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In order to function optimally within our environment, we continuously extract temporal
patterns from our experiences and formulate expectations that facilitate adaptive
behavior. Given that our memories are embedded within spatiotemporal contexts,
an intriguing possibility is that mnemonic processes are sensitive to the temporal
structure of events. To test this hypothesis, in a series of behavioral experiments
we manipulated the regularity of interval durations at encoding to create temporally
structured and unstructured frameworks. Our findings revealed enhanced recognition
memory (d′) for stimuli that were explicitly encoded within a temporally structured vs.
unstructured framework. Encoding information within a temporally structured framework
was also associated with a reduction in the negative effects of proactive interference
and was linked to greater recollective recognition memory. Furthermore, rhythmic
temporal structure was found to enhance recognition memory for incidentally encoded
information. Collectively, these results support the possibility that we possess a greater
capacity to learn and subsequently remember temporally structured information.
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INTRODUCTION

The human brain is adept at extracting regularities from the temporal dimension of experience.
Given the ubiquity of repetitive phenomena and temporal patterns, the capacity to harness these
temporal regularities allows for future outcomes to be anticipated, affording benefits to behavior
and cognition. Indeed, it has been demonstrated that temporal regularities in stimulus presentation
entrain attentional focus to their temporal structure, referred to as temporal expectation, which
can confer perceptual and behavioral advantages (Jones and Boltz, 1989; Barnes and Jones, 2000;
Jones et al., 2002, 2006; Nobre and Rohenkohl, 2014). Participants exhibit enhanced sensory
processing and behavioral facilitation when stimuli are experienced at regular fixed interval
durations compared to irregular temporal rhythms comprised of random or jittered interval
durations (e.g., Olson and Chun, 2001; Jones et al., 2002, 2006; Lange, 2010; Mathewson et al.,
2010; Rohenkohl and Nobre, 2011; Rohenkohl et al., 2012). These findings are supported by
electrophysiological evidence suggesting that neural firing may vary dynamically as a function of
the conditional probability that an event will occur at a particular time (Praamstra et al., 2006;
Rohenkohl and Nobre, 2011). For instance, temporal expectation has been shown to modulate
perceptual processing of visual stimuli through the entrainment of oscillatory activity in visual
cortex (Cravo et al., 2013). Furthermore, temporal expectation has been suggested to combine with
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predictive information about other stimulus attributes
such as location, leading to a top–down enhancement of
perceptual processing in early visual areas (Doherty et al.,
2005).

Although expectancies acquired through temporally
structured events can modulate attentional, motor, and
perceptual processes (Coull and Nobre, 2008; Nobre and
Rohenkohl, 2014), it is unknown if similar benefits can be
observed in other higher cognitive processes, in particular,
episodic memory. There have, to our knowledge, been no
systematic investigations of the relationship between temporal
expectation and long-term memory processing. Although,
previous work has explored the effects of inter-stimulus
intervals (ISIs) on subsequent memory (e.g., Weaver, 1974;
Lichtenstein and Keren, 1979; Proctor, 1983; Watkins, 1985),
much of this research has focused on how the nature of
ISIs can influence stimulus processing during learning such
as rehearsal. Importantly, there are reasons to suggest that
temporal expectation may impact episodic memory. Time is a
fundamental component of episodic memory (Tulving, 1972)
and the hippocampus, a key structure in episodic memory
processing (Eichenbaum, 1999), has been implicated in the
processing of temporal information. Human functional magnetic
resonance imaging (fMRI) studies have provided evidence that
the hippocampus is sensitive to contextual changes and the
manipulation of ordinal item relationships (Ezzyat and Davachi,
2014; Hsieh et al., 2014), consistent with the view that item-driven
changes in context may be important for linking events across
time (Howard and Kahana, 2002). Beyond ordinal relationship
manipulations, recent findings suggest that the hippocampus
may be sensitive to temporal duration information. Rodent
hippocampal CA1 cells have been observed to fire during the
delay between two discontiguous events, potentially signaling the
passage of time (Pastalkova et al., 2008; MacDonald et al., 2011),
with comparable findings in monkeys (Naya and Suzuki, 2011).
Moreover, human fMRI research has revealed that hippocampal
activity is sensitive to temporal duration manipulations when
ordinal item sequences are held constant, suggesting that events
may be bound to a temporal framework (Barnett et al., 2014).

