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Current theories of mathematical cognition offer competing accounts of the interplay

between encoding and calculation in mental arithmetic. Additive models propose that

manipulations of problem format do not interact with the cognitive processes used in

calculation. Alternatively, interactive models suppose that format manipulations have a

direct effect on calculation processes. In the present study, we tested these competing

models by fitting participants’ RT distributions in an arithmetic verification task with a

single-boundary accumulator model (the shifted Wald distribution). We found that in

addition to providing a more complete description of RT distributions, the accumulator

model afforded a potentially more sensitive test of format effects. Specifically, we found

that format affected drift rate, which implies that problem format has a direct impact on

calculation processes. These data give further support for an interactive model of mental

arithmetic.

Keywords: mental arithmetic, format effects, accumulator model, shifted Wald distribution

INTRODUCTION

Response times (RTs) have long held a privileged status as one of the primary behavioral measures
in cognitive research (Luce, 1986). Their role in inferring mental processes has become so
ubiquitous that the justification of their use is rarely questioned. As Luce (1986) himself put it,
“we surely do not understand a choice process very thoroughly until we can account for the time
required for it to be carried out” (p. vii). This is particularly evident in the study of mathematical
cognition, and in particular, the study of mental arithmetic processes. Since the seminal work of
Groen and Parkman (1972), RTs have provided the primary behavioral signatures used to theorize
about the nature of mental calculation. The purpose of the present paper is to extend this work and
weigh in on a long-standing debate concerning the independence of encoding and calculation. We
accomplish this by fitting distributions of RTs in a mental addition task with a mathematical model
known as a shifted Wald distribution and subsequently assessing the effects of format and problem
size manipulations on the parameters of these distributions.

Models of Mental Arithmetic
A central question in mathematical cognition concerns the nature of the processes involved in
mental arithmetic. Over the years, several competing models of mental arithmetic have been
proposed. While most models share a serial architecture of encoding, calculation (which may
include retrieval), and production (Ashcraft, 1992), these competing models differ with respect
to the proposed independence of these stages. The abstract code model (McCloskey, 1992;
McCloskey et al., 1992; McCloskey and Macaruso, 1995) proposes separate encoding, calculation,
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and production modules that communicate via an abstract
semantic representation. Each module is specialized for a
particular type of input; that is, there are separate encoding
modules for verbal numerals (e.g., “four”) and Arabic numerals
(e.g., “4”). For example, consider the problem 3 + 4. According
to the abstract code model, this problem would be solved by first
entering through a comprehension module, specialized for the
type of stimulus (in this case, Arabic numerals). After this initial
encoding, the problem would then be converted to an amodal,
semantic representation (an “abstract code”). Calculation (e.g.,
retrieval) would operate on this abstract code. The result of
the calculation (the answer 7, still in the form of an abstract
representation) would then feed into a production module,
specialized for the type of production required in the task (either
verbal or Arabic).

On the other hand, the triple code model (Dehaene, 1992;
Dehaene and Cohen, 1995) proposes three separate modules,
each specialized for a specific type of representational format:
an analog magnitude representation (e.g., a mental number line),
an auditory/verbal module, and a visual Arabic numeral module.
The triple code model differs from the abstract code model in
that calculation and production occur within each module. For
comparison, consider again our example 3+ 4. In the triple code
model, this problem would be input into one of two modules,
each specialized for the type of input code (either an auditory-
verbal word frame or a visual-Arabic number form). Calculation
would then take place within one of these modules, depending
on the nature of the problem. As an example, a retrieval-based
calculation to a visually-presented problem (e.g., “3 + 4”) could
proceed by first transcoding the input to the auditory-verbal
word frame, where the appropriate arithmetic fact could then be
retrieved and then the verbal answer produced (e.g., retrieving
the answer as “three plus four equals seven” and then verbally
producing the answer “seven”).

While the abstract code model and the triple code model
differ with respect to the issue of functional vs. representational
modularity, they do share a fundamentally additive architecture.
That is, any performance differences related to problem format
(e.g., faster RTs for problems written in Arabic digits compared
to words) simply reflect processes related to encoding. In
the context of the abstract code model, such performance
differences would be explained as the cost of converting a specific
stimulus type (digits or words) into an amodal, abstract semantic
representation that can be further fed into an appropriate
calculation mechanism. In the context of the triple code
model, these performance differences would reflect a cost of
converting from one representational format (e.g., verbal, word-
based representation) into another format (e.g., visual, digit-
based representation). Critically, both models predict that format
manipulations do not interact with calculation processes.

As an alternative to such additive models of mental arithmetic,
Campbell and colleagues (e.g., Campbell and Clark, 1988;
Campbell, 1994; Campbell and Epp, 2004) have argued for an
interactive architecture called the encoding complex model. In
this model, performance differences due to manipulation of
format are posited to stem from a difference in the degree of
encoding-retrieval integration. For example, Arabic digits are

frequently encountered in the context of calculation, and hence,
strong bi-directional pathways are developed between encoding
and retrieval of arithmetic facts in this format. However,
number words are less frequently encountered, and hence weaker
encoding-retrieval connections are formed for such inputs.While
sharing some similarities with the additive models described
earlier, this model differs in one critical aspect; changes in
format are hypothesized to impact both encoding and calculation
processes.

