Ŵ̂, the weight matrix I in the
LS method is most stable because it does not depend on data.
However, there is no mechanism in the LS method to account
for the variances of the elements in S, and consequently the
LS estimator does not possess the desired asymptotic properties

of the GLS/ADF estimator. Considering the pros and cons of
LS and ADF method, Yuan and Chan (2016) proposed a ridge
GLS method in which the weight matrix W in Equation (2) is
replaced by Wa = [aŴ̂ + (1 − a)I]−1, where a is a scalar that
can be tuned according to certain conditions. Clearly, GLS/ADF
corresponds to a = 1 while LS corresponds to a = 0. We can
choose an a in between to yield the most efficient parameter
estimates. Results in Yuan and Chan (2016) indicate that, with
typically non-normally distributed data in practice, ridge GLS
yields uniformly more efficient parameter estimates than LS,
GLS/ADF, and NML. While ridge GLS enjoys various advantages
over other well-known methods, it involves the determination
of the tuning parameter a. Currently, there does not exist an
effective method for choosing a to yield most efficient parameter
estimates. Also, as we will discuss in the next section, the test
statistics following ridge methods also need to be calibrated,
especially with large p and small N.

3.3. The Bayesian Method
In addition toML and GLS, another major method for parameter
estimation is the Bayesian approach. In particular, for some
nonlinear models (e.g., models involving interactions among
latent variables), the likelihood function of the model parameters
might be hard to specify or becomes too complicated to work
with. It is relatively easy to specify a conditional distribution
of the parameters via data augmentation (Gelman et al., 2014).
Thus, one might be able to obtain results close to those by ML
or GLS using the Bayesian approach that is facilitated by Gibbs
sampling or Markov chain Monte Carlo (MCMC). Another
advantage of the Bayesian approach is that one can include
prior information by properly specifying prior distributions
for the model parameters. However, properly specifying prior
distributions needs skills, especially when the prior information
does not come in the form of an inverted Wishart distribution
or inverted gamma distribution that are needed in most
developments of Bayesian methodology (Scheines et al., 1999;
Lee, 2007), and inaccurate specification of the prior distributions
can result in biased estimates (Baldwin and Fellingham, 2013;
Depaoli, 2014; McNeish D., 2016). While the covariance matrix
Sa = S + aI in ridge ML can also be regarded as a Bayesian
estimate by specifying a prior distribution for the saturated
covariance matrix, the effect of a is removed from the estimates
of error variances (Yuan and Chan, 2008). This is why ridge ML
yields more accurate parameter estimates than NML even when
data are normally distributed.

Unlike the methods of ML and GLS that are justified by
asymptotics, the modern Bayesian approach to estimation and
inference is based on sampling from the posterior distribution.
Thus, the Bayesian method has been suggested to deal with
issues for for small N. Indeed, the MCMC method has been
shown to outperform ML and GLS in small sample contexts
(Lee and Song, 2004; Zhang et al., 2007; Moore et al., 2015;
van de Schoot et al., 2015; McNeish D. M., 2016). However,
informative priors are used in these studies. In particular, when
N is small, the priors are expected to dominate the results.
Actually, one may get satisfactory results even when N = 0 if
accurate priors are specified. Thus, to a certain degree, the small
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sample advantage of a Bayesian method is subjective. With flat
or Jeffreys noninformative priors, Bayesian methods are expected
to yield equivalent results to ML. However, empirical results do
not endorse the Bayesian methods with small N (Baldwin and
Fellingham, 2013; McNeish D. M., 2016).

In conclusion, when prior information is indeed available
and one can include it in the current study via an accurate
specification of priors and the distribution of current data given
the parameter, Bayesian method is preferred and will be able to
successfully address the problem for SEM with small N and/or
large p. One needs to be cautions when either of the specifications
is not proper. In particular, Bayesian methods “will not address
the small sample issue and that ML with small sample alterations
typically produce estimates with quality that can equal or often
surpass MCMC methods that do not carefully consider the prior
distributions” (McNeish D. M., 2016, p. 753).

3.4. Penalized Likelihood
The issue of large p and small N also poses challenges to other
conventional statistical methods. In the literature of regression
analysis, lasso methodology has been shown to be a viable
method with big data or when p is rather large but N is
not sufficiently large (Tibshirani, 1996). As a generalization of
ridge regression, the idea of lasso is to squeeze parameters with
small values so that they are equivalent to being removed from
the model. When there are too many predictors to consider
and when their relevance is unclear, lasso regression provides
a viable tool for conducting regression analysis and variable
selection at the same time. Lasso methodology has also been
generalized to SEM via penalized likelihood (Jacobucci et al.,
2016; Huang et al., 2017). However, although there can be many
items with survey data, SEM is generally conceptualizered as
a confirmatory methodology. In particular, it is expected that
both the measurement and the structural parts of an SEM model
be established in priori, and while the model parameters are
freely estimated they are not free to be removed, simply because
the resulting model might correspond to a completely different
theoretical hypothesis. Also, the size of a parameter in SEM is
scale dependent. The estimates with smallest values might be
statistically most significant.