Here, we conducted a series of behavioral experiments
to investigate the impact of expectations derived from
temporally structured events on episodic memory. Since
temporal expectation can enhance attentional and perceptual
processes, we predicted that the encoding of stimuli within
a temporally structured framework would result in enhanced
memory performance. We tested this hypothesis in Experiment 1,
where participants remembered scene images in the context of
a yes/no recognition task. Participants completed two study-test
blocks, one with a regular and one with an irregular temporal
structure during study. Critically, this manipulation was
unbeknownst to participants. Experiment 2 explored how this
temporal structure might protect against proactive interference
in a between-subject investigation of task order (temporally
structured encoding followed by temporally unstructured
encoding, and vice versa). Confidence judgments were also
collected to investigate the impact of temporally structured
encoding on recollective (i.e., remembering) and familiarity (i.e.,

feeling of knowing) memory. Finally, Experiment 3 examined
whether an advantage for temporally structured stimulus
presentation could be demonstrated with incidental, as opposed
to intentional, stimulus encoding.

EXPERIMENT 1

Participants
Sixteen participants (mean age = 18.56 years; SD = 1.26;
12 female) took part in Experiment 1. Since there is, to our
knowledge, no previous work examining the impact of temporal
expectation on recognition memory, we had no prior knowledge
of the magnitude and variability of expected effect sizes. As
such, we made an a priori decision to have a participant
group of 16 in order to have two participants for each of
the eight counterbalanced versions that were created for the
experimental tasks. Notably, our group size is consistent with
previous studies examining the effects of temporal expectation
on other cognitive domains (e.g., 13–16 subjects; Jones and
Boltz, 1989; Correa and Nobre, 2008; Rohenkohl et al.,
2012). All participants for this and subsequent experiments
were undergraduate students recruited from the University
of Toronto, Scarborough Campus, and were compensated for
their time with course credit. Participants provided written
informed consent prior to participation and all experiments were
approved by the University of Toronto Research Ethics Board
(ref. 26827).

Procedure
All experimental tasks were completed on a desktop computer
running E-Prime 2.0 software (Psychology Software Tools, Inc.),
and displayed on a 19-inch monitor with a spatial resolution
of 1024 × 768 pixels. Stimuli consisted of grayscale images
(350 × 350 pixels) of a variety of real-world scenes (e.g., outdoor
landscapes, indoor rooms, buildings, etc.) presented centrally on
the screen with a black background.

In Experiment 1, participants completed two recognition
memory tasks in a repeated-measures design, one temporally
structured, and another temporally unstructured. Each
recognition memory task consisted of an initial study phase
followed immediately by a test phase (Figures 1A,B). In both
tasks, participants were explicitly instructed to remember
the images for a later recognition memory task. During
the study phase, 48 unique grayscale scene images were
presented individually for 700 ms to the participant. Scene
presentation was segmented into mini-sequences of four,
with each mini-sequence being shown twice in succession
(e.g., A-B-C-D – A-B-C-D – E-F-G-H – E-F-G-H – etc.)
in order to create a sense of predictability and maximize
expectations as a consequence of temporal duration structure.
Specifically, in the ‘temporally structured’ task (Figure 1A),
the ISIs that followed the four images in each mini-sequence
during study were presented in a repeating pattern across
trials (i.e., 500, 1000, 2000, and 100 ms), giving rise to
a regular temporal structure (e.g., A1-B2-C3-D4 – A1-
B2-C3-D4, with letters referring to images, and numbers
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FIGURE 1 | Investigating the effects of temporally structured and unstructured learning on recognition memory. (A) An example of a trial from the
structured encoding task. A sequence of four images (each displayed for 700 ms) was shown twice in succession, separated by a sequence of intervals (500, 1000,
2000, 100 ms) that possessed an underlying temporal structure. (B) An example of a trial from the unstructured encoding task. A sequence of four images (each
displayed for 700 ms) was shown twice in succession, with no regularity to the ordering of temporal intervals separating the image presentations. Following the study
phase for both tasks, participants completed a self-paced recognition memory task for the studied images intermixed with a set of novel stimuli. (C) Mean reaction
times during recognition test for temporally structured and unstructured tasks. (D) Subsequent recognition memory performance (measured using d′ ) for scenes
presented in temporally structured and unstructured tasks. Error bars represent standard error of the mean. ∗p < 0.05.