Support for such an interactive model has primarily appeared
in the form of an interaction between the variables of problem
format and problem size. As one of the classic “effects” in
mathematical cognition, the problem size effect refers to the
finding that responses for small problems (e.g., problems for
which the sum of the operands is no larger than 10) are
significantly faster than responses for larger problems (Ashcraft,
1992; Zbrodoff and Logan, 2005). One possible reason for the
problem size effect is that large problems tend to be solved
by procedural strategies, resulting in slower and more error
prone responses (Campbell and Xue, 2001). While the exact
mechanism underlying the problem size effect is still up for
debate, the more salient finding is that the problem size effect is
larger for problems presented in word format compared to digit
format (Campbell and Fugelsang, 2001; Campbell and Penner-
Wilger, 2006). Campbell and colleagues have argued that this
interaction between problem size and format implies that format
directly impacts calculation processes, providing support for the
interactive model.

Nonetheless, recent research has not settled the debate
regarding the independence of encoding and calculation in
mental arithmetic. On one hand, some researchers have
argued that people form notation-independent representations
of numbers. For example, Libertus et al. (2007) recorded ERPs
(event-related potentials) during a symbolic and nonsymbolic
number comparison task. Adults were presented with single
numbers (shown either in Arabic digit format or in nonsymbolic
dot format) and asked to decide whether each was less than
or greater than 15. They found that the amplitude of the P2
component (210–250 ms after stimulus presentation) increased
as the distance between the number and the comparison standard
decreased. Moreover, this pattern did not differ between number
formats. This led Libertus et al. (2007) to conclude that number
comparison proceeds via an abstract processing stage that is
independent of number format. This finding mirrored previous
work by Pinel et al. (2001), who used fMRI to identify regions
in the parietal lobes whose activation was highly correlated with
semantic properties of numbers (i.e., numerical distance), but
invariant as to whether the number was presented in word or
Arabic numeral format.

Similar results have been also found in behavioral
experiments. For example, Ganor-Stern and Tzelgov (2008)
used a size-congruity paradigm to investigate automaticity of
numerical processing. In this paradigm, numbers are presented
in differing physical sizes; this results in pairs of number symbols
in which the physical comparison is congruent with numerical
size (e.g., small 2 and large 8) or incongruent (e.g., large 2 and
small 8). The usual finding is that incongruent pairs take longer
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than congruent pairs. This size-congruity effect (e.g., Henik
and Tzelgov, 1982) is often taken as evidence for automatic
processing of number magnitude. In their experiment, Ganor-
Stern and Tzelgov (2008) presented Arabic speakers with number
pairs written in two different notations: Arabic and Indian digits.
Ganor-Stern and Tzelgov found that even in mixed pairs (one
Arabic digit and one Indian digit), there was still a substantial
size-congruity effect. They interpreted this result as support
for the notion that both notations are automatically converted
to a common representation independent of format (see also
Ganor-Stern, 2009).

As mentioned earlier, evidence against this additive view
of arithmetic processing has been presented by Campbell and
colleagues in the form of a substantial problem size by format
interaction on response times (e.g., Campbell and Fugelsang,
2001). Some researchers (e.g., Noël et al., 1997) argue that this
signature on RTs does not necessarily imply that format has a
direct impact on calculation processes. Noël et al. (1997) argued
that such an interaction may be the result of encoding differences
between digits and words that feed into the output stage, not
the calculation stage. Finally, at least one recent study indicates
that the interaction between problem size and format may not
be as robust as first thought. For example, Megias and Macizo
(2016) failed to find an interaction between problem size and
format in a mental arithmetic task1. Taken together, these issues
warrant further investigation of the processes in volved in mental
arithmetic, as it appears that we still have more to learn about
the potential interplay between encoding and calculation. In
the sections below, we outline a new approach to investigating
this issue, based on modeling distributions of RTs in a mental
arithmetic task.

Accumulator Models of RT
Most of the studies mentioned above have employed a similar
approach to analyzing the effects of experimental manipulations
on RTs. Namely, for each participant, the collection of RTs for
correct trials in each experimental condition is collapsed to one
number, usually the arithmetic mean. This collection of means
is then analyzed via an analysis of variance to determine the
effect, if any, of each manipulation on RTs. Though popular,
this approach is suboptimal for two reasons. First, by collapsing
RTs by condition to a single numerical summary (e.g., the mean
RT), we lose much information about the distribution of RTs.
Second, this procedure is usually carried out only on correct
trials. As such, RTs and response accuracy are analyzed separately,
even though they are not necessarily independent (e.g., the
speed-accuracy tradeoff, Schouten and Bekker, 1967;Wickelgren,
1977). In both cases, ease of analysis comes at the price of lost
information about the original patterns of RTs.

One solution to this problem is to employ a mathematical
model such as an accumulator model, a model for decision
processes that posits a continuous uptake of noisy information
that continues until the accumulated evidence exceeds a decision

1Though they did not report any inferential statistics for this specific interaction,

they did report that problem size did not interact with any other variable (including

format), with all p-values greater than 0.12 (p. 356).

threshold, at which point a response is initiated (Link and
Heath, 1975; Luce, 1986; Ratcliff and McKoon, 2008; Ratcliff
et al., 2016). One advantage of such an approach is that
instead of modeling participants’ RTs in each experimental
condition by a single mean RT, we can fit a model to the entire
distribution of RTs for each participant in each experimental
condition. This results in finding a set of parameters that not
only describes the distribution mathematically, but also are
indicative of the underlying cognitive processes. The advantage
is that we can then directly test the effects of our experimental
manipulations on the cognitive processes, not just the effects
on RTs and/or errors. Hence, RTs and errors become for us a
proxy to the underlying cognitive processes, not the sole object
of study.

