AUTHOR=Butz Martin V. TITLE=Toward a Unified Sub-symbolic Computational Theory of Cognition JOURNAL=Frontiers in Psychology VOLUME=7 YEAR=2016 URL=https://www.frontiersin.org/journals/psychology/articles/10.3389/fpsyg.2016.00925 DOI=10.3389/fpsyg.2016.00925 ISSN=1664-1078 ABSTRACT=
This paper proposes how various disciplinary theories of cognition may be combined into a unifying, sub-symbolic, computational theory of cognition. The following theories are considered for integration: psychological theories, including the theory of event coding, event segmentation theory, the theory of anticipatory behavioral control, and concept development; artificial intelligence and machine learning theories, including reinforcement learning and generative artificial neural networks; and theories from theoretical and computational neuroscience, including predictive coding and free energy-based inference. In the light of such a potential unification, it is discussed how abstract cognitive, conceptualized knowledge and understanding may be learned from actively gathered sensorimotor experiences. The unification rests on the free energy-based inference principle, which essentially implies that the brain builds a predictive, generative model of its environment. Neural activity-oriented inference causes the continuous adaptation of the currently active predictive encodings. Neural structure-oriented inference causes the longer term adaptation of the developing generative model as a whole. Finally, active inference strives for maintaining internal homeostasis, causing goal-directed motor behavior. To learn abstract, hierarchical encodings, however, it is proposed that free energy-based inference needs to be enhanced with structural priors, which bias cognitive development toward the formation of particular, behaviorally suitable encoding structures. As a result, it is hypothesized how abstract concepts can develop from, and thus how they are structured by and grounded in, sensorimotor experiences. Moreover, it is sketched-out how symbol-like thought can be generated by a temporarily active set of predictive encodings, which constitute a distributed neural attractor in the form of an interactive free-energy minimum. The activated, interactive network attractor essentially characterizes the semantics of a concept or a concept composition, such as an actual or imagined situation in our environment. Temporal successions of attractors then encode unfolding semantics, which may be generated by a behavioral or mental interaction with an actual or imagined situation in our environment. Implications, further predictions, possible verification, and falsifications, as well as potential enhancements into a fully spelled-out unified theory of cognition are discussed at the end of the paper.