referring to interval durations). Conversely, in the ‘temporally
unstructured’ task (Figure 1B), the ISIs did not possess
any underlying temporal structure. Rather, four pseudo-
randomly ordered ISIs followed the four stimuli within
each mini-sequence shown during study. In order to match
average ISI length to the temporally structured condition,
these four ISIs (which were trial-unique) were derived from
jittering around mean durations of 100 ms (SD: 40 ms),
500, 1000, and 2000 ms (all SD: 80 ms). The order of these
ISIs for each mini-sequence was also randomized such that
the ordinal position of each ISI differed during the initial
and subsequent presentation (e.g., A1-B3-C4-D2 – A2-B4-
C2-D1). Importantly, while participants were instructed to
explicitly encode the stimuli, they were not made aware of
the difference in ISI structure between the two recognition
memory tasks. This incidental acquisition of temporal
regularity was facilitated by using a sequence of ISIs, as
opposed to a single, fixed ISI in the temporally structured
task, thereby minimizing the likelihood that individuals would

recognize the interval duration structure and focus attention on
time.

During each test phase, participants completed a self-paced
yes/no recognition task. Participants were presented with 48
images from the respective study phase, intermixed with 48
novel scene images and were required to indicate whether each
scene was ‘old’ or ‘new’ using pre-specified keyboard presses.
Target presentation was pseudo-randomized to minimize
recency effects, with test stimuli being presented in the same
quartile of trials as presented at study. The order of the
recognition memory tasks was fully counterbalanced across
participants (i.e., eight subjects received the temporally
structured recognition memory task followed by the
temporally unstructured recognition memory task, and
eight subjects received the reverse order) and images were
never repeated across the two tasks. In addition, targets
and foils, as well as the assignment of each image to the
structured or unstructured tasks, were counterbalanced across
subjects.
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Results
Mean reaction times (RTs) for recognition memory decisions
(Figure 1C) did not differ significantly between the temporally
structured and unstructured tasks, as revealed by a paired-
samples t-test [t(15) = 0.003, p > 0.250]. The proportion
of targets correctly identified as “old” (i.e., Hits, H), and
the proportion of foils incorrectly identified as “old” (i.e.,
false-alarms, FA), was calculated for each participant.
In accordance with signal detection theory (Snodgrass
and Corwin, 1988) these values were used to calculate a
d-prime (d′) score (Z(P[H]) – Z(P[FA])), as a measure
of sensitivity/recognition memory accuracy. Recognition
performance (d′) for the studied images was above chance
for items studied in both the structured [t(15) = 8.56,
p < 0.001 two-tailed] and the unstructured [t(15) = 8.75,
p < 0.001 two-tailed] conditions. Critically, assessment of
the effect of temporal structure on recognition revealed
significantly higher d′ estimates for temporally structured
recognition as compared to temporally unstructured recognition
[t(15) = 2.21, p = 0.043 two-tailed, Cohen’s d = 0.55].
Thus, consistent with the prediction that expectations
derived from temporal regularity in encoding can impact
mnemonic processing, scenes studied within a temporally
structured framework (comprising a repeating sequence of
ISI durations), resulted in superior recognition memory
(Figure 1D).