One popular example of a widely used accumulator model
is the drift diffusion model of Ratcliff and colleagues (Ratcliff
and Murdock, 1976; Ratcliff, 1978; Ratcliff and McKoon, 2008;
Ratcliff et al., 2016), which describes a two-choice decision task
as the result of such a noisy accumulation process. Specifically, a
decision process is modeled as a continuous random walk {Xt}

with absorbing boundaries 0 and α. This means that the initial
term of the walk X0 begins somewhere between 0 and α (i.e.,
0 < X0 < α), and the walk terminates whenever Xt = 0 (an
incorrect response) or Xt = α (a correct response). Moreover,
the random walk terms Xt tend to drift toward one boundary or

the other. That is, d
dt
Xt is assumed to be normal with mean γ; we

refer to γ as the drift rate. Finally, the decision timeDT is modeled
as the first time t for whichXt hits either boundary; that is,Xt ≤ 0
(an incorrect response) or Xt ≥ α (a correct response). The total
response time RT is then expressed as RT = DT + θ , where
θ represents the nondecision component of RT (e.g., stimulus
encoding and motor execution).

Modeling RT distributions via this diffusion process results in
a set of parameters that can be mapped onto underlying latent
cognitive processes. The interpretation of these parameters as
indices for cognitive processes has been the subject of much
investigation over the past 40 years (see Ratcliff and McKoon,
2008, for a review). Though the full Ratcliff diffusion model
results in 7 such parameters (Wagenmakers et al., 2007), for
simplicity we restrict our discussion to the following three
parameters: α (boundary separation), γ (drift rate), and θ

(nondecision time). The boundary separation parameter α

represents response caution; a high value of α means that more
evidence needs to accrue before a decision can be made. In other
words, large values of α reflect conservative decision criteria,
whereas small values of α reflect more liberal decision criteria.
The drift rate parameter γ represents the quality of information
provided by the stimulus. Larger drift rates reflect unambiguous
stimuli, resulting in quicker decisions. Smaller drift rates reflect
ambiguous stimuli, resulting in longer decision times. Finally,
the nondecision time parameter θ reflects encoding and response
processes; large values of θ reflect slower encoding and/or
execution, whereas small values of θ reflect fast encoding and/or
execution.

While fitting RT distributions with these parameters results
in a much more detailed description of the underlying RT
distributions than using the mean alone, it is not always possible
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to fit such a model to experimental data. For instance, one
problem with the Ratcliff diffusion model is that it is not well
suited to tasks with very low error rates (Anders et al., 2016).
Consequently, tasks in which participants perform quite well
are not fit well by the diffusion model parameters. However, an
alternative accumulator model called the shifted Wald model
may be well suited to such situations (Carpenter and Williams,
1995; Schwarz, 2001; Heathcote, 2004). The shifted Wald model
is a model of RTs based on the Wald (1947) distribution, which
represents the density of first passage times of a continuous
diffusion process that drifts toward a single absorbing boundary.
Mathematically, the probability density function of the shifted
Wald model is given by:

f (x|α, γ, θ) =
α

√

2π(x− θ)3
· exp

(

−
(α − γ(x− θ))2

2(x− θ)

)

, (1)

where α represents the height of the single response boundary, γ
represents the drift rate, and θ represents a positive (rightward)
shift of the entire distribution. As proxies for cognitive
processes, each of these parameters has a straightforward
interpretation similar to (but not quite equivalent; see Matzke
and Wagenmakers, 2009) that of the Ratcliff diffusion model
(Schwarz, 2001; Heathcote, 2004; Anders et al., 2016): drift
rate γ reflects task difficulty via quality of information;
response threshold α reflects response caution (amount of
information required before response initiation), and θ reflects
the nondecision time (e.g., encoding and response processes not
directly related to the post-encoding decision process).

Aside from the measurement advantages of modeling RTs via
distributions rather than via single point means, the shiftedWald
model has further methodological and theoretical advantages
in the context of mathematical cognition. First, as error rates
in mental arithmetic tasks tend to be quite low, fitting RT
distributions with the full Ratcliff diffusion model will be
difficult. Instead, we can use the shifted Wald model to describe
RT distributions for the correct responses. Further, compared
to the Ratcliff diffusion model, the shifted Wald model can
be fit with a relatively small number of experimental trials.
For example, Anders et al. (2016) found that shifted Wald
parameters can be recovered for as few as 50 observations
per experimental condition. Finally, as the parameters of the
shifted Wald distribution have specific cognitive interpretations,
systematic variation in these parameters as a function of a
stimulus manipulation (e.g., problem format) can tell us the exact
locus of the effect. As described above, it is well known that
problem format has an effect on RTs – problems in word format
take longer to solve than problems in digit format. However,
it is unclear whether this RT effect is localized to the encoding
stage, the calculation stage, or both. By modeling participants’ RT
distributions via shifted Wald models, we can obtain a measure
of how format affects each of the parameters α, γ, and θ . In
the present study, we are mainly concerned with the question
of whether problem format affects calculation. As such, we can
make solid predictions about the effects of our manipulations on
the drift rate γ, which we assume reflects the calculation process.

This assumption comes from the idea that γ is a parameter
related directly to a decision process, which in this experiment
is a decision about the truth of a proposed addition equation.
Critically, if format affects drift rate γ, this will give evidence that
format also has a direct effect on calculation over and above the
previously established effects of format on encoding. Such a result
would favor the interactive encoding complex model over an
additive model (e.g., abstract code model or triple code model),
where effects of format are isolated to only the encoding stage.
Note that at present, clear predictions cannot be drawn regarding
the effects of our manipulations on α and θ , so for the purposes
of this study, we will focus on the drift rate γ.

