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Generalized structured component analysis (GSCA) is a component-based approach to

structural equationmodeling (SEM). GSCA regards weighted composites or components

of indicators as proxies for latent variables and estimates model parameter via least

squares without resorting to a distributional assumption such as multivariate normality

of indicators. As with other SEM approaches, model evaluation is a crucial procedure in

GSCA that is used to examine whether a hypothesized model is consistent with the data

in hand. However, the few descriptive measures of model evaluation available for GSCA

are limited to evaluating models in a more confirmatory manner. This study integrates

confirmatory tetrad analysis (CTA) into GSCA for model evaluation or comparison.

Although CTA has been used in factor-based SEM as an inferential statistic, CTA is

actually more compatible with GSCA because it is completely free of the multivariate

normality assumption. Utilizing empirical data collected for 18,174 students’ social skills

in an early childhood longitudinal study of 2010–11 kindergarten cohort, we demonstrate

the capability and applicability of CTA in GSCA and compare its performance with existing

measures for GSCA.

Keywords: confirmatory tetrad analysis, early childhood longitudinal study, generalized structured component

analysis, model evaluation, structural equation modeling

INTRODUCTION

Generalized structured component analysis (GSCA; Hwang and Takane, 2004) is a
component-based approach to structural equation modeling (SEM), where weighted composites or
components of observed variables serve as proxies for latent variables. It estimates parameters via
least squares (LS; Hwang and Takane, 2014) and thus does not require the multivariate normality
assumption of indicators and seldom suffers from non-convergence, even in small samples. As
will be shown shortly, GSCA expresses all sub-models into a single model formation, which in
turn facilitates the derivation of a global optimization criterion that is consistently minimized
to estimate parameters. Moreover, it can deal with more complex analyses (e.g., constrained
multiple-group analysis, analysis of discrete indicators, etc.) in a straightforward and coherent
manner, minimizing a single optimization criterion. Owing to its practical utility and flexibility,
GSCA has already been applied to a wide range of psychological and bio-medical studies (e.g.,
Hwang et al., 2012, 2013; Jung et al., 2012; Romdhani et al., 2015).

Despite its growing popularity, GSCA currently relies on only a handful of descriptive measures
for model evaluation and comparison, which includes FIT, AFIT, GFI, and SRMR (Hwang and
Takane, 2014, Ch. 2). In this paper, we propose to apply confirmatory tetrad analysis (CTA;
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Bollen, 1990; Bollen and Ting, 1993, 1998, 2000; Hipp and Bollen,
2003) to GSCA as an additional and powerful model evaluation
tool. In particular, we employ CTA to find the best fitting model
among a pool of GSCA models as an inferential statistic. The
current measures for GSCA are based on the difference between
the fitted model and sample data (individual-level raw data or
variances and covariances). Instead, CTA utilizes a number of
so-called vanishing tetrads, which will be described shortly, to
ensure that the test statistic in CTA is not based on the difference
between the model and the data but the difference between
vanishing tetrads from the model and the sample variance
covariance matrix.

The paper is organized as follows: First, GSCA and the
use of its fit indexes as descriptive measures of model
evaluation are reviewed. Second, it introduces CTA as a
model evaluation tool for GSCA, showing the relaxation of
the normality condition in CTA. Last, it demonstrates the
usefulness of CTA for model comparisons in GSCA using data
on children’s social skills extracted from an early childhood
longitudinal study—Kindergarten: 2011 (ECLS-K: 2011). The
final section discusses CTA’s compatibility and applicability
in GSCA.

METHODS

Generalized Structured Component
Analysis (GSCA)
Model Specification
As stated earlier, GSCA is a component-based approach to
SEM. It involves three sub-models: measurement, structural, and
weighted relation models. The first two models are the same as
those used in the LISREL model (Jöreskog, 1973, 1977, 1978),
namely the measurement and structural models. The weighted
relation model is used to define a latent variable as a weighted

FIGURE 1 | Generalized structured component analysis model consisting of measurement, structural, and weight models.

composite or component of indicators. These sub-models can be
written in matrix form as follows:

Measurement model: z = CTγ + ε

Structural model: γ = BTγ + ζ

Weighted relation model: γ = WTz

where z is a J by 1 vector of indicators, γ is a P by 1 vector of latent
variables, C is a P by J matrix of loadings, B is a P by P matrix of
path coefficients, W is a J by P matrix of component weights, ε
is a J by 1 vector of the residuals of indicators, and ζ is a P by 1
vector of the residuals of latent variables, where the superscript T
is for a transpose matrix. As described in Figure 1, all notations
except wi for i = 1, · · · , 8 are the same as in the LISREL model.
Latent variables, γj for j = 1, · · · , 4, are linear combinations of
two indicators with weights, for example, γ1 = w1z1 + w2z2.