As stimuli studied during a structured encoding phase were
embedded within a repeating sequence of ISIs, a proportion
of stimuli were consistently followed or preceded by shorter
ISIs (e.g., 100 ms), whereas others were followed or preceded
by longer temporal intervals (e.g., 2000 ms). The observed
subsequent memory advantage for the temporally structured
task may, therefore, have arisen due to the consistently longer
post-presentation processing time for a number of stimuli
(thus allowing more time for consolidation into memory)
or more preparation time, which was not available in the
temporally unstructured encoding phase when the ordinal
position of each ISI differed between initial and subsequent
mini-sequence presentations. To assess this possibility, the
average proportion of recognition hits for the temporally
structured task was computed separately for the 1st, 2nd, 3rd,
and 4th stimulus within each mini-sequence. This allowed
us to assess any potential differences in recognition hits
for stimuli that were followed or preceded by each of
the four ISIs (500, 1000, 2000, 100 ms) during the study
phase. A one-way repeated-measures ANOVA revealed no
significant differences in recognition hits between the four
stimuli within each mini-sequence [F(3,45) = 0.314, p = 0.815].
This finding demonstrates that memory performance was
not mediated by differences in the length of the ISIs that
followed/preceded each image, and precludes the possibility
that the mnemonic advantage demonstrated in the temporally
structured recognition task was driven by differences in
consolidation or preparation time. Instead, we interpret this
superior recognition accuracy as a product of the overall
rhythmic temporal pattern that the scene images were presented
in at encoding.

EXPERIMENT 2

In Experiment 2, we aimed to confirm the findings in Experiment
1 through replication. Additionally, we wanted to examine if
there were between-subjects differences in memory as a function
of task order and if there were qualitative differences reflected
in the confidence of participants’ recognition judgments (which
were not collected in Experiment 1). It is conceivable that
the order in which participants completed the two memory
tasks in Experiment 1 (temporally structured followed by
unstructured, or vice versa) impacted performance. Exposure
to and retrieving an increasing number of items can result
in proactive interference, in which memory for new items is
negatively affected by previously encoded information (Criss and
Shiffrin, 2004; Criss et al., 2011). In the present experimental
design, therefore, proactive interference may reduce memory
accuracy at the second recognition test phase, in particular during
the latter trials. One question is whether temporally structured
encoding mitigates this effect, resulting in a mnemonic advantage
at the second test phase. A related second question is how
temporally structured encoding qualitatively effects recognition
memory. Recognition memory is widely believed to consist of
recollection and familiarity (Mandler, 1980) and diminished
effects of proactive interference have been suggested to be
the result of a qualitative shift toward a greater reliance on
recollection (Jacoby et al., 2010, 2013). We were interested,
therefore, in whether a mnemonic advantage in the second test
phase could be reflected in increased recollection.

Participants
While we were interested in a within-subjects effect in
Experiment 1 (temporally structured vs. unstructured
encoding), we were focused on a between-subjects effect in
Experiment 2, in particular an interaction between task order
(order 1 = structured followed by unstructured vs. order
2 = unstructured followed by structured) and condition
(structured vs. unstructured). To achieve satisfactory power for
this interaction we made an a priori decision to increase our
sample size from 16 in Experiment 1 to 44 in Experiment 2.
To achieve this, 45 participants were recruited and took part in
Experiment 2 (mean age = 19.64 years; SD = 2.76; 35 female).
One participant was excluded for failing to comply with task
instructions, leading to improper use of the confidence scale,
resulting in our final sample of 44 (mean age = 19.66 years;
SD = 2.79; 34 female). Notably, a post hoc power analysis using
the effect size we observed for our interaction of interest (see
Experiment 2 Results), reveals that our mixed effects ANOVA
was adequately powered with our chosen sample size (>90%).

Procedure
The task in Experiment 2 was identical to Experiment 1 except
that a two-step response procedure was used, allowing collection
of confidence ratings during the recognition phase of the
structured and unstructured tasks. For every image, participants
were required to indicate using a keyboard press whether the
scene was old or new. Next, they indicated the confidence level of
their response using a 1 to 3 scale: 1 – “Very sure”, 2 – “Somewhat
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sure”, and 3 – “Not sure” (i.e., total of six possible responses).
Participants were instructed to give “Very sure” responses if they
remembered the item, and were consciously aware of specific
details associated with the study episode. In contrast, if they
remembered seeing the scene image but could not bring to mind
specific details of the study episode, they were asked to give a
“somewhat sure” response. Finally, “Not sure” responses were
provided if participants were unsure that the target scene image
was old/new. Participants were encouraged tomake full use of the
entire confidence scale.