The Present Study
There were two main goals in the present study. First, we sought
to extend previous work inmathematical cognition by replicating
the arithmetic verification task of Campbell and Fugelsang (2001)
and applying an accumulator model (the shifted Wald model)
to model the resulting RT distributions. Whereas many mental
arithmetic experiments use a production task, a verification task
is advantageous for this modeling approach. In addition to being
the task used in Campbell and Fugelsang (2001), the verification
task allows us to measure mental arithmetic processes in the
framework of a two-choice decision task, which is the framework
employed in most studies that employ accumulator models to
study RTs. Second, we aimed to use the results of this modeling
to test between two competing models: an additive model,
where the stages of problem encoding and answer calculation
are functionally independent and effects of problem format are
isolated to the encoding stage only, and an interactive encoding-
complex model, where effects of problem format are spread
between both the encoding stage as well as the answer calculation
stage.

METHOD

Participants
Twenty undergraduate students (15 female, mean age = 25.2
years, age range = 19–60 years) participated in this experiment
in exchange for partial course credit in their psychology courses.
The experiment was reviewed and approved by the institutional
review board at Tarleton State University.

Stimuli and Apparatus
Our stimuli were adapted from Campbell and Fugelsang (2001).
Each participant completed 288 experimental trials, consisting of
four repetitions of a block of 72 single-digit addition verification
problems. We manipulated both problem size and problem
format. On even numbered trials, the problems were presented in
word format using lower case English words (e.g., “five + seven
= twelve”). On odd numbered trials, problems were presented in
Arabic digit format (e.g., “5+ 7= 12”). All problems (regardless
of format) were composed of operands between 2 to 9, resulting
in a set of 36 problems ranging between 2 + 2 = 4 and 9 + 9 =
18. Note that this assumes that commuted pairs such as 2+ 6 and
6+ 2 are counted as one problem. For each commuted pair, both
operand orders were presented with equal frequency throughout
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the experiment. The order of the operands for each problem was
alternated across blocks. Within each of the four blocks, each of
these 36 problems was presented once in digit format and once
in word format. Problem size was defined in terms of the product
of operands: small problems had product operands less than or
equal to 25, whereas large problems had operands greater than
25. Within each block, half of the problems of each problem size
were presented with the smaller operand first; for the remaining
half, the larger operand was presented first.

We further manipulated the truth value of each addition
problem. Within each set of 36 problems, half were presented as
true equations (e.g., “2+ 4= 6”) and half were presented as false
equations (e.g., “2+ 4= 7”). Across all four blocks, each addition
problem was tested in each format twice in a true equation and
twice with a different false answer. False answers were generated
pseudo-randomly to be within ±4 of the correct answer and
never corresponded to either the difference or the product of the
operands. Within each set of false answers, each of the numbers
4–18 (i.e., the range of true answers) occurred at least once but
no more than four times.

All stimuli were presented using Superlab 5.0 (Cedrus
Corporation), appearing as white characters against a black
background. Responses were recorded using an RB-740 USB
response box with ±2 ms timing accuracy. The experiment was
run on a 21.5-inch iMac desktop computer with 1,024 × 768
screen resolution. Text was displayed in 36 point Lucida Grande
font. In each problem, the two operands were separated by a
single space on either side of the addition sign. The answer to
be verified appeared simultaneously with the problem operands
to the right and after the equal sign (e.g., 2 + 4 = 6). No other
characters appeared on the screen.

Procedure
We counterbalanced two response rules across our participants.
Even-numbered participants indicated true responses by pressing
the rightmost button of the response box and false responses
by pressing the leftmost button. Odd-numbered participants
used a reversed response mapping: they indicated true responses
with the leftmost button and false responses with the rightmost
button. Each participant was instructed to respond quickly but
accurately.

Prior to the first block, we gave each participant a practice
block, consisting of 12 trials in alternating word and digit format,
using the operand 0 or 1 paired with 6 randomly selected digits
ranging from 0 to 9. At the beginning of each trial, a fixation
cross appeared at the center of the screen. When ready to begin,
each participant initiated the presentation of the equation with
a single button press. The fixation dot flashed for 1 s and was
then replaced with one of the 72 addition verification problems.
Timing began with the presentation of this equation and ended
as soon as the participant pressed a button indicating whether
the problem was true or false. After each response, feedback was
given in the form of a green C (for correct trials) or red E (for
incorrect trials), displayed in the center of the screen for 300ms.
After feedback, the fixation cross reappeared, signaling to the
participant that the next trial was ready to be initiated. After
each block of 72 trials, participants were given an opportunity

for a short rest. At the conclusion of the fourth block (288 trials
completed), the experiment ended and participants were thanked
for their participation.

RESULTS

Participants completed 5,760 experimental trials. Of these, 394
trials contained an incorrect response (error rate = 6.8%); these
trials were removed from further analysis. To facilitate model
fitting by removing potential contaminant trials, we removed
any trial for which RT was below three and above six median
absolute deviations (MAD) from the overall median (median RT
= 1,394 ms; MAD = 633 ms) (Leys et al., 2013). This resulted
in the removal of an additional 61 trials (1.1%). All subsequent
modeling was done on the remaining 5,305 trials.

