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The assumption of equivalence between measurement-model configurations across

groups is typically investigated by evaluating overall fit of the same model simultaneously

to multiple samples. However, the null hypothesis (H0) of configural invariance is distinct

from the H0 of overall model fit. Permutation tests of configural invariance yield nominal

Type I error rates even when a model does not fit perfectly (Jorgensen et al., 2017,

in press). When the configural model requires modification, lack of evidence against

configural invariance implies that researchers should reconsider their model’s structure

simultaneously across all groups. Application of multivariate modification indices is

therefore proposed to help decide which parameter(s) to free simultaneously in all groups,

and I present Monte Carlo simulation results comparing their Type I error control to

traditional 1-df modification indices. I use the Holzinger and Swineford (1939) data set

to illustrate these methods.

Keywords: configural invariance, permutation tests, measurement equivalence/invariance, confirmatory factor

analysis, Lagrange multipliers, modification indices

Many behavioral researchers do not have the luxury of being able to directly observe the
phenomena they study. For example, organizational researchers need to measure job satisfaction
or morale. Clinicians need to measure various psychological disorders. Social psychologists and
sociologists need to measure attitudes and social orientations. Educational researchers need to
measure teaching and learning outcomes. Often, researchers rely on indirect measures, such as
self-report scales, and psychometric tools, such as reliability estimates and latent trait models [e.g.,
confirmatory factor analysis (CFA) and item-response theory (IRT) models] facilitate evaluation of
the quality of those measurements.

Similarly frequent is the need for researchers to compare groups, in either experimental (e.g.,
treated vs. control) or observational contexts (e.g., demographic or intact groups). In order to
make valid comparisons of scale responses across groups, the scale must function equivalently for
those groups. In other words, if measurement parameters are equivalent across groups, observed
group means will only differ as a function of differences on the latent trait itself (Meredith,
1993). Measurement equivalence/invariance (ME/I) has received a great deal of attention in the
methodological literature, so I provide only a cursory introduction here; interested readers are
encouraged to find more in-depth discussion in Meredith (1993); Reise et al. (1993); Vandenberg
and Lance (2000), and Putnick and Bornstein (2016).

Latent trait models facilitate the investigation of ME/I, and different levels of ME/I have been
defined according to categories of model parameters. In a CFA framework, configural invariance
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is represented in a model with the same pattern of fixed and
free (i.e., near-zero and substantial) factor loadings across groups,
although the values of these parameters may differ across groups.
When fitting models to multivariate normally distributed data
using maximum likelihood estimation, the null hypothesis (H0)
of configural invariance is traditionally tested using a likelihood-
ratio test statistic (LRT)1, which is distributed as a χ2 random
variable with df equal to the number of nonredundant observed
means and (co)variances minus the number of estimated model
parameters. Configural invariance is the least restrictive level of
ME/I, so it can be used as a baseline model for comparing more
restrictive assumptions ofME/I, which are represented bymodels
that are nested within the configural model.

Metric equivalence (or “weak” invariance) indicates the
additional assumption that the values of factor loadings are
equal across groups, and this assumption must hold in order
to make valid across-group comparisons of latent variances or
correlations. This model is nested within the configural model,
so a 1χ2 test can be used to test the H0 of exact metric
equivalence. If a researcher concludes that full (or partial2) metric
equivalence holds, that model is used as a baseline model to
test scalar equivalence (or “strong” invariance”) by additionally
constraining indicator intercepts (or thresholds for binary or
ordinal indicators) to equality across groups. Scalar invariance
is required for valid comparisons of latent means to be made.
Researchers can also test homogeneity of residual variances
across groups (“strict” invariance), but because that assumption
is not required for valid comparisons of latent parameters, it is
not tested as often (Putnick and Bornstein, 2016).

The current paper discusses recent advances only in tests
of configural invariance, which is the least restrictive level of
invariance. A false H0 would imply that model configurations
differ across groups, in which case data-generating population
processes do not share all the same parameters across groups. A
test that rejects the H0 of configural invariance would therefore
prohibit researchers from testing more restrictive levels of ME/I.
Currently, configural invariance is assessed by evaluating the
overall fit of the configural model (Putnick and Bornstein, 2016).
A significant LRT or fit indices that do not meet criteria for
adequate fit (Hu and Bentler, 1999) would be expected when
configural invariance does not hold across populations, because
the hypothesized model could only represent the data-generating
process for one (subset of) group(s), and would be incorrect
for at least one of the other groups; thus, the poor fit of the
model to that group would be reflected in the overall model fit
measures. However, the fact that a false H0 should lead to a