Estimation
GSCA estimates model parameters, including weights
(W), path coefficients (B), and loadings (C), by
minimizing the sum of the squares of the residuals,
ei, i.e., consistently minimizing a single LS criterion
defined by:

8 =

N
∑

i= 1

eTi ei =

N
∑

i= 1

(

VTzi − ATWTzi

)T (

VTzi − ATWTzi

)

,

where A =

[

CT

BT

]

and N is the sample size. To make the

scaling in indicators and latent variables consistent, it is assumed
that both indicators and latent variables are standardized. In
addition, standard errors of parameter estimates are computed
using the bootstrap method (Efron, 1979, 1982). More details of
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the computation and algorithms involved are available in Hwang
and Takane (2014, Ch. 2).

Model Evaluation
As stated earlier, the model evaluation tools in GSCA include
FIT (Henseler, 2012), Adjusted FIT (Hwang et al., 2007),
GFI (Jöreskog and Sörbom, 1986), and SRMR (Hwang, 2008)
measures for the overall model fit. FIT is defined as:

FIT = 1−
[

SS(ZV − ZWA)/SS(ZV)
]

=
1

T

T
∑

t= 1

R2t ,

where R2t is the R-squared value of each indicator or latent
variable, and T is the total number of indicators and latent
variables. The values of FIT range from 0 to 1 and can
be interpreted as the variance accounted for by the model
specification; the larger the value, the more the model’s variance
is explained as in linear regression.

Adjusted FIT (AFIT) is defined as:

AFIT = 1− (1− FIT)
d0

d1
,

where d0 = N ·J is the number of degrees of freedom for the null
model (W = 0 and A = 0) and d1 = N · J − δ is the number of
degrees of freedom for the model being compared, where δ is the
number of free parameters. The model that maximizes AFIT can
be regarded as the most appropriate among competing models.

Let S and 6̂ denote the sample covariance matrix and the
model-implied covariance matrix evaluated at the LS estimates
of parameters. Let sjq and σ̂jq denote the jq th elements in S and

6̂, respectively. Then the GFI and SRMR are calculated by:

GFI = 1−
trace

(

S− 6̂

)2

trace
(

S2
)

SRMR =

√

√

√

√

√2

J
∑

j= 1

j
∑

q= 1

((

sjq − σ̂jq
)

/
(

sjj sqq
))2

J(J + 1)
.

In general, GFI values close to 1 and an SRMR close to
0 is considered indicative of a good fit. In addition to the
global fit indices, there are local fit indices such as FITM,
and FITS in GSCA. FITM (and FITS) indicate how much the
variance of indicators (and latent variables) is accounted for by
a measurement (and a structural) model. These fits can also be
interpreted in a similar way to that used in FIT. Here, the local fits
were not considered but instead composite reliability was used
(Werts et al., 1974) as a local fit when interpreting the factor
reliability in the Results section. The composite reliability, ρp, is
defined by:

ρp =

(

Jp
∑

j= 1
cpj

)2

(

Jp
∑

j= 1
cpj

)2

+

Jp
∑

j= 1

(

1− c2pj

)

where cpj is the loading value for an indicator, zpj, and Jp is the
number of indicators for the p th latent variable.