Parallel to factor rotation, lasso methodology might be a more
useful technique for exploratory factor analysis when applied
to standardized variables, because the scales of the measured
variables become irrelevant. While the corresponding parameter
estimates with standardized variables are more comparable, it
does not imply that their standard errors also are comparable
or become irrelevant (Cudeck, 1989). One still needs to be
cautious when using the lasso methodology for big data in SEM
or factor analysis, especially when items that are theoretically
important for measuring an underlying construct might have
smaller loadings.

In summary, various methods have been proposed in SEM
to yield more accurate/efficient parameter estimates. Currently,
the ridge ML and ridge GLS appear to be the most promising
methods. In particular, when combining ridge ML with robust
transformation (Yuan et al., 2000), ridge ML may in fact yield

estimates that are close to full information maximum likelihood
estimates. Further study in this direction is clearly needed.

4. TEST STATISTICS

In addition to making parameter estimation difficult, a large
p also causes problems to the overall model evaluation, which
is considered by many researchers a key aspect of SEM (e.g.,
Marcoulides and Yuan, 2017). Model evaluation has also gained
more extensive studies than other aspects of SEM, simply because
any elaboration on parameter estimates or causal relationship
among the variables is conditional upon determination of an
adequate model. Because there are many extensive developments
in this direction that have appeared in the literature, here we only
discuss the pros and cons of methods connected to the issue of
the effect of small N and/or large p. Most of these studies on
advancingmodel inference in SEMwithin this context follow two
directions. One is to account for non-normally distributed data;
and the other is to account for small sample sizes or large number
of variables. Of course, because statistics that account for non-
normally distributed data also face the challenge of large number
of variables, we inevitably also focus our review on their behaviors
with small N and/or large p.

4.1. Correction to Tml Under the Normality
Assumption
The most widely used test statistic in SEM is Tml = (N − 1)Fml,
mostly because it is the default statistic in available software, not
because normally distributed data are common or Tml provides
more reliable model evaluation. Under the normality assumption
and a correct model, Tml approaches the nominal chi-square
distribution χ2

df
as the sample size N increases while p is fixed.

However, this result does not tell us how large N needs to be at a
given value of p for Tml to approximately follow χ2

df
. As we noted

earlier, the statistic Tml can reject the correct model 100% at the
nominal level of 5% even when data are normally distributed.
While there are a lot of efforts to improve the performance of
Tml by many authors, most are ad hoc corrections rather than
principled ones. Consequently, the behavior of the corrected
statistics can vary as conditions change.

It is a general and well-known phenomenon that the
likelihood ratio statistic tends to reject the correct model more
often than expected when N is not sufficiently large, not
just in SEM. As a consequence, statisticians have developed a
systematic approach for correcting the likelihood ratio statistic,
and it is called the Bartlett correction (Bartlett, 1937, 1954; Box,
1949; Lawley, 1956). Wakaki et al. (1990) obtained the Bartlett
correction to Tml for a class of covariance structural models
with normally distributed data. However, the corrected statistic
is rather complicated even for a relatively simple model, and it
is impractical to implement the Bartlett correction on Tml for
general SEMmodels. In the context of exploratory factor analysis
(EFA), Bartlett (1951, see also Lawley and Maxwell, 1971, p. 36)
proposed a simplified formula to correct the likelihood ratio
statistic, which is to replace (N−1) in Tml withNb = N− (2p +

11)/6 − 2m/3, where m is the number of factors. Because the
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corrected statistic, Tmlb = NbFml, is easy to implement, Nevitt
and Hancock (2004, see also Fouladi, 2000) proposed to apply
the simple correction to confirmatory factor analysis (CFA) and
SEM, where m is still the number of latent factors. However,
studies by Nevitt and Hancock (2004) and Herzog et al. (2007)
indicate that type I errors with Tmlb ∼ χ2

df
in SEM tend to be

much lower than the nominal level.
Considering that the number of free parameters in SEM is

much smaller than that in EFA when m is large, Yuan (2005)
proposed to replace (N − 1) in the definition of Tml with Ny =

N− (2p+13)/6−m/3. However, this proposal is only a heuristic
rather than one that is statistically justified. A more complicated
correction was originally offered by Swain (1975), who proposed
to replace (N − 1) in Tml by

Ns = N − 1− [p(2p2 + 3p− 1)− hq(2h
2
q + 3hq − 1)]/(12df ),

where hq = [(1 + 8q)1/2 − 1]/2 and q is the number of free
parameters in the structural model. Studies by Fouladi (2000),
Herzog et al. (2007) and Herzog and Boomsma (2009) indicate
that the performance of test from best to worst are Tmls = NsFml,
Tmly = NyFml, and Tmlb. Although the performance of Tmls is
potentially promising, the correction is not statistically justified.