1Although the configural model is only tested with a single model’s χ2 statistic, this

statistic is nonetheless equal to −2 times the difference between log-likelihoods

of models representing two competing hypotheses: the hypothesized configural

model (labeled H0 in the output from software such as Mplus and lavaan) and

the saturated model (labeled H1, representing the default alternative hypothesis

of a completely unrestricted model). Because the saturated model has χ2 and

df = 0, a 1χ2 test between the configural and saturated models would therefore

be calculated by subtracting zero from the configural model’s χ2 and df, yielding

the same values.
2Partial invariance models posit that some, but not all, measurement parameters

can be constrained to equality across groups or occasions, which still allows valid

comparisons of latent parameters across groups Byrne et al., 1989.

poor fit does not imply the reverse3: If the model fits poorly,
that does not necessarily imply that true population models
are configurally noninvariant. A hypothesized configural model
could fit poorly for a different reason; specifically, the true data-
generating process might be equivalent across groups (i.e., H0 of
configural invariance is true), but the specified model is a poor
approximation of the true functional form of that process (i.e.,
false H0 that the model is correctly specified).

Using a newly proposed permutation test of configural
invariance (Jorgensen et al., 2017, in press), the H0 of configural
invariance can be tested with nominal Type I error rates even
when the H0 of correct specification is false. I extend this line
of research by proposing the use of multivariate modification
indices (Bentler and Chou, 1992) to guide researchers in
respecifying their inadequately fitting configural models when
there is no evidence against the H0 of group equivalence in true
model configurations. This study is therefore only concerned
with the situation when the H0 of configural invariance is true
(but the model does not fit well), not when the H0 is false.
To evaluate the use of multivariate modification indices for the
purpose of testing whether the same parameter should be freed
simultaneously across groups, I designed a small-scale simulation
study as a proof of concept to show that they are capable of
preventing Type I error inflation better than traditional 1-df
modification indices, which test parameters in only one group at
a time rather than simultaneously across all groups.

I begin by reviewing in more detail issues with testing model
fit vs. configural invariance, using an analysis of the classic
Holzinger and Swineford (1939) dataset to demonstrate the use
of the permutation test and to illustrate the implication of a
configurally invariant model that requires respecification. I then
introduce Bentler and Chou’s (1992) multivariate extension of
modification indices, which are recently available in the open-
source lavaan package (Rosseel, 2012) for structural equation
modeling (SEM) in R (R Core Team, 2017), and discuss how
they can be used in the context of respecifying a multigroup
model in a way consistent with the H0 of configural invariance.
I then describe the small-scale Monte Carlo simulation study
comparing Type I error rates using univariate and multivariate
modification indices. I conclude with recommendations for
future applied and methodological research.

ISSUES WITH MODEL-FIT TESTS OF
CONFIGURAL INVARIANCE

Configural invariance in a multigroup context is equivalence
in model configurations across the populations of interest. The
analysis models are typically specified as configurally invariant,
and the LRT of overall model fit is used to evaluate whether the
model adequately approximates the population models. As noted

3This logical fallacy is referred to as affirming the consequent, and has the general

form: A implies B, B is true, therefore A is true. This is demonstrably invalid using

simple examples for which it is false, such as: “If today is Saturday, it is the weekend.

It is in fact the weekend; therefore it is Saturday.” The fact that it is the weekend

does not imply it is Saturday because it could also be Sunday; there are multiple

conditions that could lead to the same state.
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in the Introduction, rejection of the H0 of exact model fit could
imply numerous conditions, including but not limited to the
following: (a) the hypothesized model corresponds well to one
or more populations but poorly to at least one other; (b) the
model does not correspond to any group’s model, for different
reasons across groups; (c) all groups true models are configurally
invariant, but the hypothesized model does not correspond to
that shared functional form. Thus, when a model’s overall fit
to multiple groups needs improvement, the decision of how to
respecify themodel would depend onwhich condition led to poor
overall fit.

Because the LRT is a test of overall exact fit of the model to the
data, two potential sources of misspecification are confounded
(Cudeck and Henly, 1991; MacCallum, 2003): estimation
discrepancy (due to sampling error) and approximation
discrepancy (due to a lack of correspondence between the
population and analysis models). Because configural invariance
is assessed by testing the absolute fit of the configural model,
the LRT for a multigroup model further confounds two sources
of approximation discrepancy (Jorgensen et al., 2017, in press):
the overall discrepancy between population and analysis models
could be partitioned into (a) differences between groups’ true
population models and (b) discrepancies between each group’s
population and analysis models. The H0 of configural invariance
only concerns the former source of approximation discrepancy
(which I will refer to as group discrepancy), whereas the latter
source is an issue of model-fit in general (which I will refer to
as overall approximation discrepancy).