Results
First, we assessed whether the critical finding of Experiment 1,
a mnemonic benefit for stimuli studied with a temporally
structured presentation, could be replicated. A benefit for
temporally structured encoding was indeed observed, with
greater subsequent memory (d′) for scenes embedded within
a temporally structured as opposed to temporally unstructured
framework [t(43) = 2.21, p = 0.032 two-tailed, Cohen’s
d = 0.33, structured M = 1.69, 95% SEM = 0.12, unstructured
M = 1.49, SEM = 0.11]. Average RTs did not differ
between temporally structured and unstructured recognition
[t(43) = 0.102, p > 0.250 two-tailed]. To examine the effect
of task order on memory performance, d′ estimates were
entered into a 2 × 2 mixed-effects ANOVA, with order (order
1 = structured followed by unstructured; order 2 = unstructured
followed by structured) as a between-subjects factor, and
condition (structured vs. unstructured encoding) as a within-
subjects factor. A main effect of condition [F(1,42) = 5.68,
p = 0.022, η2p = 0.119] was found, as well as a significant
condition by order interaction [F(1,42) = 6.03, p = 0.018,
η2
p = 0.126]. In line with our expectation that proactive

interference should result in a decline in performance at the
second test phase, follow-up pairwise comparisons revealed
a significant drop in accuracy between the first and second
recognition test for order 1 [structured, followed by unstructured;
t(22) = 3.17, p = 0.004 two-tailed, Cohen’s d = 0.66]. This
decline, however, was not observed for order 2 [unstructured,
followed by structured; t(20) = 0.056, p > 0.250 two-tailed;
Figures 2A,B], and is consistent with the idea that encoding
stimuli within a temporally structured framework can mitigate
adverse effects on memory due to a build-up of proactive
interference.

The negative effects of proactive interference were expected
to be greatest at later trials of test. Hence, we hypothesized
that the greatest differences in d′ scores between the temporally
structured and unstructured task should be observed at these
later trials in the second test phase. To explore this, the 96 trials
for the second test phase were divided equally into four 24-trial
bins (bin 1 = trials 1–24; bin 2 = trials 25–48; bin 3 = trials
49–72; bin 4 = trials 73–96). Separate d′ scores were computed
for each bin, providing the opportunity to examine changes in
memory performance as the test phase of the second recognition
task progressed (Figure 2C). Average d′ estimates for each trial
bin were explored using a 2 × 4 mixed-effects ANOVA, with
condition as a between-subjects factor, and trial bin as a within-
subjects factor. A significant main effect of trial bin was found

[F(3,126) = 11.88, p < 0.001, η2
p = 0.220]. Consistent with

our prediction that memory performance would be negatively
affected as testing progressed, a regression model fit to the
data revealed a linear decline of mean d′ scores (β = −0.283,
p < 0.001] from trial bin 1 to 4 (bin 1: M = 2.02, SEM = 0.18;
bin 2: M = 1.91, SEM = 0.16; bin 3: M = 1.85, SEM = 0.15;
bin 4:M = 1.09, SEM = 0.17). Although the interaction between
condition and trial bin was not significant [F(3,126) = 1.93,
p= 0.128, η2

p = 0.044], planned one-tailed, independent-samples
comparisons revealed a significant difference in accuracy between
temporally structured and unstructured recognition in the fourth
trial bin [t(42) = 2.34, p = 0.011, Cohen’s d = 0.70], but not the
first, second, or third bins (all p’s ≥ 0.045; Bonferroni corrected
critical p = 0.012).

Parameter estimates of recollection and familiarity were
computed for the second test phase to evaluate if the mnemonic
advantage for items encoded within a temporally structured
framework emerging at the second test phase may also be
reflected in distinct memory processes. These estimates were
derived by fitting the dual process signal detection model (DPSD;
Yonelinas, 1994) to receiver operating characteristic curves
(ROCs) plotted using the confidence judgments for each subject
for the temporally structured and unstructured tasks. In brief,
the DPSD model is a hybrid threshold and equal variance signal
detection model of recognition memory, and uses a sum-of-
squares search algorithm to compute measures of recollection
and familiarity (represented as a measure of discriminability, d′;
http://yonelinas.faculty.ucdavis.edu/software/). An independent-
samples t-test demonstrated that recollection memory was
significantly lower for temporally unstructured, compared to
structured recognition [t(42) = 2.108, p = 0.041 two-tailed,
Cohen’s d = 0.65] in the second test phase (Figure 2D).
No significant differences in familiarity were found between
structured and unstructured recognition [t(42) = 0.814, p = 0.42
two-tailed], although notably the former was numerically greater
than the latter.