Parallel to the Bartlett correction, Yuan et al. (2015) developed
a procedure that involved an empirical correction. In particular,
they proposed to estimate the coefficient β in

Tmle = (N − c′β)Fml

bymatching the empirical mean of Tmle with the nominal degrees
of freedom or themean of χ2

df
, where c is a vector whose elements

are different combinations of p, q, and m. Using Monte Carlo
results across 342 conditions of N, p, q, and m, they estimated
the vector β by maximum likelihood. One of the statistics they
recommended is Tmle = NeFml, where Ne = N − (2.381 +

0.361p + 0.003q). Yuan et al. (2015) noted that Tmle can be
properly used when N > max(50, 2p). Recently, Shi et al. (2018)
conducted a rather comprehensive simulation study and showed
that Tmle performed better than Tml, Tmlb, and Tmls. However,
type I error rates of Tmle can still be inflated when p is extremely
large (e.g., p = 90), even when N = 200. They noted that for
normally distributed data N needs to be >4p in order for Tmle to
properly control type I errors if p is over 100.

4.2. Corrections to Test Statistics That
Account for Non-normality
In addition to correcting Tml for normally distributed data with
small N and/or large p, various developments on test statistics
with non-normally distributed data were also made, including
modifying the statistic Tml following NML as well as working
with GLS, ridge GLS or a robust estimation method. We discuss
next their properties with small N as well as those of their
modified versions.

The most widely used statistics that account for non-
normality are the rescaled statistic Trml and the adjusted statistic
Taml, developed by Satorra and Bentler (1994). The statistic Trml

has the property that its mean asymptotically equals that of the
nominal chi-square distribution χ2

df
, and the statistic Taml has the

property that both its mean and variance asymptotically equal
those of the approximating chi-square distribution χ2

dfa
. Note

that the value of dfa (the degrees of freedom) for the reference
distribution of Taml is determined by both the model and the
underlying population distribution, and needs to be estimated in
practice. Among the two statistics, Trml is more widely used and
is called a robust chi-square statistic by some authors (Bentler
and Yuan, 1999). Although the exact distribution of neither Trml

nor Taml is known even asymptotically, Monte Carlo results in
Fouladi (2000) at p = 6 and 12, and in Hu et al. (1992) at p = 15
indicate that they perform reasonably well for medium to large
N. However, there exists evidence that Trml and Taml do not work
well with small N (Bentler and Yuan, 1999; Nevitt and Hancock,
2004). In particular, when p is relatively large, results in Yuan
et al. (2017) suggested that Trml can reject the correct model from
0 to 100% while the nominal rate is 5%.

Earlier studies indicated that Trml tend to over-reject the
correct model when N is not sufficiently large (e.g., Hu et al.,
1992; Bentler and Yuan, 1999). Many ad-hoc corrections have

been proposed to correct such behavior, including T
(b)
rml

obtained
by replacing the (N − 1) in the formulation of Trml with Nb,
which is the formula proposed by Bartlett (1951) for correcting
the behavior of Tml in EFA. Aiming to improve the behavior
of Trml in over-rejecting corrected models at smaller N, Jiang
and Yuan (2017) proposed four statistics to further modify the
behavior of Trml. However, these statistics may reject the correct
model 0 times in some conditions. Yang et al. (2018) studied

10 modifications of Trml, including T
(b)
rml

, and the four proposed
in Jiang and Yuan (2017). Using the average of the absolute
deviations from the nominal level as a criterion, results in Yang

et al. (2018) indicate that T
(b)
rml

performed the best across 604
conditions of N, p, and different population distributions. But

still T
(b)
rml

rejected correct models from 0 to 96%. In particular,
when N is small and p is relatively large, the rejection rate by

T
(b)
rml

for correct models is close to 100%with normally distributed
data, and 0% when data follow a population distribution with

heavy tails. Thus, T
(b)
rml

is not a reliable test statistic for SEM when
p is large and/or N is relatively small.

Comparing to Trml, fewer studies for the adjusted statistic Taml

indicate that it tends to under-reject correct models, and perform
rather well when p is relatively small (Fouladi, 2000). However,
there is a noticeable lack of studies focusing on Taml with respect
to type I error control at relatively large p. Nevitt and Hancock
(2004) noted that the resulting statistic of replacing the (N − 1)
in the formulation of Taml byNb (Bartlett’s formula for EFA) does
not work well.