Good model fit and equivalent model configurations are
both important foundational assumptions of ME/I because
testing equality of measurement parameters is only valid if the
estimated parameters correspond to actual parameters of the
true data-generating process. But merely testing the overall fit
of a configural model does not provide adequate information
about whether model configurations can be assumed equivalent
across groups. It is possible (perhaps even probable) that a
model provides as good a description of one population as
it does for another population (e.g., men and women or
respondents from different countries), even if the model fits
poorly or only approximately well. Evaluating overall fit therefore
tests the wrong H0 by confounding group equivalence and
overall exact model fit into a single test. The permutation
method introduced by Jorgensen et al. (2017, in press)
disentangles group discrepancy from overall approximation
discrepancy.

Another common issue with model-fit evaluation is the
common perception that the LRT nearly always rejects good
models because SEM requires large sample sizes for estimation.
Although it is true that power is a function of sample size, an
analysis model that corresponds perfectly with a true population
model would not yield inflated Type I errors (actually, small-
sample bias would; Nevitt and Hancock, 2004) because the
H0 would be true. But because theoretical models are more
realistically interpreted as approximations to more complex
population models (MacCallum, 2003), the H0 of exact fit should
rarely be expected to be precisely true in practice. In order to help
researchers evaluate the degree to which a H0 is false, numerous

indices of approximate fit have been proposed since the 1970s,
analogous to providing standardized measures of effect size that
accompany a null-hypothesis significance test in other contexts
(e.g., Cohen’s d to accompany a t-test result).

Unfortunately, approximate fit indices (AFIs) or their
differences (1) between competing models rarely have known
sampling distributions. Even when they do [e.g., the root mean-
squared error of approximation (RMSEA); Steiger and Lind,
1980], it is often unclear how to interpret the magnitude of a
(1)AFI. Researchers frequently rely on rule-of-thumb cutoffs,
such as those proposed by Hu and Bentler (1999) for AFIs or by
Cheung and Rensvold (2002) for1AFIs, either based on intuition
or derived from simulation studies under specific conditions that
might not generalize to the wide array of SEMs encountered in
practice. Although it is reasonable to argue that models with
only negligible misspecifications should not be rejected, it is
unreasonable to expect a single rule-of-thumb cutoff for any
(1)AFI to perform consistently across various models (Cheung
and Lau, 2012; Pornprasertmanit et al., 2013).

Putnick and Bornstein (2016) found that 45.9% of studies
they reviewed supplemented the LRT with at least one (1)AFI
to draw conclusions about various levels of ME/I. Given the
popularity of (1)AFIs, it is safe to assume any of those
researchers who reported a significant LRT still did not reject
their model if the (1)AFI(s) were within the guidelines of
acceptable fit. The LRT appears to be used as the sole criterion
to evaluate ME/I only half as often (16.7%) as (1)AFI(s) alone
(34.1%), the most popular of which is the comparative fit
index (CFI; Bentler, 1990), at least in the context of ME/I
(Putnick and Bornstein, 2016). Given the sensitivity of (1)AFI
sampling distributions to data and model characteristics (Marsh
et al., 2004), basing conclusions about configural invariance
on AFIs (e.g., interpreting CFI >0.95 as evidence of good
approximate fit) leads to Type II errors in large samples,
but can also lead to inflated Type I errors in small samples
(Jorgensen et al., 2017). Permutation also provides a solution
to problems with unknown (1)AFI sampling distributions
by comparing observed configural-model AFIs to empirical
sampling distributions derived under the H0 of equivalent group
configurations (Jorgensen et al., in press).

ILLUSTRATIVE EXAMPLE

To demonstrate the utility of the recently proposed permutation
test and how multivariate modification indices can be used to
modify a model under the assumption of configural invariance, I
fit a three-factor multigroup CFA model with simple structure to
theHolzinger and Swineford (1939) dataset, which has often been
repurposed for illustrative examples (e.g., Jöreskog, 1969; Tucker
and Lewis, 1973). A subset of the data are available as part of
the lavaan package (Rosseel, 2012), including three indicators
for each of three mental-ability constructs: visual, textual, and
speed. This illustration assesses configural invariance across two
schools (Pasteur: N = 156; Grant–White: N = 145), which is
the most common number of groups analyzed (75%; Putnick
and Bornstein, 2016). I provide R syntax for all analyses in the
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TABLE 1 | Estimated parameters from CFA with simple structure.