The general approach to modeling was as follows. First, we
modeled true problems (2,656 trials) and false problems (2,649
trials) separately. Within each problem type, trials were divided
into 80 design cells defined by the factorial combination of 20
participants with 2 problem size conditions (small, large) and
2 format conditions (digit, word). Afterward, two models were
fitted. In the first model we employed the traditional approach
where each cell is collapsed to a single mean RT. The effects of
problem size and format on these mean RTs were then analyzed
using a 2 × 2 analysis of variance, which relies upon null
hypothesis significance testing. In addition, we computed Bayes
factors using a Bayesian analysis of variance (Rouder et al., 2012);
this permitted a quantitative estimation of the extent to which the
observed data updated our beliefs in the underlying hypotheses
that were tested with the ANOVA (including null effects).

In the second model, we fitted a shifted Wald distribution to
the RTs in each design cell using the method of Anders et al.
(2016). This resulted in three parameters per cell, (α, γ, θ); the
effects of problems size and format on these parameters were
then analyzed using traditional and Bayesian ANOVA. Technical
details of the fitting algorithm can be found in the Appendix.
All modeling was done using R (R Core Team, 2016) and the
BayesFactor package (Morey and Rouder, 2015). All raw data and
R scripts can be downloaded from the author’s GitHub page.

Modeling Mean RTs
True Problems

Mean RTs for true problems were submitted to a 2 (problem
size: small, large) × 2 (format: digits, words) repeated-measures
ANOVA (see left pane of Figure 1). As expected, there was amain
effect of problem size, F(1, 19) = 62.1, p < 0.001, η2P = 0.77. Small
problems were verified significantly faster than large problems
(1,274 ms vs. 1,704 ms, respectively). There was also a main
effect of format, F(1, 19) = 219.5, p < 0.001, η2p = 0.92. Digit
problems were verified significantly faster than word problems
(1,241 ms vs. 1,737 ms, respectively). The interaction between
problem size and format was not significant (F = 0.243). A
Bayesian ANOVA confirms these results: the best fitting model
was the additive model containing factors of problem size and
format (BF10 = 4.5 × 10140), and this model was preferred over
the model containing an interaction term by a factor of 14.9.
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FIGURE 1 | Mean RTs as a function of problem size (small, large), format

(digits, words), and truth value (true, false). Error bars represent within-subject

95% confidence intervals as recommended by Morey (2008).

Using the convention of Jeffreys (1961), this is considered strong
evidence against an interaction between problem size and format.

False Problems

A similar picture emerged for false problems. Mean RTs for false
problems were submitted to a 2 (problem size: small, large) ×
2 (format: digits, words) repeated-measures ANOVA (see right
pane of Figure 1). There was a main effect of problem size,
F(1, 19) = 46.4, p < 0.001, η2P = 0.71. Small problems were
verified significantly faster than large problems (1,551 ms vs.
1,903 ms, respectively). There was also a main effect of format,
F(1, 19) = 178.3, p < 0.001, η2p = 0.90. Digit problems were
verified significantly faster than word problems (1,496 ms vs.
1,958 ms, respectively). As with true problems, the interaction
between problem size and format was not significant (F = 0.461).
A Bayesian ANOVA confirmed that the best fitting model was
again the additive model containing factors of problem size and
format (BF10 = 2.9 × 1097), and this model was preferred over
the model containing an interaction term by a factor of 13.1.

The picture that emerges from modeling only mean RTs is
clear; whereas the expected effects of problem size and format
are quite robust, there is strong evidence against an interaction
between problem size and format.

Modeling RT Distributions
True Problems

The distributions of RTs for true problems in each design cell
[(2 (problem size: small, large) × 2 format: digits, words) × 20
(participants)] were fitted with shifted Wald distributions using
the method of Anders et al. (2016) (see Appendix). Specifically,
this method estimates values for three parameters (γ, drift rate;
α, response threshold; and θ , nondecision time) for each of the
80 design cells. We will first describe the overall model fit, then
separately analyze the effects of problem size and format on each
of these fitted parameters.

To assess model fit, three diagnostic plots were constructed
(see Figure 2). The leftmost plot displays a QQ plot comparing
observed RT deciles against model-predicted RT deciles. There

is no obvious curvature in the plot, which is indicative of a
strong model fit. The center plot displays for each RT decile the
distribution of standard residuals (difference between observed
data deciles and model-predicted deciles, divided by standard
deviation of the distribution). The plot indicates that the residual
magnitudes tend to increase with RT magnitude. Such behavior
is a property of positive-skewed distributions (and in particular,
simulated shifted Wald distributions; Anders et al., 2016), and
is again indicative of a strong model fit. Finally, the rightmost
plot displays a goodness of fit measure 1 for each of the 80
design cells, along with the average cell goodness of fit (1),
the 5% and 95% quantile range for the 1-values, the mean
standard deviation of the observed data cells σX , and the Pearson
correlation between 1 and σX . The plot and reported values are
in line with the recommendations of Anders et al. (2016). Overall,
the three diagnostic plots indicate that the data is fit quite well by
the shifted Wald model.

Given that the shifted Wald model is a good fit of the
RT distributions, we can proceed with testing the effects of
our experimental manipulations (problem size and format) on
the three shifted Wald parameters. To this end, we separately
submitted each parameter to a 2 (problem size: small, large) ×
2 (format: digits, words) repeated-measures ANOVA. The results
can be seen in Figure 3.