Finally, debriefing data were collected for a majority of
the participants (70%) to determine if they were aware of
any differences in the temporal structure of the stimulus
presentation at encoding. Of these, only one subject identified
a difference in temporal structure between the encoding
phases of the two tasks, suggesting that the observed
benefit of temporally structured encoding to subsequent
recognition memory is unlikely to be dependent on explicit
awareness of the underlying rhythmic framework of stimulus
presentation.

To summarize, it was found that the order in which
individuals completed the first and second recognition task did
indeed have an effect on memory performance. Specifically,
performing the temporally unstructured, but not structured, task
second was associated with a significant decrease in performance.
The observed preservation of memory performance for
temporally structured recognition in the second test phase
suggests that items encoded within a temporally structured
framework may be more resistant to proactive interference
caused by the accumulation of prior learning. This may be
reflected by a greater ability for individuals to leverage contextual
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FIGURE 2 | Examining the effects of proactive interference on temporally structured and unstructured learning. Results from both first and second test
phase (left), and from second test phase only (right). (A) Recognition memory accuracy (as measured by d′) for individuals completing temporally structured
encoding and test, followed by unstructured encoding and test. (B) Recognition memory accuracy for individuals completing temporally unstructured encoding and
test, followed by structured encoding and test. (C) Recognition memory performance as a function of trial bin, during the second test phase for structured and
unstructured tasks. (D) Parameter estimates of recollection and familiarity for temporally structured and unstructured tasks, during the second test phase. Error bars
represent standard error of the mean. ∗p < 0.05.

information at retrieval, as indicated by the significant difference
in recollection memory during the second test phase.

EXPERIMENT 3

Participants intentionally learned stimuli in Experiments 1 and
2, with implicit processing of the underlying temporal structure
in which items were presented. Interestingly, studies have
demonstrated that implicit and explicit timing tasks potentially
engage discrete neuroanatomical substrates (Coull and Nobre,
2008). Moreover, previous research has demonstrated that
incidental learning of an ordinal sequence of finger movements
can be facilitated by a regular temporal structure (O’Reilly
et al., 2008). Experiment 3, therefore, examined whether the
temporal structure present in an explicit timing task (in which
participants were instructed to attend to durations) could also
impact subsequent memory performance for items that were
encoded incidentally.

Participants
As in Experiment 1, we were investigating a within-subjects
effect between structured and unstructured temporal frameworks
in Experiment 3. Subsequently, to be consistent with our first
experiment, we made an a priori decision to have 16 participants
in Experiment 3. To achieve this, 19 undergraduate students were
recruited and tested (mean age = 19.67 years; SD = 4.72; 15
female). One participant was excluded due to negative d′ scores
for both temporally structured and temporally unstructured
subsequent recognition memory, and two additional participants
misunderstood task instructions resulting in an inappropriate
use of button responses, leaving a final sample of 16 (mean
age = 19.88; SD = 4.36, 12 female).

Procedure
Each trial consisted of a study, test, and response phase
(Figure 3A). The study phase comprised of four scene images
presented sequentially for 700 ms each. These scenes were
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FIGURE 3 | Effect of temporally structured and unstructured learning for incidentally encoded stimuli. (A) Participants were presented with trials in which
they were instructed to monitor interval durations and make a match vs. mismatch decision. In the encoding phase of each trial participants saw four scenes
separated by three intervals (mean: 500, 1000, 2000 ms). This was followed by a test phase, where the four scenes were repeated in the same order with their
original interval durations (structured) or the rearranged interval durations (unstructured). The encoding and test phases were separated by a 3500 ms fixation cross,
and participants were asked to indicate their response during a 2500 ms response screen showing the words “Change (1) or No Change (2)?” at the end of each
test phase. (B) Mean reaction times for memory responses during the surprise recognition test. (C) Memory performance (as measured by d′ ) for the surprise
recognition test. Error bars represent standard error of the mean. ∗p < 0.05.