Common

factor

Indicator Mental-Ability test description Pasteur School Grant–White School

λ θ λ θ

Visual X1 Visual perception 1.047 0.298 0.777 0.715

X2 Cubes 0.412 1.334 0.572 0.899

X3 Lozenges 0.597 0.989 0.719 0.557

Textual X4 Paragraph comprehension 0.946 0.425 0.971 0.315

X5 Sentence completion 1.119 0.456 0.961 0.419

X6 Word meaning 0.827 0.290 0.935 0.406

Speed X7 Speeded addition 0.591 0.820 0.679 0.600

X8 Speeded counting of dots 0.665 0.510 0.833 0.401

X9 Speeded discrimination between straight and

curved capital (uppercase) letters

0.545 0.680 0.719 0.535

λ, factor loading; θ, residual variance. Factor variances were fixed to 1. Saturated mean structure not presented. In the Pasteur school, visual–textual covariance = 0.484, visual–

speed covariance = 0.299, and speed–textual covariance = 0.325. In the Grant–White school, visual–textual covariance = 0.541, visual–speed covariance = 0.523, and speed–textual

covariance = 0.336. SEs not reported, but all parameters significantly differed from zero at α = 5%.

Appendix, andTable 1 presents descriptions of indicators of each
factor, as well as parameter estimates from the configural CFA
model.

There is evidence that the configural model does not fit
the data perfectly, χ2

(48)
= 115.85, p = 0.0000002, and both

CFI= 0.923 and RMSEA= 0.097, 90% CI [0.075, 0.120], suggest
that the degree of misspecification is not ignorable, using Hu and
Bentler’s (1999) recommended cutoffs of CFA>0.95 and RMSEA
< 0.06. Thus, the three-factor model with simple structure
does not appear to adequately capture features of the data-
generating process. Without additional information about group
discrepancy, a researcher interested in modifying the model
might begin by assessing model fit separately within each group.
Similar results would be found for both the Pasteur school,
χ2
(24)
= 64.31, p = 0.00002, CFI = 0.903, RMSEA = 0.104, 90%

CI [0.074, 0.135], and the Grant–White school, χ2
(24)
= 51.54,

p= 0.001, CFI = 0.941, RMSEA = 0.089, 90% CI [0.055, 0.122],
leading to the conclusion that both groups’ models require
modification. But without informing the researcher about (lack
of) evidence of group discrepancy, it would be unclear whether
the most appropriate course of action would be to attempt
freeing the same parameter(s) in both groups simultaneously or
to modify each group’s model independently.

Permutation Test
A permutation test of configural invariance can be conducted
by comparing χ2

(48)
= 115.85 to an empirical sampling

distribution rather than a central χ2 distribution with 48 df.
An empirical sampling distribution under the H0 of equivalent
model configurations can be estimated by randomly reassigning
rows of data to the two schools, fitting the configural model
to the permuted data, and saving χ2. Repeating these steps
numerous times results in a permutation distribution of χ2,
and a p value can be calculated as the proportion of the
distribution that exceeds (indicates worse fit than) the observed
χ2. Because the students are assumed equivalent when they are

randomly reassigned to schools, the permutation distribution
reflects the sampling variance of χ2 under the assumption
that the schools share the same data-generating model, but
without assuming that the data-generating model corresponds
perfectly with the fitted model. Due to poor model fit (i.e., the
H0 of no overall approximation discrepancy is rejected), the
permutation distribution is not expected to approximate a central
χ2 distribution with 48 df, but it has been shown to approximate
the sampling distribution under the H0 of no group discrepancy
(Jorgensen et al., 2017, in press). Likewise, CFI and RMSEA
can be compared to permutation distributions, overcoming
important limitations of AFIs: the lack of a theoretical sampling
distribution for CFI, and the lack of consensus about a
particular value of CFI or RMSEA that would indicate adequate
approximate fit in all contexts.

A permutation test revealed no evidence against the H0 of
configural invariance using either χ2(p = 0.19), CFI (p = 0.17),
or RMSEA (p = 0.19) as criterion. Thus, model modification
can proceed by freeing the same parameter(s) in both groups
simultaneously. This could minimize well documented problems
with data-driven use of modification indices leading to models
that do not generalize to new samples from the same population
(MacCallum, 1986; MacCallum et al., 1992; French and Finch,
2008). The hypothesized CFA model fixes 18 cross-loadings and
36 residual covariances to zero in each of two groups, resulting
in 108 modification indices for individual parameters (i.e., 1-
df tests). Inspecting multivariate modification indices (i.e., 2-df
tests) reduces the number of tests by half, from 108 to 54. More
generally, with g groups, there will always be g times as many
1-df modification indices as g-df modification indices. Before
presenting results for the CFA model, I elaborate further on the
multivariate modification index.