Note that Trml and Taml of Satorra and Bentler are derived
from the principles of mean and mean-and-variance correction
(e.g., Welch, 1938; Rao and Scott, 1984), and they are expected
to work well in practice, especially when p or the degrees of
freedom are large (e.g., Yuan and Bentler, 2010). Yang et al.
(2018) recently examined the causes for Trml and Taml to fail
to control type I errors, and found that neither Taml nor Trml
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possess the properties to which they are entitled asymptotically.
That is, their means and variances can be far from those of their
reference distributions. Even for normally distributed data, the
mean of Trml can be hundreds of times greater than that of the
nominal chi-square distribution in standardized units when p is
large butN is not sufficiently large. For non-normally distributed
data, the mean of Trml can also be much smaller than that of the
nominal chi-square distribution when both p and N are large.
Also, there are many conditions under which the mean of Taml

is much greater than that of its reference chi-square distribution
χ2
dfa

whereas the standard deviation of Taml is much smaller than

that of χ2
dfa
. This is because the mean and mean-and-variance

corrections for obtaining Trml and Taml are implemented via
standard asymptotics, which fail when p is relatively large. Yang
et al. (2018) noted that mean and mean-and-variance corrections
are still expected to work well with big data but we have to use
alternative methods instead of those based on asymptotics to
implement them.

A recent development in correcting the behavior of Trml is
given by Yuan et al. (2017). Parallel to obtaining Tmle, they
replaced the term (N− 1) in the formulation of Trml with a scalar
Nc = N − c′β . However, the elements of the vector c contain
covariates that reflect the underlying population distribution of
the sample in addition to various nonlinear functions of N,
p, q, and df . The coefficients in β are estimated so that the

corrected statistic T
(c)
rml

= NcFrml has a mean approximately equal
to that of the nominal chi-square distribution, not according
to asymptotics but according to empirical results. With many
conditions of N, p, m, q, and population distribution, they
evaluated different formulations of Nc, and recommended a
statistic containing 20 predictors, denoted it as T

(c20)
rml

. They
further conducted an independent simulation study to evaluate

T
(c20)
rml

, and found that it performed substantially better than T
(b)
rml

.
In particular, for normally distributed data with p ranging from

20 to 80, the rejection rates of T
(c20)
rml

range from 2.4 to 7.6%,

the rejection rates of T
(b)
rml

range from 2.2 to 57.8%, and those
of Trml range from 4.8 to 100%. For data that follow elliptical

distributions, the rejection rates of T
(c20)
rml

range from 5.8 to 14%,

those of T
(b)
rml

range from 0 to 5.4%, and those of Trml range

from 0 to 95.4%. We may think that T
(b)
rml

performed well for
the condition of elliptical population distributions, however, its
rejection is 0% for many of the conditions studied, and type
I error rates do not tell how bad its performance is for these
conditions once the rates are equal to zero.

The statistics we discussed so far, as listed in the first part
of Table 1, are all derived from the normal-distribution-based
maximum likelihood (NML), and the parameter estimates under
these statistics are the same. In particular, unless data are
normally distributed, NML does not account for the underlying
population distribution in estimating model parameters. As we
noted in the previous section, the GLS/ADF method uses the
inverse of a consistent estimator of the covariancematrix ofN1/2s

as the weight matrix, which directly accounts for the underlying
population distribution. In addition to yielding asymptotically
most efficient parameter estimates among all the methods of
modeling S, the corresponding statistic Tgls = (N − 1)Fgls also

TABLE 1 | Test statistics and their applicability.

Statistic Source Applicability

p N Distribution

Tml Likelihood ratio S L NM

Tmlb Nevitt and Hancock, 2004 S L NM

Tmly Yuan, 2005 S L NM

Tmls Swain, 1975 S to M M to L NM

Tmle Yuan et al., 2015 S to M M to L NM

Trml Satorra and Bentler, 1994 S L NM & NNM

Taml Satorra and Bentler, 1994 S L NM & NNM

T
(b)
rml

Nevitt and Hancock, 2004 S L NM

T
(c20)
rml

Yuan et al., 2017 S to M M to L NM & NNM

Tgls Browne, 1984 S vL NM & NNM

Tcgls Yuan and Bentler, 1997a S M to L NM & NNM

TF Yuan and Bentler, 1999 S M to L NM & NNM

S, small; M, medium; L, large; vL, very large; NM, normal; NNM, nonnormal

The two underlined statistics are recommended.

asymptotically follows the nominal chi-square distribution. With
p = 15 manifest variables, results in Hu et al. (1992) suggested
that Tgls performs as expected at N = 5,000, and it rejects
the correct model 100% at N = 150. Thus, as p increases, the
requirement for sample size by Tgls ∼ χ2

df
to perform reasonably

well is even more demanding than Trml ∼ χ2
df
or Taml ∼ χ2

df
.

