AUTHOR=Sahdra Baljinder K. , Ciarrochi Joseph , Parker Philip , Scrucca Luca TITLE=Using Genetic Algorithms in a Large Nationally Representative American Sample to Abbreviate the Multidimensional Experiential Avoidance Questionnaire JOURNAL=Frontiers in Psychology VOLUME=7 YEAR=2016 URL=https://www.frontiersin.org/journals/psychology/articles/10.3389/fpsyg.2016.00189 DOI=10.3389/fpsyg.2016.00189 ISSN=1664-1078 ABSTRACT=
Genetic algorithms (GAs) are robust machine learning approaches for abbreviating a large set of variables into a shorter subset that maximally captures the variance in the original data. We employed a GA-based method to shorten the 62-item Multidimensional Experiential Avoidance Questionnaire (MEAQ) by half without much loss of information. Experiential avoidance or the tendency to avoid negative internal experiences is a key target of many psychological interventions and its measurement is an important issue in psychology. The 62-item MEAQ has been shown to have good psychometric properties, but its length may limit its use in most practical settings. The recently validated 15-item brief version (BEAQ) is one short alternative, but it reduces the multidimensional scale to a single dimension. We sought to shorten the 62-item MEAQ by half while maintaining fidelity to its six dimensions. In a large nationally representative sample of Americans (