Multivariate Modification Indices
My discussion below is in the context of maximum likelihood
estimation, but the same concepts can be applied to other
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discrepancy functions for estimating SEM parameters (Bentler
and Chou, 1992). Lagrange multipliers fit into a framework of
three tests of parameter restrictions, including Wald tests and
nested-model LRTs (Buse, 1982). The LRT requires fitting both
a restricted (M0) and unrestricted (M1) model. The LRT statistic
is calculated by comparing the log-likelihood (ℓ) of the data
under each model: LRT = −2 × (ℓ 0 − ℓ 1). If the H0 is
true and distributional assumptions are met, the LRT statistic is
asymptotically distributed as a central χ2 random variable with
df equal to the number of restrictions in M0 relative to M1.

The Wald and Lagrange multiplier tests are asymptotically
equivalent to the LRT, but the Wald test only requires fitting
M1, whereas the Lagrange multiplier test only requires fitting M0

(for details see Buse, 1982). The modification indices provided
by most SEM software packages are 1-df Lagrange multipliers
associated with each fixed parameter (or equality constraint), and
they estimate the LRT statistic (i.e., the change in χ2 of M0) if
that constraint were freed in M1 (but without needing to fit M1),
assuming all other parameter estimates would remain unchanged
between M0 and M1. Calculation of Lagrange multipliers utilizes
information from the gradient (first derivative of the discrepancy
function). Specifically, the curvature of the likelihood function
evaluated with respect to the null-hypothesized value (θ0) of a
fixed parameter (typically zero) provides a clue about how far θ0

is from the true θ, relative to the estimated sampling variability.
Bentler and Chou (1992) extended this simple idea to

evaluating the curvature of the likelihood function in multiple
dimensions with respect to a vector of constrained parameters.
Multivariate Lagrange multipliers have only been implemented
in some SEM software packages, such as EQS (Bentler, 2006)
and PROC CALIS (SAS Institute Inc., 2011). In the spirit of
the open-access Frontiers journal4, my applied example utilizes
the freely available open-source R package lavaan (Rosseel,
2012), which implements multivariate Lagrange multipliers via
thelavTestScore() function, along with the widely available
1-df statistics via the modificationIndices() function. I
discuss both in the context of the example CFA applied to the
Holzinger and Swineford (1939) data set. As noted in previous
research (e.g., MacCallum et al., 1992) and SEM textbooks
(e.g., Brown, 2015; Kline, 2015), purely data-driven specification
searches do not lead to generalizable, reproducible models, so
model modifications should always be guided by substantive
theory. The current study, however, is focused on the statistics
themselves, so my interpretation of results focuses primarily on
decisions that a hypothetical researcher might be influenced to
make when inspecting modification indices.

Table 2 presents the largest 1-df modification indices from the
CFA model with simple structure, six of which (three in each
group) were above 10. These results do not provide unambiguous
guidance about which parameter constraints should be released.
The largest modification index is associated with a residual
covariance between the seventh and eighth indicators (of the

4As stated on the Frontiers web page (http://home.frontiersin.org/about/about-

frontiers): “Our grand vision is to build anOpen Science platformwhere everybody

has equal opportunity to seek, share and generate knowledge, and that empowers

researchers in their daily work.”

TABLE 2 | Largest univariate and multivariate modification indices for fixed (to

zero) parameters.

School Parameter MI EPC SEPC

Pasteur Visual→ X9 11.07a 0.32 0.32

Textual→ X1 10.18a 0.89 0.76

X4 ←→ X6 11.28a −0.33 −0.29

Grant–White Visual→ X7 11.27a −0.39 −0.38

Visual→ X9 24.54a,b 0.58 0.57

X7 ←→ X8 24.82a,b 0.61 0.57

Multivariate Visual→ X7 16.45a,b

(MI = χ̂2
df=2) Visual→ X9 35.61a,b

X7 ←→ X8 29.01a,b

MI, modification index. (S); EPC, (standardized) expected parameter change (unavailable

for multivariate MIs).→ indicates a factor loading.←→ indicates a covariance.
a Significant at α = 5%.
b Significant at Bonferroni-adjusted α =0.05/108 = 0.00046 (critical χ̂2

df=1 = 12.26) for

1-df MIs, or α = 0.05/54 = 0.00093 (critical χ̂2
df=2 = 10.97) for 2-df MIs.

same factor) in the Grant–White group. The second largest
modification index (very similar in value to the largest) is
associated with a cross-loading of the ninth indicator (speeded
discrimination between straight and curved letters) on the visual
factor, also in the Grant–White group. This is also the only
parameter that is significant for both groups, although it is not
significant in the Pasteur group after a Bonferroni adjustment
for multiple tests. Arguably, it may make theoretical sense to
free this parameter given that the X9 task required similar
visual skills as the other visual indicators. If one considered
the standardized expected parameter changes in tandem with
modification indices, as advised by Saris et al. (2009) see also
Whittaker (2012), then the cross-loading of the first indicator on
the textual factor in the Pasteur group might be considered the
best candidate instead.