separated by three blank ISIs, jittered around mean durations
of 500, 1000, and 2000 ms (all SD: 80 ms), with the order of
these ISIs pseudo-randomized across trials. This was followed
by a 3500 ms fixation cross, and the re-presentation of the
four scenes (in the same order) in a subsequent test phase.
As with the previous experiments, the nature of the ISIs
distinguished temporally structured and unstructured trials.
For temporally structured trials, the ISI durations in repeated
sequences were maintained, whereas in temporally unstructured
trials, the ISIs were rearranged completely. Immediately after
each test phase, participants would indicate if there was “No
change” or “Time change” during a 2500 ms response screen.
Participants completed six trials each of these structured and
unstructured time judgments (48 total image presentations),

and temporally structured and unstructured trials were pseudo-
randomized. Following completion of these trials, a surprise
self-paced recognition memory task was administered. The 48
studied images and 48 intermixed foil images were presented, one
at a time. Participants indicated whether each image was old or
new using a keyboard.

Results
There was no significant difference in accuracy [t(15) = 0.298,
p > 0.250] in the detection of structured (M = 0.81,
SEM = 0.04) vs. unstructured (M = 0.79, SEM = 0.06)
intervals in the incidental encoding task, although participants
demonstrated significantly slower response times [t(15) = 2.34,
p = 0.033 two-tailed; Cohen’s d = 0.59] for unstructured
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(M = 936 ms, SEM = 92.84) compared to structured
(M = 775 ms, SEM = 74.79) temporal interval trials.
For the surprise recognition task, average RTs were also
significantly slower for scenes that were incidentally encoded in
temporally unstructured, compared to structured, frameworks
[t(15) = 2.169, p = 0.047 two-tailed, Cohen’s d = 0.54;
Figure 3B]. Examination of d′ scores revealed above chance
recognition memory performance for both conditions
[structured: t(15) = 5.00, p < 0.001 two-tailed; unstructured:
t(15)= 4.59, p< 0.001 two-tailed]. Critically, as predicted in light
of the d′ findings in Experiments 1 and 2, recognition memory
was significantly greater for structured than unstructured
conditions [t(15) = 1.96, p < 0.034 one-tailed, Cohen’s d = 0.49;
Figure 3C]. Average d′ scores in Experiment 3 were noticeably
lower than the previous two experiments. However, this finding
is not surprising given that participants were not explicitly told
to study and remember the scene stimuli. Overall, these results
demonstrate that the rhythmic temporal structure of items
perceived in trials with consistent interval durations between
study and test repetitions can confer mnemonic advantages, even
when subjects are attending to the intervals and not the items
themselves (see Table 1 for summary of key findings across all
three experiments).

DISCUSSION

Across three behavioral experiments, we have demonstrated
that learning within a structured temporal framework can
enhance subsequent recognition memory. Our findings converge
with work that has suggested that temporal regularities can
facilitate perceptual processing and motor responding (Nobre
and Rohenkohl, 2014). Importantly, however, we provide
novel evidence that the cognitive advantages resulting from
temporally structured stimulus presentation can be extended
from perceptual or attentional enhancements occurring on a
relatively short time scale (e.g., during exposure to a continuous
stream of stimuli) to mnemonic benefits occurring over longer
time scales (e.g., recognition memory for the individual items
from a stream of stimuli). Experiment 1 demonstrated that
intentionally encoding items within a structured temporal
framework enhanced subsequent recognition memory (as
measured by d′) compared to learning within an unstructured
temporal framework. Given that participants completed both
temporally structured and unstructured recognition tasks,
Experiment 2 used a between-subjects design to investigate

the potential impact of task order. We found a particular
mnemonic advantage for encoding temporally structured vs.
unstructured information during the second test phase, possibly
reflecting a minimization of proactive interference effects.
Moreover, Experiment 2 revealed significantly greater recollective
recognition memory during the second test phase for temporally
structured compared to unstructured encoding, suggesting that
this benefit in performance may be driven by a greater ability
to retrieve specific details associated with the items studied
during temporally structured encoding, for example contextual
(e.g., temporal and/or spatial) information. Lastly, Experiment 3
demonstrated that incidental learning can also benefit from the
presentation of stimuli within a temporally structured as opposed
to unstructured framework.