Confirmatory Tetrads Analysis (CTA)
A tetrad approach using the difference in the products of certain
pairs of the covariances (or correlations) of observed variables
was proposed by Glymour et al. (1987) as a method to search
for a model consistent with the covariance matrix of observed
variables. Their focus was on applying exploratory tetrad analysis
(ETA) to search for a good match to the tetrads of the observed
variables. A few years later, Bollen and Ting (1993) proposed
the use of a CTA to test one or several specific models, utilizing
vanishing tetrads (Bollen, 1990) that will be discussed shortly.
CTA has been utilized within ML-based SEM (Bollen and Ting,
2000) and also applied in partial least squares (PLS; Wold, 1966,
1973, 1982; Gudergan et al., 2008). However, CTA in ML-based
SEM requires a multivariate normality assumption to obtain
model-implied variance-covariance matrix, whereas CTA in PLS
does not take into account model specifications simultaneously.
In GSCA, CTA can be used without the normality assumption,
yielding a model evaluation tool that utilizes all of the model
specifications.

As a model evaluation method, CTA is comparable to the
likelihood ratio difference test (LRDT). While LRDT does
not work for models that are non-identifiable models, not-
convergent, or not-nested (parameter-wise), CTA is applicable to
some of these models and, furthermore, can also be applied to
evaluate each of the measurement and structural models in SEM.
This flexibility holds even when CTA is applied to GSCA utilizing
the LS estimation method.

A tetrad is defined as a form of four covariances of population
covariance matrix (

∑

) as follows: τijkl = σijσkl − σikσjl. It is
possible that τijkl = 0, when it is called a vanishing tetrad. For
example, if we consider four variables in a single factor model,
as in Figure 2, there are only three vanishing tetrads, namely
τ1234 = σ12σ34 − σ13σ24, τ1342 = σ13σ42 − σ14σ32, and τ1423 =

σ14σ23 − σ12σ43, because all the product terms of covariances in
the non-redundant tetrads are equal to λ1λ2λ3λ4ϕ

2 in Figure 2,
where φ2 = var(γ ).

Similar to the chi-square test in ML-based SEM, CTA is
a hypothesis test using vanishing tetrads implied by a model,
which means that we need a test statistic and its distribution to
enable us to judge acceptance or rejection. First, CTA examines
whether at least one vanishing tetrad exists based on a given
model specification. The set of vanishing tetrads forms a null
hypothesis such that if a model is correctly specified, the
vanishing tetrads from the model-implied covariance should be
zero when evaluated with the given data. This is an analog for
minimizing the fit function generated by the difference between
the sample variance-covariance and model-implied variance-
covariance matrices. Thus, rejecting the null hypothesis means
that the hypothesized model is misspecified. More specifically,
in the hypothesis test, CTA identifies the vanishing tetrads in
a model (i.e., A is an indicator matrix of the vanishing tetrad
values for a given model specification), computes all of the
vanishing tetrad values from the sample covariance matrix (i.e.,
τ̂ is the sample vector of vanishing tetrad values), and finds
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FIGURE 2 | A single factor model with four observed variables.

the asymptotic covariance matrix of the sample estimates of the
tetrads (i.e., 6̂τ̂ is the covariance matrix, that is, 6̂τ̂ = A ·
(

∂τ
∂σ

)T
· 6S ·

(

∂τ
∂σ

)

· AT , where 6S is the estimated asymptotic
covariance matrix of the sample covariances). The test statistic in
CTA is then defined as T = nτ̂TAT6̂−1

τ̂
Aτ̂ ∼ χ2

df
, where df is

the number of vanishing tetrads (Bollen, 1990) and its modified

tetrad test statistic is defined as T1 = nτ̂T ˆ
∑−1

τ̂1 τ̂ , where ˆ
∑

τ̂1 =

diag
[

(

∂τ
∂σ

)T∑

S

(

∂τ
∂σ

)

]

(Johnson and Bodner, 2007).

When two models are compared using CTA, we begin by
finding the vanishing tetrads on each of the given models by
forming the implied covariance matrix and estimating all of
the tetrads. Next, we identify a set of non-redundant vanishing

tetrads to calculate ˆ
∑

τ̂ (or ˆ
∑

τ̂1) for each given model, yielding
different results from the selection. Lastly, we compute the test
statistics, T (or T1) for each given model, thus providing the
result of the hypothesis test. In this model comparison, if the
vanishing tetrads in Model 2 are a strict subset of the vanishing
tetrads in Model 1, then Model 2 is said to be tetrad-nested in
Model 1. As with LRDT, we then compute 1T = T1 − T2

and compare it in the form χ2
df1−df2

, which allows us either to

accept or to reject the hypothesis. “Rejection” means that the
less restrictive model (Model 2) has a better fit than the more
restrictive model (Model 1). It should be noted that CTA works
only for two tetrad-nested models.