Statistics that are less demanding for sample size following the
GLS/ADF estimation have also been developed over the years.
One is a corrected GLS/ADF statistic Tcgls = Tgls/(1+Fgls), which
was obtained by Yuan and Bentler (1997a) via estimating the
covariance matrix of N1/2s using the cross-product of residuals
instead of using 4th-order sample moments. Another is an F-
statistic (Yuan and Bentler, 1999)

TF =
(N − df )Fgls

df
, (3)

which is referred to an F-distribution with df and N − df
degrees of freedom. In addition, Yuan and Bentler (1998) also
proposed statistics that are based on residuals s − σ̂ , where the

parameter estimates θ̂ in σ̂ = σ (θ̂) might be obtained by NML
or least squares. In addition to being asymptotically distribution-
free, these statistics perform reasonably well for medium to
large sample sizes (Fouladi, 2000; Nevitt and Hancock, 2004).
However, when N is relatively small, TF tends to over-reject
correct models and Tcgls tends to under-reject correct models
(Bentler and Yuan, 1999). Also, we need to have N > df for TF

and Tcgls to be properly defined, and a much larger N is needed
for them to closely follow their nominal distributions. Because
the value of df tends to increase fast with p, the statistics TF and
Tcgls are not solutions to inference issues for SEM when p is large.

4.3. Other GLS-Type Test Statistics
As described in the previous section, Arruda and Bentler (2017)
studied a regularized normal-distribution-based GLS method
and found that one of the resulting test statistics performed rather
well at p = 15 and N = 60 for normally distributed data. While
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this statistic is expected to work better than its unregularized
version as well as Tml with larger p, it is clear that further
study on its performance with large p and small N as well as
non-normally-distributed data is needed.

Following the NML estimation method, a GLS-type statistic
is obtained when the weight matrix is obtained by the estimated
covariance matrix instead of the sample covariance matrix. This
statistic is called “the normal theory RLS chi-square" statistic in
EQS (Bentler, 2006). A ridge version of this statistic obtained by
fitting the polychoric correlation matrix with ordinal data was
studied in Yuan et al. (2011). They found that the rescaled and
adjusted versions of the ridge RLS type statistics performedmuch
better than the rescaled and adjusted versions of the ridge ML
type statistics. Because the formulation of the ridge RLS type
statistic is very close to the regularized GLS statistic studied in
Arruda and Bentler (2017), in general we would expect that the
rescaled and adjusted ridge RLS type test statistics to perform
better than the rescaled and adjusted ridge ML statistics with
large p. Of course, additional research is clearly needed in this
direction before any definitive conclusion can be drawn. As
pointed by Huang and Bentler (2015) and noted in the previous
section, the poor performance of the GLS/ADF statistic Tgls is

closely related to the condition of the weight matrix W = Ŵ̂−1

in Equation (2), especially if Ŵ̂ is near singular when N is small
relative to p. Using the idea of principal components, Chun et al.
(2017) proposed to test the structural model by ignoring the
directions corresponding to the smallest eigenvalues of Ŵ̂. The
resulting statistic is shown to control type I errors better. But
the null hypothesis of the test is different from that of other
test statistics reviewed in so far, because the test is unable to
identify misspecifications in the direction represented by the
vectors corresponding to the smallest eigenvalues of Ŵ̂.

In summary, much research has focused on trying to obtain
more reliable test statistics for overall model evaluation in cases
with large p and/or relatively small N. Most of the obtained
statistics are justified by either asymptotics or simple ad-hoc
corrections to Tml or Trml. Currently, the most reliable statistic
for normally distributed data with many variables is the statistic
Tmle, developed in Yuan et al. (2015). The most reliable statistic
for data with many variables that are possibly non-normally

distributed is the statistic T
(c20)
rml

, developed in Yuan et al. (2017).
These two statistics are underlined in Table 1.

While ridge ML, ridge GLS and robust methods have been
shown to yield more efficient parameter estimates, there is little
development aimed at improving the performance of the rescaled
and adjusted test statistics following these methods (Yuan and
Chan, 2008, 2016; Tong et al., 2014).

5. STANDARD ERRORS OF PARAMETER
ESTIMATES

Standard errors (SEs) for parameter estimates are also key
elements in SEM although they are secondary compared to
parameter estimates or test statistics for overall model fit
evaluation. In particular, once a model is deemed adequate
following a proper estimation method, the meaning of the
estimated values of the parameters must then be properly

elaborated and explained. It is in this context that, accurate
SE estimates are essential for proper interpretations. However,
compared to test statistics or parameter estimation, much less
research has focused on ways to improve the estimation of SEs.
While a formula for computing SEs is typically provided with
each method of parameter estimation in SEM, the formula is
mainly justified by asymptotics, and may not work well when
the number of variables is large. We review existing approaches
to estimating SEs in this section, and point out their potential
problems with small N and/or large p.