For drift rate γ, there was a main effect of problem size,
F(1, 19) = 71.6, p < 0.001, η2p = 0.79. As can be seen in
Figure 3A, small problems had a significantly larger drift rate
(0.07) compared to large problems (0.05). There was also a main
effect of format, F(1, 19) = 11.1, p = 0.003, η2p = 0.37. Digit
problems exhibited a significantly larger drift rate (0.064) than
word problems (0.053). Finally, there was a significant interaction
between problem size and format, F(1, 19) = 7.3, p = 0.014,
η2p = 0.28. As is evident from Figure 3A, the effect of format on
drift rate was restricted to small problems. A Bayesian ANOVA
gives moderate support for this pattern of results, as the best
fitting model included the interaction between problem size and
format (BF10 = 6.27 × 108), and this model was preferred over
the additive-only model by a factor of 3.15.

For response threshold α, there was only a main effect of
format, F(1, 19) = 62.7, p < 0.001, η2p = 0.77. As can be seen
in Figure 3B, word problems had a significantly larger mean
response threshold (50.7) than digit problems (32.4). No other
terms in the ANOVA model were significant (all F-values less
than 0.86). A Bayesian ANOVA yielded a best fitting model that
included only a term for format (BF10 = 2.01 × 107), and this
model was preferred over a model that contained an additional
term for problem size by a factor of 4.25.

A similar picture emerges with nondecision time θ ; again,
there was only a main effect of format, F(1, 19) = 11.3, p =

0.003, η2p = 0.37. As can be seen in Figure 3C, word problems
had a significantly longer mean nondecision time (693 ms) than
digit problems (604 ms). No other terms in the ANOVA model
were significant (all F-values less than 0.47). A Bayesian ANOVA
yielded a best fitting model that included only a term for format
(BF10 = 40.4), and this model was preferred over a model
that contained an additional term for problem size by a factor
of 2.65.
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FIGURE 2 | Three diagnostic plots for assessing model fit for true problems. The leftmost plot shows a QQ plot comparing observed RT deciles against

model-predicted RT deciles. The center plot shows distributions of standardized residuals for each RT decile. The rightmost plot shows overall goodness of fit for

each of the 80 fitted cells.

FIGURE 3 | Mean shifted Wald parameters for true problems, plotted as a function of problem size (small, large), format (digits, words). (A) shows mean drift rate γ,

(B) shows mean response threshold α, and (C) shows mean nondecision time θ . Error bars represent within-subject 95% confidence intervals as recommended by

Morey (2008).

False Problems

As with true problems, the distributions of RTs for false problems
in each design cell [2 (problem size: small, large) × 2 (format:
digits, words) × 20 (participants)] were fitted with shifted Wald
distributions. As can be seen in Figure 4, the three diagnostic
plots are again in line with the recommendations of Anders et al.
(2016), thus indicating that these data are fit quite well by the
shifted Wald model.

Given the acceptable fit of the shifted Wald model, we
submitted each parameter to a 2 (problem size: small, large) ×

2 (format: digits, words) repeated-measures ANOVA. The results
can be seen in Figure 5. For drift rate γ, there was a main effect
of problem size, F(1, 19) = 17.0, p < 0.001, η2p = 0.47. As can be
seen in Figure 5A, small problems had a significantly larger drift
rate (0.06) compared to large problems (0.045). Themain effect of
format was not statistically significant, F(1, 19) = 3.78, p = 0.07,
but there was a significant interaction between problem size and
format, F(1, 19) = 5.86, p = 0.026, η2p = 0.23. Figure 5A reveals
a similar picture to the situation we saw with true problems; the
(albeit marginal) effect of format on drift rate was again restricted
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FIGURE 4 | Three diagnostic plots for assessing model fit for false problems. The leftmost plot shows a QQ plot comparing observed RT deciles against

model-predicted RT deciles. The center plot shows distributions of standardized residuals for each RT decile. The rightmost plot shows overall goodness of fit for

each of the 80 fitted cells.

to small problems. A Bayesian ANOVA indicated that the best
fitting model included the interaction between problem size and
format (BF10 = 338), and this model was preferred over the
model with twomain effects (problem size and format) by a factor
of 2.90.

For response threshold α, we found a significant main effect
of problem size, F(1, 19) = 10.3, p = 0.005, η2p = 0.35. As can
be seen in Figure 5B, large problems exhibited a larger response
threshold (47.4) than small problems (39.8). We also saw a main
effect of format, F(1, 19) = 24.8, p < 0.001, η2p = 0.57; word
problems exhibited a larger response threshold (50.9) than digit
problems (36.3). The interaction between format and problem
size was not significant, F(1, 19) = 0.008, p = 0.93. A Bayesian
ANOVA indicated that the best fitting model was the model with
two main effects (problem size and format) (BF10 = 701, 677),
and this model was preferred over a model that contained an
additional interaction term by a factor of 3.22.

The results for nondecision time θ mirrored those for true
problems. As before, there was only a main effect of format,
F(1, 19) = 20.8, p < 0.001, η2p = 0.52. As can be seen in Figure 5C,
word problems exhibited a significantly longer nondecision time
(847 ms) than digit problems (718 ms). No other terms in the
ANOVA model were significant (all F-values less than 1.6). A
Bayesian ANOVA yielded a best fitting model that included only
a term for format (BF10 = 3, 039), and this model was preferred
over a model that contained an additional term for problem size
by a factor of 3.60.