Procedure for Model Evaluation Using CTA
in GSCA
Step 1: Model-Implied Correlation Matrix in GSCA
When a hypothesized model and its sample data are available, we
can fit GSCA to the sample data and obtain the results including
model fit indexes and parameter estimates. In GSCA, as stated
earlier, all indicators and latent variables are typically assumed
to be standardized (Hwang and Takane, 2014), which allows us

to obtain the model-implied correlation matrix for CTA. All
analyses obtaining the model-implied correlation matrix were
conducted using the R package known as gesca (Hwang et al.,
2016).

Step 2: Confirmatory Tetrad Analysis for a Single

Model
Based on the model-implied correlation matrix from Step 1, we
can now conduct a hypothesis testing to determine if the model
fits well to the given data. Although the hypothesis test is clear
enough, it is well known that the chi-square statistic is sensitive to
a large sample size because the test statistic, T = nτ̂TAT6̂−1

τ̂
Aτ̂ ,

will be inflated by n and thus trivial differences in the sample
tetrad values from vanishing tetrads can lead to significant
differences in the results (Bollen and Ting, 2000). Although there
is no specific rule of thumb regarding what constitutes a large
sample, “typical” sample sizes in SEM studies are 200–300 (Kline,
2016). Thus, a sample size larger than 1,000 would be considered
large, rendering hypothesis testing not plausible. On the other
hand, analogous to the likelihood ratio difference test (LRDT)
with a chi-square distribution (Collins and Lanza, 2010; Kline,
2016), the chi-square distribution for T = nτ̂TAT6̂−1

τ̂
Aτ̂ is likely

to be approximated reasonably well when 1T = T1 − T2 has
relatively few degrees of freedom, df = df1 − df2.

Step 3: Model Comparison Using CTA
As noted in Bollen and Ting (1993) and Hipp and Bollen
(2003), it is common to have redundant vanishing tetrads
in many models. However, these redundant vanishing tetrads
prevent us from correctly counting the number of degrees
of freedom. For example, three vanishing tetrads shown in
Figure 2 are redundant because σ12σ34 = σ13σ24 in τ1234 and
σ14σ32 = σ13σ42 in τ1342 yield σ14σ23 = σ12σ43 in τ1423.
To avoid any possibility that the result is contaminated due
to these redundant vanishing tetrads, Hipp and Bollen (2003)
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recommended randomly selecting sets of vanishing tetrads
multiple times. The tetrad command in Stata (StataCorp, 2013)
uses the sweep operators originally designed (or used) to produce
a generalized inverse (Goodnight, 1979) to identify sets of non-
redundant vanishing tetrads (Hipp and Bollen, 2003; Hipp et al.,
2005). When fitting CTA in Stata, researchers are allowed to
specify a desired number of replications when randomizing the
sets of non-redundant vanishing tetrads. By comparing 1T =

T1 − T2 in the distribution, χ2
df1−df2

, we can decide which

hypothesized model is well fitted from CTA.

Empirical Data
Early Childhood Longitudinal Study
The Early Childhood Longitudinal Study, Kindergarten cohort:
2011 (ECLS-K: 2011) was run by the U.S. Department
of Education and was designed to provide a longitudinal,
descriptive dataset of children’s early school experiences from
kindergarten through middle school. The children in the study
were a nationally representative sample of kindergarteners in
2010-2011, including children in both public and private school
across the United States. Descriptive information gathered
included aspects of development, home environment, and school
environment, allowing researchers to examine how family,
school, and individual factors are associated with subsequent
school performance (http://nces.ed.gov/ecls/kindergarten.asp).
The data used here is a “snapshot” of the ECLS-K data, gathered
when the majority of the students in this cohort were in third
grade. As public use data, the data used here are deidentified and
decoded data and thus, no IRB required.