The bottom rows of Table 2 also present the significant
2-df modification indices, the largest of which was for the
cross-loading of the ninth indicator on the visual factor, which
was also the only parameter with a large 1-df modification
index in both groups. The interpretation of these tests is
less ambiguous because they formally test the same parameter
constraint simultaneously in both groups, which the permutation
test implied is appropriate because there is no evidence the
group configurations differ. Freeing this parameter did lead to
significantly better model fit, 1χ2

(2)
= 34.31 (comparable to the

expected χ2 = 35.61 in Table 2), p = 0.00000004, although the
modified model still did not fit perfectly, χ2

(46)
= 81.55, p= 0.001,

CFI = 0.960, RMSEA = 0.072, 90% CI [0.045, 0.097]. Because
the purpose of this application is merely to demonstrate tools
for testing and modifying configural models, I do not consider
further modifications of the example CFA.

Next, I present a small-scale simulation study designed to
evaluate the use of multivariate modification indices. A concise
simulation was designed to keep the focus on the purpose of
this simulation, which is to provide a “proof of concept” that
multivariate modification indices can control Type I errors better
than univariate modification indices when the hypothesized
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model is approximately well specified but needs improvement.
I focus on this situation because modification indices are
unlikely to lead to the true data-generating model when a
hypothesized model deviates substantially from it (MacCallum,
1986; MacCallum et al., 1992), and there is no reason to expect
multivariate modification indices to perform differently in the
latter situation.

METHODS

To simulate data in which the H0 of configural invariance was
true but the H0 of exact model fit is false, I specified a two-
factor CFA model for four groups, with three indicators for
each of two common factors. The factor loadings were λ= 0.6,
0.7, and 0.8 for the first, second, and third indicator of each
factor, respectively. The residual variances were specified as
1 – λ2 so that indicators were multivariate normal with unit
variances. Factor variances were fixed at 1 (also in the analysis
model, for identification), and all indicator and factor intercepts
were zero. Factor correlations were 0.2, 0.3, 0.4, and 0.5 in
Groups 1, 2, 3, and 4, respectively, so that population covariance
matrices were not identical, although model configurations were
equivalent.

Imperfect overall model fit was specified by setting two
residual covariances in the four populations with values of
0.2 between the first and fourth indicators, corresponding
to a moderate residual correlation of 0.2/0.64 = 0.31, and
0.15 between the second and fifth indicators, corresponding
to a moderate residual correlation of 0.15/0.51 = 0.29. These
parameters were specified in all groups, so the population models
were configurally invariant. Fixing these two residual covariances
to zero in the analysis model resulted in significant misfit,
χ2
(32)
= 54.05, p= 0.009, when themodel was fit to the population

covariance matrices, using samples sizes of N = 100 in each
group. Approximate fit was questionable, acceptable CFI= 0.962,
unacceptable RMSEA = 0.083, 90% CI [0.042, 0.120], so the
configural model would have a considerable chance of being
rejected when fit to a random sample drawn from this population.
These fit measures are from the results of fitting the model to the
population rather than sampled data, so they give an indication
of the fit of the model, free from sampling error.

The configural model fixed six cross-loadings and 15 residual
covariances to zero, yielding 21 modification indices to consider
in each of four groups. The Bonferroni-adjusted α level was
therefore 0.05/21 = 0.0024 for 4-df simultaneous tests and
0.05/84 = 0.0006 for 1-df tests; unadjusted α levels were not
considered. I generated 1,000 random samples of N = 100 from
each of the populations specified above, fit the configural model
to the data, and recorded decisions about overall model fit (χ2,
CFI, and RMSEA) and model respecification (univariate and
multivariate modification indices). Within each replication, I also
used a permutation test of configural invariance.When themodel
needed respecification, the parameter with the largest significant
4-df modification index was freed in all groups, iteratively
until no modification indices were significant. A replication was
flagged for having made a familywise Type I error if in any

iteration, the largest significant 4-df modification index belonged
to any parameter besides the two omitted residual covariances;
correct detections of the omitted parameters were also flagged
to calculate power. Parameters were not freed on the basis of
univariate modification indices, but I also recorded whether the
largest significant 1-df modification index in the first iteration
belonged to any parameter besides the two omitted residual
covariances, as a basis for comparing the familywise Type I
error rates of 4-df modification indices to a lower-bound for the
familywise Type I error rates of 1-df modification indices.