Coupled with the test statistic Tml, standard errors following
the NML method in SEM are computed by inverting the
corresponding information matrix, as is given in the default
output of most SEM software. Such obtained SEs are consistent
when the normality assumption literally holds and the model
is correctly specified. When either the normality assumption is
violated or when the model is misspecified, SEs based on the
information matrix are not consistent (Yuan and Hayashi, 2006).
We are not aware of any study to date on their accuracy for
large p or small N. While there is a general interest in the
performance of the SEs based on the information matrix, because
data commonly collected in social and behavioral science are
typically non-normally distributed (Micceri, 1989), additional
effort on improving the information-matrix-based SEs may not
ultimately be worth the investment.

The NML method is widely used in practice regardless of
the distribution of the data. This is because there are not many
multivariate distributions to choose from, and we typically do not
know the population distributions. Following NML estimation,
SEs based on the so-called sandwich-type covariance matrices
have been proposed to account for violations of normality
(White, 1981; Bentler, 1983; Shapiro, 1983; Browne, 1984), and
they have been implemented in most SEM software. Such SEs
are also called robust SEs in the SEM literature, parallel to
the rescaled statistic Trml. However, the sandwich-type SEs as
implemented in statistical packages are based on the assumption
of a correctly specified model, because the formula becomes
rather complicated otherwise (Yuan and Hayashi, 2006). While
it is unlikely that a researcher can specify a model that is
literally correct in practice, sandwich-type SEs are close to being
consistent if themodel is deemed adequate. However, consistency
does not tell us how good the SE estimates are in a given
application. While there are limited studies on the performance
of sandwich-type SEs in SEM (Yuan and Bentler, 1997b; Yuan
and Chan, 2016), there is a great deal of evidence that sandwich-
type SEs are not reliable when p is large and N is not sufficiently
large in other contexts (MacKinnon and White, 1985; Long and
Ervin, 2000; Yang and Yuan, 2016). In particular, for regression
models with heteroscedastic variances, various corrections to
SEs have been proposed (see e.g., Cribari-Neto, 2004), however,
because these may not be directly generalizable to the SEM
context, it is evident that further research is needed on this topic.

In addition to yielding a statistic Tgls that asymptotically
follows the nominal chi-square distribution, the GLS/ADF
method also generates a formula that yields consistent SEs for the
GLS estimates. However, like Tgls, it needs a rather large sample
size for the formula-based SEs to match those of the empirical
ones. When p is large while N is not sufficiently large, the SEs
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computed by GLS/ADF formula are too small. Yuan and Bentler
(1997b) proposed a correction to the formula of the covariance
matrix of the GLS/ADF estimator. While the corresponding
corrected SEs are much improved over the uncorrected ones,
but they are still under-estimated, especially when N is small.
Further improvement over the corrected SEs is possible. But the
GLS/ADF estimator can be rather inefficient for small N, and the
additional effort needed to improve the estimates of SEs for not
efficient parameter estimates may not be worthwhile.

The bootstrap method has also been shown to yield reliable
SEs, and is especially valuable when formula-based SEs are not
available (Efron and Tibshirani, 1993). In particular, a model does
not need to be literally correct in order for the bootstrap method
to yield consistent SEs (Yuan and Hayashi, 2006). Indeed, since
the bootstrap methodology is based on resampling that accounts
for both the sample size and empirical distribution, we would
expect it to work reliably regardless of the values of N and p.
Currently, however, we are not aware of any study that verifies
the validity of the bootstrap methodology for SEM with large p
and small N.

In summary, few studies have focused on improving estimates
of standard errors in SEM with large p. Although the bootstrap
methodology appears promising, it is not a substitute for
analytical formulas. This is because the bootstrap methodology is
essentially Monte Carlo simulation with empirical data. It takes
time to estimate the parameters in conducting the simulation
with SEM models, especially when p is large. The issue of non-
convergence with parameter estimation discussed earlier can be
a serious problem for the bootstrapmethodology since there exist
systematic differences between converged and non-converged
replications (Yuan and Hayashi, 2003), and SEs based on only
the converged replications might under-estimate the true SEs.
Since efficient parameter estimates are fundamental to statistical
inference, future research should focus on developing more
reliable SEs perhaps by focusing on the development of methods
(such as ridge GLS and robust methods) that yield more efficient
parameter estimates.