From the ECLS-K data, we extracted data on 18,174 children’s
social skill ratings (Gresham and Elliott, 1990), as measured
by both teachers and parents. Teachers measured four scales
[assigning scores ranging from 1 (low) to 4 (high)] for self-
control (Mean = 3.216, SD = 0.623), interpersonal skills (Mean
= 3.142, SD = 0.656), externalizing problems (Mean = 1.721,
SD = 0.618), and internalizing problems (Mean = 1.539, SD =

0.505), while parents measured four scales (using the same range
from 1 to 4) for self-control (Mean = 3.016, SD = 0.495), social
interactions (Mean = 3.432, SD = 0.556), sad/lonely (Mean =

1.463, SD= 0.388), and impulsive/overactive behaviors (Mean=

1.869, SD= 0.663).
For this study examining the utility of the proposed new

model evaluation tool introduced above, CTA in GSCA, we
considered the following four models utilizing eight scales
(see Figure 3), for instructional purposes. The four models
considered would not be supported by any theory but should
rather be considered hypothetically possible models. First,
we considered a two-factor model (Model 0) based on the
ratings of parents and teachers. Model 0 consists of the social
skill factor of four items measured by teachers (self-control,
interpersonal skills, externalizing problems, and internalizing
problems), and the social skill factor of four items measured
by parents (self-control, social interactions, sad/lonely, and
impulsive/overactive). Both factors are correlated as shown
in Figure 3. Second, we considered another two-factor model
(Model 1) with directionality from parent-rated social skills
to teacher-rated social skills. Both Model 0 and Model 1

are equivalent, with different structural models. Third, we
considered a second-order factor model (Model 2) that imposed
no constraints on the path coefficients from the second order
social skill factor to the two first order social skills. Model
2 has more parameters than Model 0 and Model 1. Last, we
considered a four-factor model (Model 3) that further divided
two factors from the teacher-rated social skills (treating self-
control and interpersonal skills as one factor and externalizing
problems and internalizing problems as the other), and two
factors from the parent-rated social skill (with one factor being
self-control and social interactions and the other sad/lonely and
impulsive/overactive).

To show the features of CTA, we chose two equivalent models
(Model 0 and Model 1), and considered Model 2 as representing
a non-tetrad-nested model compared with Model 3, and Model 3
as a tetrad-nested model within Models 0 and 1 (see Figure 3). In
Step 2, we did not include the CTA test for a single model because
our data, which included 18,174 first-grade students, meant that
the sample size was too large for the chi-square test to be applied
properly. In Step 3, we set up five replications, as used in Bauldry
and Bollen (2016), to avoid any redundancy in vanishing tetrads.

RESULTS

In this section, we present threemodel comparisons using CTA in
GSCA following the procedure described in the Method section.
The three comparisons are based on the four hypothesized
models for children’s social skills depicted in Figure 3. The first
example compares the two-factor model (Model 0) with the four-
factor model (Model 3) of eight social skill items that are tetrad-
nested. The second example compares the modified two-factor
model, specifying a regression of teacher-rated social skills on
parent-rated social skills (Model 1), with the four-factor model
(Model 3). The third example applies CTA to the second-order
factor model (Model 2) and the four-factor model (Model 3).

Example 1: Tetrad-Nested Model
Comparison I (Model 0 vs. Model 3)
In this example, the two-factor model (Model 0) is compared
with the four-factor model (Model 3) for children’s social skills
as measured by teachers and parents. This type of comparison
would be used in an exploratory factor analysis enumerating
the number of factors. As a first step, we fit GSCA into both
models using the gesca package in R to obtain the model-implied
correlation matrices. As results of GSCA, we obtained the fit
indexes, which for Model 0 were FIT (0.448), AFIT (0.448), GFI
(0.989), and SRMR (0.106), while the fit indices for Model 3 were
FIT (0.469), AFIT (0.469), GFI (0.975), and SRMR (0.238). Thus,
Model 3 was better in terms of explaining the variance accounted
for by the model specification (FIT and AFIT), whereas Model
0 was better in terms of minimizing the difference between
the sample and model-implied variance and covariance (GFI
and SRMR). However, the SRMRs of both models were outside
the boundary of a good fit (<0.08; Hwang and Takane, 2014).
We also examined the composite reliabilities (r; Werts et al.,
1974), which were rP = 0.77 and rT = 0.88 in Model 0 and
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FIGURE 3 | Four hypothetical models for children’s social skills rated by both parent and teacher.
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rP1 = 0.76, rP2 = 0.79, rT1 = 0.95, and rT2 = 0.79 in Model
3, where the subscripts P and T indicate the parent-rated and
teacher-rated social skills, respectively. All of the rs are in the
good range (>0.70; Nunnally, 1978). To obtain a more rational
model comparison, we therefore moved on to CTA with the
model-implied correlation matrices.