DISCUSSION

The purpose of the present study was to use a single boundary
accumulator model (the shifted Wald distribution) to investigate
the independence of encoding and calculation processes in
mental arithmetic. Previous research has presented evidence in

favor of two competing models: an additive model (Dehaene,
1992; McCloskey, 1992), where encoding processes are isolated
from calculation processes, and an interactive model (Campbell
and Clark, 1988; Campbell and Epp, 2004), where encoding
processes interact with calculation processes. Past studies have
attempted to decide between these models by looking for an
interaction between the effects of format and problem size on
mean RTs. In this paper, we extended this approach and fit a
shiftedWaldmodel (Anders et al., 2016) to the distribution of RTs
in each experimental condition. This resulted in a collection of
three parameters (drift rate, response threshold, and nondecision
time) on which we could then test the effects of format and
problem size. We found that drift rate was affected by both
problem size and format, but response threshold and nondecision
time were generally affected only by format. As we will explain
below, such results (in particular, the effect of format on drift
rate), favor an interactive model of mental arithmetic (e.g.,
Campbell, 1994).

One of the primary advantages of modeling distributions
of RTs (compared to analyzing mean RTs alone) is that
this modeling approach provides a substantial increase in
measurement resolution. To see this, consider that in our
experiment, we found no interaction between format and
problem size when restricting our attention to mean RTs. If we
limited our analysis to this null effect on mean RTs, it would
seem that we have found support for an additive model, where
encoding and calculation are independent from each other.
Moreover, this result would not likely be due to a Type II error
(i.e., a false negative), where our null effect would be simply the
result of failing to find a significant interaction due to inherently
low power. On the contrary, we computed a Bayesian analysis
of variance which indicated a Bayes factor of 13.1 in favor of
the additive model. This means that after observing the data, we
should update the ratio of our belief in the additive model (over
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FIGURE 5 | Mean shifted Wald parameters for false problems, plotted as a function of problem size (small, large), format (digits, words). (A) shows mean drift rate γ,

(B) shows mean response threshold α, and (C) shows mean nondecision time θ . Error bars represent within-subject 95% confidence intervals as recommended by

Morey (2008).

the interactive model) by a factor of 13.1, which is considered
fairly strong evidence (Jeffreys, 1961). This is a surprising result,
as our results certainly do not match the previous findings of
Campbell and colleagues (e.g., Campbell and Fugelsang, 2001),
who consistently find strong format by problem size interactions.

However, we saw a different picture emerge when we analyzed
the distributions of RTs in each experimental condition. First,
we found that problem size and format interacted to impact
drift rate. Specifically, drift rates decreased for as problem size
increased. Also, when restricting to small problems, drift rates
were larger for digit problems compared to word problems, but
this advantage disappeared for large problems. If we assume that
our estimated drift rates reflect the cognitive processes related
to calculation, the fact that format affects drift rate implies that
our format manipulation has a direct impact on calculation.
This supports an interactive architecture of mental arithmetic
(Campbell, 1994).

In addition to the various effects on drift rate, we saw
format effects on response threshold α and nondecision time
θ . Compared to digit problems, problems presented in word
format required more accumulated information before response
initiation (i.e., larger response threshold α). Similarly, word
problems also exhibited larger nondecision times θ than digit
problems. One possible explanation is that encoding costs
might be incurred when using less familiar word-based stimuli
compared to the more familiar digit stimuli. At present, this
is speculative, as the format effects on θ reflect a general cost
of format on processes external to signal accumulation (not
just encoding). This leaves open the possibility that format
may affect only encoding processes, only response processes, or
both. The second option is unlikely, as all existing models of
mental arithmetic predict that format affects encoding processes.
However, it is not currently clear whether format additionally
affects the later processes involved in responding. Several

recent studies have indicated that manipulations of number
encoding can feed forward into the response phase, at least in
simple number decision tasks (e.g., Santens and Verguts, 2011;
Faulkenberry et al., 2016; Sobel et al., 2016, 2017). As such, the
third option remains viable; hopefully future studies can further
address the effects of format on response processes in mental
arithmetic.

We also found an interesting, yet unexpected interaction
between the effects of format and problem size on drift rate.
Specifically, small problems exhibited a large format effect, where
drift rates were significantly larger for digits than for words.
However, this effect disappeared for large problems. While we
can only speculate at this time, this interaction could be due to
a difference in solution strategies employed for small and large
problems. Indeed, small problems tend to use long term memory
retrieval (Ashcraft, 1992; Campbell and Xue, 2001), whereas
larger problems tend to use nonretrieval strategies (LeFevre
et al., 1996). Our results could reflect the idea that for retrieval-
based calculation processes, Arabic digits result in better quality
of stimulus information than word format problems (perhaps
because the Arabic digit format better matches the way in which
such small arithmetic facts were originally learned). However,
such format effects could be erased when nonretrieval strategies
are used, most likely because the underlying cognitive processes
are more complex in this case and are not completely reflected
by drift rate. At this point, this is an excellent open question for
future research.

We think that these results are an important first step for a
new approach to studying problems in mathematical cognition.
By fitting the distribution of RTs instead of collapsing all data to
a single measure, we were able to capture behavioral phenomena
that we would have simply missed by focusing on the traditional
mean RT measures. In other words, using accumulator models
of RTs results in better measurement fidelity than that obtained
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by mean RTs, a perspective long advocated in the field of
mathematical psychology (e.g., Luce, 1986). A second advantage
of our modeling approach is that we were able to get more direct
measures of the cognitive processes involved in mathematical
decision making. We hope that other researchers will extend this
approach to a more general framework for building and testing
theories of the cognitive processes involved in mathematical
thinking.