RESULTS

Using overall model fit as the criterion for evaluating configural
invariance led to rejecting the model in 99.9% of replications
using a significant LRT as criterion. Using Hu and Bentler
(1999) criterion for approximate model fit, the model was
rejected in 93.9% of replications by CFI < 0.95 and 100%
using RMSEA > 0.06. Thus, researchers using any of these
criteria would frequently be motivated to modify their configural
model. Knowing whether the data showed evidence of equivalent
model configurations (despite poor fit) would therefore be very
useful. The permutation test falsely rejected the H0 of configural
invariance in only 4.9% of the 1,000 replications, so the Type
I error rate did not deviate substantially from the nominal
α= 5%. This demonstration is consistent with previous results
investigating the permutation method for testing ME/I in a two-
group scenario (Jorgensen et al., 2017, in press). The unique
contribution of this simulation, however, is to evaluate the
performance of rarely utilized multivariate modification indices.

Multivariate modification indices correctly detected that at
least one of the two omitted residual covariances should be freed
in 99.6% of the replications, and correctly detected both omitted
parameters in 73.9% of replications. This was accomplished
while maintaining nominal (4.4%) familywise Type I errors
across iterative modifications. By comparison, the largest 1-df
modification index in the original configural model flagged
an incorrect parameter in 9.5% of replications, implying that
familywise Type I error rates would be at least that bad if
they were instead used to iteratively modify the model. The
poor performance of decisions based solely on 1-df modification
indices is also consistent with previous results (MacCallum, 1986;
MacCallum et al., 1992).

DISCUSSION

The aim of this paper was to advance two methods for
testing configural invariance: how to test the correct H0

and how to test constraints in a poor-fitting configural
model. A recently developed tool is a permutation test of
the H0 of equivalent model configurations, which has shown
promising control of Type I errors even when a configural
model fits poorly (Jorgensen et al., 2017, in press). When
the data show no strong evidence against the H0, researchers
might be motivated to explore ways to modify their model
to better reflect the data-generating process. Multivariate
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Lagrange multipliers (Bentler and Chou, 1992) can provide
tests of constraints on the same parameter simultaneously
across groups. A small-scale simulation illustrated how
these could limit Type I errors better than traditional 1-df
modification indices for individual fixed parameters within each
group.

The simulation was not designed to provide comprehensive
information across a variety of conditions, but it contributes
some evidence that these tools warrant further investigation.
Given that fully invariant metric (17.8%) and scalar (42.2%)
models are rejected many times more often than configural
(5.5%) models (Putnick and Bornstein, 2016), it is easier to
find guidance in the literature about modifying metric and
scalar models to establish partial invariance (e.g., Byrne et al.,
1989; Vandenberg and Lance, 2000; Millsap, 2011). The current
study therefore contributes to a sparser literature on modifying
configural models, which Jorgensen et al. (2017, in press) showed
might require more careful attention than common practice
currently pays it. Note, however, that the current investigation
does not address the issue of establishing “partial configural”
invariance, but rather improving the fit of a configurally invariant
model. More extensive investigations could shed light on the
general applicability of the permutation test and of multivariate
modification indices across a variety of conditions (e.g., different
numbers of groups, sample sizes and ratios, varying other
nonzero parameter values). For instance, the Holzinger and
Swineford (1939) example application had only two groups,
which may not be as prone to inflated Type I error rates as
the four-group simulated data showed for 1-df modification
indices.

This paper focused only on the situation when the H0 of
configural invariance was true. When the data provide evidence
against the assumption of equivalent model configurations5,
more restrictive levels of invariance cannot be assumed either,
nor would the proposed use of multivariate modification indices
be relevant for modifying the model simultaneously across
groups. If there are more than two groups, one could potentially
test whether each pair of groups provide evidence against
configural invariance, then test more restrictive levels of ME/I
only for subsets that do not. Future research would be required to

5See Jorgensen et al. (2017; in press) for an investigation of power to detect different

model configurations.

reveal whether Type I error rates could be maintained under
such a follow-up procedure, but Jorgensen et al. (2017, in press)
did find nominal error rates for the omnibus test of configural
invariance with two-group data. According to Putnick and
Bornstein (2016), most studies (75%) involve only two groups, so
follow-up tests on subsets of groups might not be required often
in practice.