Before comparing Model 0 and Model 3, we ran CTA using
the tetrad command in Stata as step 2. Although Model 0 (T0 =

1, 300, p < 0.05) and Model 3 (T3 = 662.4, p < 0.05) were
not well fitted, this rejection of the null hypothesis is a common
problem when sample sizes are large (here, n = 18, 174), as
noted earlier. By conducting CTA for each model, we found that
Model 0 includes 22 vanishing tetrads whereas Model 3 includes
15 vanishing tetrads, which shows that Model 3 is possibly tetrad-
nested in Model 0 (see Table A.1 in Supplementary Material).
The reason that we can only say that this is a possibility is that
such a large number of vanishing tetrads would not guarantee the
tetrad-nestedness when comparing both models simultaneously.
In other words, it is possible that a vanishing tetrad in Model
0 would be a non-vanishing tetrad in Model 3. In step 3, we
apply CTA with Model 0 and Model 3. Table A.1 indicates which
tetrads are vanishing (1 in the fourth column) in each model but
only lists the first 30 of the total 210 tetrads. As a default in the
tetrad command, CTA examines the nestedness of two models
and prints an error message if two models are not nested. Thus,
if the output does not show any error message, then two models
are nested. In this example, no error message was generated, thus
confirming that Model 3 is nested in Model 0.

Next, these models are compared with five replications and
the results summarized in Table 1. All five chi-square values
were greater than 118.8 and significant at the level of 0.05. This
signifies that Model 3 is better than Model 0. In other words,
further classification of the two-factor model with the four-factor
model yields a better understanding of children’s social skills.
This result is consistent with the FIT andAFIT values fromGSCA
obtained in step 1.

Example 2: Tetrad-Nested Model
Comparison II (Model 1 vs. Model 3)
Model 1 specifies a regression of teacher-rated social skills on
parent-rated social skills, which is equivalent to the model in
Model 0, replacing a factor correlation. Although this is not going
to be comparable in ML-based SEM, GSCA allows researchers
to compare these models. The fit indices for Model 0 were FIT
(0.448), AFIT (0.448), GFI (0.989), and SRMR (0.106), while

the fit indices for Model 1 were FIT (0.465), AFIT (0.465), GFI
(0.991), and SRMR (0.082). This shows that Model 1 was better
than Model 0 for all four fit indices. The structural regression
coefficient was 0.367 (p < 0.05 and R2 = 0.135), which means
that 13.5% of the teacher-rated social skills were explained by
parent-rated social skills. Thus, we can interpret the results to
mean that teacher-rated social skills can be predicted by parent-
rated social skills, although the effect was small (R2 = 0.135).

In this example, we compared Model 1 with the four-factor
model (Model 3) for children’s social skills measured by teachers
and parents separately. In step 1, we fit GSCA into the data
with both models compared. The fit indices for Model 1 were
FIT (0.465), AFIT (0.465), GFI (0.991), and SRMR (0.082), while
the fit indices for Model 3 were FIT (0.469), AFIT (0.469), GFI
(0.975), and SRMR (0.238). Thus, Model 3 was slightly better for
FIT and AFIT, whereas Model 1 was better for GFI and SRMR.
However, the SRMRs of both models were still greater than the
boundary for good fit (<0.08).