We opted to use the shifted Wald distribution (a single
boundary accumulator model) in this study, but there is no
reason that future studies could not use other accumulator
models, such as the diffusion model of Ratcliff and colleagues
(Ratcliff and McKoon, 2008; Ratcliff et al., 2016). One reason we
opted for the shifted Wald distribution is because the diffusion
model is difficult to fit when participantsmake few errors (Anders
et al., 2016). On the other hand, the shifted Wald distribution is
perfectly suited to such tasks. The only concession that we had
to make is that we had to remove errors from analysis, which
prevents us from being able to assess speed-accuracy tradeoffs.
Clearly, experiments designed to test predictions about speed-
accuracy tradeoffs should consider the more general diffusion
framework, which allows modeling both correct and incorrect
responses. Another advantage to the shifted Wald distribution
is that it requires a relatively small number of trials in each
experimental condition. We were able to fit the shifted Wald
distribution to our participants’ data with 72 trials per condition.
Anders et al. (2016) showed that shifted Wald parameters can be
recovered quite well for as few as 50 observations per condition.

We should note that using the shifted Wald distribution to
theorize about cognitive processes should be done with care.
While it is tempting to make direct associations between the
drift rate, response threshold, and nondecision time of the
shifted Wald model and the similarly-defined drift rate, response
threshold, and nondecision time of the diffusion model, such
a mapping is not directly obvious. For example, Matzke and
Wagenmakers (2009) simulated data using a two-boundary
diffusion process, then subsequently fit the data with a single-
boundary shifted Wald model. They found that the recovered
shifted Wald parameters did not correspond uniquely with the
diffusion parameters used to simulate the data. Thus, it is not
entirely clear that shifted Wald parameters should be interpreted
the same way that diffusion parameters are interpreted. However,
Anders et al. (2016) notes that in situations like the ones
modeled by Matzke and Wagenmakers (2009), the shifted Wald
would exhibit a poor model fit anyway. Thus, since our data
exhibited a reasonably goodmodel fit, we are cautiously confident
in our cognitive interpretations of our obtained shifted Wald
parameters. Of course, more research is needed in order to better
understand when (and how) the shiftedWald distribution can be
used as a cognitive process model.

Finally, we note that the choice of task is important to
studies in mathematical cognition. A verification task was ideal
for the present study, as it framed our mental arithmetic task
as a two-choice decision task, which is standard in studies
involving accumulator models of RTs. However, it is important
to note a verification task might not necessarily be the best
reflection of the processes involved in arithmetic. One reason

is that decisions might not always be derived from the same
calculation processes involved in production. For example, on
some problems, participants could rely on a shortcut strategy
for detecting false problems, such as knowing that the outcome
can only be odd if only one of the addends is odd. As such,
the processes involved in this decision would be quite different
from the processes involved if the problem was solved by first
calculating the answer, then comparing the calculated answer
to the one presented. For future studies, it will be important
to consider this type of modeling for production tasks as
well. We think a single-boundary accumulator model is ideal
for this.

In summary, we used a single boundary accumulator model
(the shifted Wald distribution) to fit RT distributions in an
arithmetic verification task. While we found no interaction
between problem format and problem size on mean RTs, we
did find that format directly affected drift rate. Thus, we
conclude that format affects are not isolated to the encoding
stage (as predicted by additive models, e.g., Dehaene, 1992;
McCloskey, 1992). Instead, our data supports an interactive
model of arithmetic processing (Campbell, 1994), where
the effects of problem format extend beyond the encoding
stage to have direct impacts on the processes involved in
calculation.
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APPENDIX

Fitting the Shifted Wald Model
The approach used for fitting the shifted Wald model in
this paper is similar to that first reported in Anders et al.
(2016). The idea is to map the raw data onto three parameter
estimates α̂, γ̂, θ̂ that produce predicted RTs that are as close
as possible to the actual RTs. This is done in the following
manner.

Let {Xi}
M
i=1 be a set of M independent observations; in

our case, this would be a set of RTs for M trials. Let
β = 1/(α̂γ̂). Given a value for β , one can iteratively
calculate maximum likelihood estimators (MLEs) for θ̂ and α̂

(Nagatsuka and Balakrishnan, 2013). To begin, we first compute a
“seed”:

α̂∗
0 =

√

(X − Xmin)3

1
M

∑M
k=1(Xk − X)2

. (A1)

Then, using this seed, we can obtain the MLEs for θ̂ and α̂ using
the equations

θ̂ = Xmin − α̂2
0

∫ ∞

0
(1− F[z; β̂ , 1, 0])Mdz (A2)

and

α̂ =

(

1

M

M
∑

k=1

(Xk − θ̂)−1 − (X − θ̂)−1

)−1/2

, (A3)

where F(·) is the cumulative distribution function of the shifted
Wald distribution (Equation 1). Specifically, the initial seed α̂∗

0
obtained in Equation (A1) is input into Equation (A2) in place
of α̂0, which then produces an estimate θ̂∗. We then compute α̂0

via Equation (A3) by setting θ̂ = θ̂∗. Afterward, this value of α̂0

is used to compute θ̂ and then α̂ via Equations (A2) and (A3),
respectively. Finally, γ̂ can be computed easily as γ̂ = 1/βα̂.

From theseMLEs (α̂, γ̂, θ̂), one uses theWald pdf (Equation 1)
to calculate a set ofM predicted quantiles {QP

k
}M
k=1

which can then

be compared to the observed quantiles (from our data) {QO
k
}M
k=1

via an l1-norm:

‖QP − QO‖1 =

M
∑

k=1

|QP
k − QO

k |. (A4)

Thus, for every chosen value of β , we obtain a deviance measure
‖QP−QO‖1. This procedure is repeated over a plausible range of
values for β (e.g., 0.01 < β < 0.99), and the parameter set that
minimizes ‖QP − QO‖1 is chosen as the fit.
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