6. A REAL DATA EXAMPLE

In this section we present an empirical data example with a small
N and a relatively large p. As discussed in the previous sections,
small N and large p can cause many problems in estimating and
evaluating SEM models. In the illustration we focus specifically
on model evaluation with different test statistics, which is a
key step for SEM analyses to provide reliable results. The data
come from an intervention program for college students who
had exhibited depression symptoms. Measurements for both pre-
and post-interventions are obtained on N = 57 participants,
all of whom are college students from universities located in
Beijing, China. The data were collected by the first author, as
part of a study examining the relationship between resilience and
depression.

Resilience was measured by the Connor-Davidson Resilience
Scale (CDRISC, Connor and Davidson, 2003). The CD-RISC
contains 25 items, with each item rated on a 5-point scale

reflecting how a participant felt over the past month, where
1 = Not true at all, 2 = Rarely true, 3 = Sometimes true, 4
= Often true, 5 = True nearly all of the time. The CD-RISC
has 3 subscales: toughness (13 items), powerful (8 items), and
optimistic (4 items). The model of resilience and depression is
formulated with the subscales, not the item scores.

For each participant, measures of depression using the Self-
rating Depression Scale (SDS) were also collected. The SDS
contains 20 items (Song and Liu, 2013; Zhang et al., 2015; Xu and
Li, 2017), with each item rated on a 4-point scale according to
how a participant has felt over the past week, where 1 = A little
of the time, 2= Some of the time, 3= Good part of the time, 4 =
Most of the time. Item 2, 5, 6, 11, 12, 14, 16, 17, 18, and 20 were
reverse scored items. A higher score on the scale reflects higher
levels of depression.

The illustrative data also included six items from “Forgiveness
of Others subscale,” which is part of the Heartland Forgiveness
Scale (HFS, Thompson et al., 2005). All of the responses are on
7-point Likert scale, with 1–7 signifying responses from “Almost
Always False of Me” to “Almost Always True of Me.” Items 1,
3, and 5 were reverse scored items. A higher score indicates
more willing to forgive others. While the item-level scores are
ordinal variables, for purposes of the illustration, we treat them
as continuous variables in the analysis, which leads to very little
bias according to Li (2016) and Rhemtulla et al. (2012).

Each participant did the pre-test by filling out the
questionnaire before the intervention started, and a post-
test 3-months after the group intervention. Thus, we have p = 20
variables in total, 10 for the pre-test and 10 for the post-test.

Past literature on depression has indicated that a higher level
of resilience generally corresponds to a lower level of depression
(Kim and Yoo, 2004; Ding et al., 2017; Poole et al., 2017). This
literature has also suggested that individuals with depression
are expected to be mostly victims of negative events, and that
forgiving others is positively correlated with resilience (Dai et al.,
2016; Saffarinia et al., 2016). Additionally, it has been determined
that a person having a high level of forgiveness is more likely
to have a higher level of satisfaction with life, and thus is
relatively less depressed (Yu and Zheng, 2008). In accordance
with these past research findings, we hypothesize that forgiveness
would play a mediating role. Figure 1 is a hypothetical model
for exploring the relationship between resilience, depression,
and forgiveness of others, where for ease of presentation
prediction and measurement errors are not included in the path
diagram. We hypothesize that forgiving-others has a mediating
effect between psychological resilience and depression. That is,
resilience can predict the depression directly, and also can predict
depression through forgiving-others. It is also hypothesized that
resilience, depression, and forgiveness at time 1 (T1) will have a
lasting effect after the group intervention (T2). In addition, the
level of resilience at T1 also influences the level of depression
and forgiving-others at T2, and the level of forgiving-others at
T1 influences the level of depression at T2 as well.

The first line ofTable 2 contains the results of the test statistics
Tml, Trml and T

(c20)
rml

for Model 1, following NML.With df = 160,
Tml = 243.97 and Trml = 242.60 are noticeably statistically

significant when compared to χ2
160. In contrast, T

(c20)
rml

= 191.68,
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FIGURE 1 | Hypothetical model 1.

TABLE 2 | Test statistics Tml , Trml and T
(c20)
rml

for models 1–4.

Model df Tml pml Trml prml T
(c20)
rml

p
(c20)
rml

1 160 243.97 2.12× 10−5 242.60 2.72× 10−5 191.68 0.044

2 160 244.29 2.00× 10−5 240.38 4.05× 10−5 190.10 0.052

3 159 225.95 3.84× 10−4 225.33 4.24× 10−4 177.86 0.146

4 159 226.67 3.42× 10−4 224.34 4.96× 10−4 177.20 0.154

with a corresponding p = 0.044, would suggest that Model 1 is
close to being adequate.