In step 2, we utilized the model-implied correlation obtained
from GSCA to run CTA for the two models separately. Although
neitherModel 1 (T1 = 947.2, p < 0.05) norModel 3 (T3 = 662.4,
p < 0.05) were well fitted, as noted in Example 1 this rejection of
the null hypothesis is common when sample sizes are large. We
also obtained the results of CTAs for eachmodel. Model 1 include
20 vanishing tetrads, while Model 3 had only 15, indicating that
Model 3 is possibly tetrad-nested in Model 1 (see Table A.2 in
Supplementary Material). The first 30 tetrads in Table A.2, and
the lack of an errormessage in the CTA run confirmed thatModel
3 is tetrad-nested in Model 1.

In step 3, we again compared these models with five
replications; the results are summarized in Table 2. Although
there are some variations in both chi-squares and dfs, all five
replications indicated that Model 3 is better than Model 1; Model
3 with four factors for children’s social skills is better fitted than
the two-factor model with a structural regression from parent-
rated social skills to teacher-rated social skills. Thus, this result is
also consistent with those obtained for FIT and AFIT.

Example 3: CTA with Non-tetrad-Nested
Models (Model 2 vs. Model 0 and Model 3)
In this example, we demonstrate both the advantage of CTA over
the chi-square test in ML-based SEM and its slight disadvantage
over FIT, AFIT, GFI, and SRMR in GSCA. This suggests that
CTA is a useful model evaluation tool but not a panacea.
When considering Model 2, we did not constrain the factor

TABLE 1 | Model comparison between Model 0 and Model 3, which are tetrad-nested.

Rep Model 0 Model 3 Model 3–Model 0

Chi-square df p-value Chi-square df p-value Chi-square Df p-value

1 964.0 21 0.000 845.2 16 0.000 118.8 5 0.000

2 1,000.0 21 0.000 538.8 14 0.000 489.1 7 0.000

3 1,000.0 21 0.000 603.8 14 0.000 407.5 7 0.000

4 959.0 22 0.000 651.9 15 0.000 307.1 7 0.000

5 1,200.0 20 0.000 830.4 15 0.000 385.0 5 0.000

Frontiers in Psychology | www.frontiersin.org 7 May 2017 | Volume 8 | Article 916

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Ryoo and Hwang Model Evaluation in GSCA Using CTA

TABLE 2 | Model comparison between Model 1 and Model 3, which are tetrad-nested.

Rep Model 1 Model 3 Model 3–Model 1

Chi-square df p-value Chi-square df p-value Chi-square df p-value

1 947.2 20 0.000 845.2 16 0.000 102.0 4 0.000

2 1,000.0 21 0.000 814.2 14 0.000 222.1 7 0.000

3 1,000.0 21 0.000 688.3 14 0.000 318.7 7 0.000

4 694.6 19 0.000 658.2 15 0.000 36.4 4 0.000

5 991.3 19 0.000 732.1 16 0.000 259.2 3 0.000

loadings from the second-order factor to two first-order factors.
This relaxation caused non-convergence in the ML-based SEM,
which prevented us from comparing Model 2 with the other
models. However, there was no specific reason preventing us
from obtaining amodel fit because themodel was over-identified.

We therefore moved on to fit GSCA to the data with a second-
order factor model (Model 2). The result of step 1 indicated that
the fit indices for Model 2 were much higher in FIT (0.525)
and AFIT (0.525) than Model 0, but the fit indices for Model
2 were worse in GFI (0.959) and SRMR (0.118) than Model 0.
This indicates that Model 2 was better in FIT and AFIT but
Model 0 was better in GFI and SRMR. Although we did not find
any superiority of Model 2 over Model 0 in terms of all four fit
indexes (FIT, AFIT, GFI, and SRMR) in GSCA simultaneously,
this could be a potential model for children’s social skills rated by
teachers and parents in GSCA. Next, we applied CTA using the
tetrad command in Stata to determine whether Model 2 can be
supported from the social skills data. In step 2, CTA provided the
result that T2 = 702.3 ∼ χ2

19 and p < 0.05. This shows that
Model 2 is not supported from the data, although once again this
finding is not plausible due to the large sample size. This shows
that CTA is more applicable than the chi-square test in ML-based
SEM.