I conclude by reiterating the importance of substantive theory
to guide the process of model respecification (Brown, 2015;
Kline, 2015). Purely data-driven use of modification indices
tends to result in models that are over-fit to sample-specific
nuances rather than mimicking the true data-generating process
(MacCallum, 1986; MacCallum et al., 1992). Modification indices
only tend to identify the correct parameter(s) to free when the
model is already close to correctly specified, not when the model
deviates substantially in form from the true model (MacCallum,
1986; MacCallum et al., 1992), so the same behavior should be
expected from the multivariate modification indices applied to
simultaneous changes in a single model across groups. Assuming
the configural model is close to correctly specified, expected
parameter changes may also provide useful supplementary
information to use in tandem with modification indices (Saris
et al., 2009; Whittaker, 2012), but like modification indices,
their validity rests on the assumption that the structure of the
model is basically correct except that at least one parameter
constraint is not near its true population value. Hayduk (2014)
showed that this may not be a safe assumption, given that factor
models can fit data patterns from very different kinds of models,
so poorly fitting factor models might be misspecified in ways
beyond fixing too many parameters to zero. Correlation residuals
provide information about model inadequacy in terms of the data
pattern that the model tries to reproduce, so their inspection
might be more likely to help a researcher speculate about
different kinds of data-generating models. However, Lagrange
multipliers are useful for testing specific hypotheses about
parameter constraints, which are asymptotically equivalent to a
LRT but only require fitting the constrained model rather than
many less restricted models.
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APPENDIX

R Syntax for Applied Example

## use data available in lavaan package

library(lavaan)

HS <- lavaan::HolzingerSwineford1939

## specify configural invariance model

mod.config <- ’

visual =∼ x1 + x2 + x3

textual =∼ x4 + x5 + x6

speed =∼ x7 + x8 + x9

’
## fit model to schools, print results

fit.config <- cfa(mod.config, data = HS, std.lv = TRUE, group = "school")

summary(fit.config, fit = TRUE)

fitMeasures(fit.config, c("chisq","df","pvalue","cfi","rmsea","rmsea.ci.lower",

"rmsea.ci.upper"))

## fit model separately per school

fit.Pasteur <- cfa(mod.config, data = HS[HS$school == "Pasteur",], std.lv = TRUE)

fitMeasures(fit.Pasteur, c("chisq","df","pvalue","cfi","rmsea",

"rmsea.ci.lower","rmsea.ci.upper"))

fit.Grant <- cfa(mod.config, data = HS[HS$school == "Grant-White",], std.lv = TRUE)

fitMeasures(fit.Grant, c("chisq","df","pvalue","cfi","rmsea",

"rmsea.ci.lower","rmsea.ci.upper"))

## Permutation Test using lavaanList()

set.seed(3141593)

dataList <- lapply(1:200, function(i) {HS$school <- sample(HS$school); HS})

out.site <- cfaList(mod.config, dataList = dataList, std.lv = TRUE,

store.slots = NULL, group = "school", FUN = function(x) lavaan::fitMeasures(x,

c("chisq","cfi","rmsea")), parallel = "snow", ncpus = 3, iseed = 3141593)

PF <- as.data.frame(do.call(rbind, out.site@funList))

OF <- fitMeasures(fit.config, c("chisq","cfi","rmsea"))

mean(PF[["chisq"]] > OF["chisq"])

mean(PF[["cfi"]] < OF["cfi"])

mean(PF[["rmsea"]] > OF["rmsea"])

## Permutation Test also available in the semTools package

# library(semTools)

# permuteMeasEq(nPermute = 200, con = fit.config, AFIs = c("chisq","cfi","rmsea"))

## inspect univariate (1-df) and multivariate (2-df) modification indices

MI1 <- modindices(fit.config)

MI1$p.value <- pchisq(MI1$mi, df = 1, lower.tail = FALSE)

MI1$bonf <- p.adjust(MI1$p.value, method = "bonferroni")

MI1[MI1$mi > 10,]

MI1[MI1$bonf <0.05,]

## multivariate tests require changing the lavTestScore() source code in lavaan.

## Source code for the myScoreTest() function is available from the author on request.

MI2 <- do.call(rbind, lapply(unique(paste0(MI1$lhs, MI1$op, MI1$rhs)), function(x)

{out <- myScoreTest(fit.config, add = x, univariate = FALSE)$test out$test <- x out}))

MI2$bonf <- p.adjust(MI2$p.value, method = "bonferroni")

MI2[MI2$bonf <0.05,]

## Fit model with cross-loading freed

fit.cross <- cfa(c(mod.config, ’visual =∼ x9’), data = HS, std.lv = TRUE, group =

"school")

summary(fit.cross, fit = TRUE)

anova(fit.config, fit.cross)
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