While many researchers have showed that psychological
resilience can predict depression, numerous studies have also
indicated that resilience is influenced by depression (Li et al.,
2016; Song et al., 2017; Wang et al., 2017). In particular,
these studies have found that resilience of depressed individuals
tends to be significantly lower than that exhibited in healthy
individuals. Such a hypothetical relationship is represented by
Figure 2, where the relationship for the variables between the
two time points are set to be identical to those in Figure 1. Test
statistics for themodel represented by Figure 2 are in the 2nd line
ofTable 2. While both Tml = 244.29 and Trml = 240.38 reject the

hypothetical model with p < 0.001, T
(c20)
rml

= 190.10 suggests that
Model 2 is not statistically significant at the nominal level 0.05.

It is important to note that our data are repeated measures,
and it is known that such data involving the same measurement
across time are likely to have additional correlation due to
sharing specific traits. Accordingly, we used amodel modification
technique to identify the presence of such correlations. Following
results obtained by model modification based on the score tests
(Sarris et al., 1987), the two errors for indicators Forgive 4
were allowed to correlate in Figure 1, which yielded Model 3.
In parallel, allowing the two errors of Forgive 4 in Figure 2

to correlate yielded Model 4. The obtained results for Models

3 and 4 are displayed in the 3rd and 4th lines of Table 2,
respectively. For each model, all the three test statistics become
less significant. However, the conventional test statistics Tml and
Trml still reject both models at the level of 0.001. In contrast, the

p-value corresponding to T
(c20)
rml

is 0.146 for Model 3 and 0.154
for Model 4, indicating that both models fit the data reasonably
well.

In summary, the considered example clearly showed that the
most widely used test statistics are no longer reliable for data with
large p and/or small N. By considering the conditions of N, p,
and the empirical distribution, the empirically corrected statistic

T
(c20)
rml

gives the models the appropriate credit they deserve.

7. DISCUSSION AND CONCLUSIONS

Data with a small sample size and many variables pose numerous
challenges to conventional statistical methods. In this article,
we reviewed the developments in SEM for dealing with the
issues created by small N and/or large p. While there are
many methods for parameter estimation and overall model
evaluation in SEM, only a few can successfully account for the
effect of large p. Although ridge ML and ridge GLS explicitly
accounted for the effect of small N, their corresponding test
statistics may not follow the nominal chi-square distribution.
Among procedures of modeling the sample covariance matrix

S, the test statistic T
(c20)
rml

has the mechanism to account for
small N and the shape of the distribution of the sample.
However, it is based on the NML method (which does not have
the mechanism to account for small N), and may encounter
estimation difficulties in practice when the sample covariance
matrix is near singular. There is no doubt that additional
developments are needed that focus on test statistics following
the ridge estimation methods, along with formulas that can yield
accurate SEs.
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FIGURE 2 | Hypothetical model 2.

In this article, we mainly reviewed SEM methods based on
modeling the sample covariance matrix S. When data are non-
normally distributed, S is not an efficient estimate of 6 and
the corresponding estimates for the structural parameters are
not efficient either. Robust methods for SEM based on robust
estimates of 6 have been developed (Yuan et al., 2004; Yuan
and Zhong, 2008), and these methods are expected to yield more
efficient parameter estimates than NML. However, additional
developments with the robust methods are needed to deal with
the issues of non-convergence and statistics not following the
nominal chi-square distributions. Formulas to yield more reliable
SEs of the robust estimates also need to be developed. In this
article we did not describe methods for dealing with incomplete
data, since existing methods for SEM with missing data do
not have the mechanism to account for the effect of large p
and/or small N yet (Yuan and Bentler, 2000; Savalei, 2010; Yuan
and Zhang, 2012). Additional developments would appear to be
needed for SEM with a large number of variables that contain
missing data.

In addition to test statistics, fit indices are regularly used for
overall model fit evaluation in applications of SEM. Since most
popular fit indices are defined via test statistics (e.g., RMSEA,
Steiger and Lind, 1980; CFI, Bentler, 1990), they too face the
same issues with large p and small N (e.g., Jackson, 2001). Root
mean squared residual (RMSR) is not defined via test statistics,
but it needs a proper regulation to be an unbiased estimator
of its population counterpart, and the construction of such an
unbiased estimator can be especially challenging with small N
and/or large p (Maydeu-Olivares, 2017). Some recent but limited

results have shown that the RMSEA and CFI defined via a
statistic Tmle does perform much better than their counterparts
defined using Tml (Xing and Yuan, 2017). Based on this work,
it is reasonable to expect that advances in test statistics will also
improve the performances of other fit indices that are defined via
these statistics.

In summary, data with large p and smallN pose a big challenge
for SEM methodology and many more new developments are
still needed to tackle these issues, especially when the data are
incomplete and/or non-normal.
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