By conducting CTA using the tetrad command in Stata, we
then obtained the results of the CTAs for each model. Model 2
includes 19 vanishing tetrads, whereas Model 3 includes only 15
vanishing tetrads, which shows that Model 3 is possibly tetrad-
nested in Model 2. However, when we compared the two models
in step 3, the results showed that the two models are not tetrad-
nested; with two non-vanishing tetrads, t4,785 and t4,786, in Model
2 out of the 210 tetrads identified as vanishing tetrads in Model
3, for example (see Table A.3 in Supplementary Material). This
suggests that the total numbers of vanishing tetrads observed
in step 1 do not guarantee the tetrad-nestedness between two
models. Because none of these models is tetrad-nested to the
other, Model 2 and Model 3 cannot be compared with CTA.
Similarly, Model 0 was not tetrad-nested in Model 2. Thus, they
cannot be compared with CTA. This result indicates that CTA is
not a panacea for model evaluation.

DISCUSSION

The results of the CTA in GSCA were consistent with the FIT
and AFIT indices in GSCA in the first two examples. Although
GFI values were higher in the more restrictive models (Model 0

and Model 1) than in Model 3, all of the GFIs were greater than
0.95, which is in the good range. None of the four models showed
SRMR <0.08, and thus we cannot derive definitive results from
this demonstration. Likewise, although CTA can also be used as
a model evaluation in GSCA, we were unable to conclude that
CTA is more applicable to GSCA than FIT, AFIT, GFI, and SRMR
because CTA does not work for non-tetrad nested models. This is
analogous to the relationship between LRDT and fit indices such
as AIC and BIC.

As in previous applications of CTA in ML-based SEM
(Bauldry and Bollen, 2016), CTA is not a totally distribution-
free method because it requires a model-implied correlation (or
covariation) under the multivariate normality assumption. On
the other hand, when CTA is used in GSCA, the model-implied
correlation can be fitted without the need tomake a distributional
assumption, and hence the whole procedure for CTA does not
require any distributional assumption. Moreover, one important
benefit of CTA is that somemodels that have not been specifically
identified can still be assessed based on their implied vanishing
tetrads (Bollen and Ting, 2000) and not-convergent models can
also be assessed, as shown in this paper.

In spite of the applicability of CTA, FIT, AFIT, GFI, and
SRMR in GSCA, many underdeveloped areas in model selection
remain in GSCA, including the provision of cutoffs for indexes
and the inclusion of testing methods designed to select a better
model, such as the likelihood ratio test. Along with CTA in
GSCA, we plan to investigate the use of the rule of thumb in
our future research, as suggested by Hu and Bentler (1999).
Another possibly fruitful research topic is the application of CTA
to measurement and structural models separately. Although we
did not seek to apply CTA for each measurement and structural
part of the model in this paper, CTA is applicable to parts of the
model in GSCA, similar to its use by Gudergan et al. (2008) for
PLS. This would ensure CTA is compatible with FITM and FITS

as well as FIT.

Limitations
Although Hwang and Takane (2014) provided guidance on
how FIT and AFIT should be interpreted, they did not specify
appropriate cutoff values. Thus, it was hard to determine whether
or not the four models used in this study were in the good
fit range as a single model. GFI indicated that all four of the
models fell in the good fit range (>0.95), but SRMR indicated
that all four were in the unacceptable range (>0.08). As noted
above, as a future study we plan to conduct a simulation study

Frontiers in Psychology | www.frontiersin.org 8 May 2017 | Volume 8 | Article 916

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Ryoo and Hwang Model Evaluation in GSCA Using CTA

to recommend cutoffs for use in model evaluations in GSCA, as
Hu and Bentler (1999) and Cheung and Rensvold (2002) did for
factor-based SEM.

Another limitation of the current study is the lack of a unified
software package. To apply CTA in GSCA, we first had to fit
each model using R’s gesca package and compute the model-
implied correlationmatrix and thenmove on to utilize the matrix
in the tetrad command in Stata. As a future study, we plan to
develop a unified package in R. This package can then be used for
conducting simulation studies to investigate the performance of
CTA in GSCA under various experimental conditions.

CONCLUDING REMARKS

Both CTA and GSCA have been underused in spite of their
applicability for both small and large samples, as well as for
some under-identified models. The results of this study show
great promise for developing a new approach that applies CTA to
GSCA to extend its capability and applicability to the point that
applied researchers will be able to use it in their studies.
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