One possibility is that the observed benefit of temporally
structured encoding is due to longer pre- or post-presentation
processing time. More specifically, repeating the sequence of
ISIs for initial and subsequent mini-sequence presentations in
each trial would allow for some stimuli to be consistently
preceded or followed by longer temporal intervals, selectively
enhancing preparation or retention time. Indeed, previous work
has demonstrated that recognition memory can be influenced
by post-stimulus intervals, with recognition accuracy increasing
as a function of post-stimulus interval duration length (e.g.,
Weaver, 1974; Tversky and Sherman, 1975; Intraub, 1979). Our
statistical analyses did not, however, find evidence to support this
(Experiment 1 Results), with accuracy not differing significantly
as a function of interval lengths. Thus, in our paradigm, it is the
recurring structure of the ISIs rather than their absolute length,
which is critical.

It has been suggested that unpredictable stimulus onsets
during encoding can have a detrimental effect on recognition
memory by impacting the coordination of rehearsal and
perceptual processing (Proctor, 1983). In particular, high
temporal uncertainty may create interference between the
rehearsal of an item and the processing of a subsequent item,
leading participants to refrain from the voluntary rehearsal
of stimuli (Proctor, 1983). In the current study, therefore,
participants may have been less inclined to use rehearsal in
the temporally unstructured encoding, leading to lower memory
performance in this condition. We believe, however, that this
is unlikely to account for our observed findings. Firstly, we
presented stimuli in mini-sequences of 4, each repeated in
succession, thereby encouraging active rehearsal during study
(in both conditions) and reducing the perceptual demand
of processing subsequent items. This contrasts with previous

TABLE 1 | Mean recognition memory accuracy (d′) and reaction times (RTs) for the temporally structured and unstructured tasks in all three experiments
(SEM are reported in parentheses).

Reaction time (ms) Recognition memory (d′)

Experiment Sample Structured Unstructured Structured Unstructured

1 16 (12 Female) 2374 (180.24) 2374 (239.69) 1.84∗ (0.21) 1.58 (0.18)

2 44 (34 Female) 3846 (177.50) 3830 (182.57) 1.69∗ (0.12) 1.48 (0.11)

3 16 (12 Female) 1569∗ (149.19) 1792 (165.83) 0.70∗ (0.14) 0.56 (0.12)

An asterisk indicates a significant difference between structured and unstructured tasks at p < 0.05.
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studies that have examined the impact of ISIs on recognition
memory (e.g., Shaffer and Shiffrin, 1972; Proctor, 1983), in
which stimuli were only presented once. Secondly, a rehearsal-
perceptual processing interference account would predict a
positive relationship between ISI length and recognition memory
success in our temporally structured condition, a pattern that
we did not observe. Finally, we observed a positive effect of a
structured temporal framework during encoding on subsequent
memory even when participants learned stimuli incidentally
(Experiment 3).

There are a number of alternative mechanisms by which a
temporally structured framework during encoding can benefit
subsequent recognition memory. One possibility is that a rhythm
of interval durations can be used to predict/anticipate the
onset of an important event (Olson and Chun, 2001). Regular
durations have been shown to promote the generating and
updating of temporal expectations, which has been associated
with improved sensory processing (Rohenkohl and Nobre,
2011; Rohenkohl et al., 2012) and may have a similar
benefit on mnemonic processing by, for example, enhancing
attention to incoming stimuli. This may be beneficial to
recognition memory, as this process could lead to richer,
more detailed stimulus representations and improve the
discriminability of memoranda. Related to this idea is that
temporal regularity, in particular how frequently stimuli
occur nearby in time, has been shown to influence stimulus
representations in the medial temporal lobe, including the
hippocampus, even in the absence of awareness (Schapiro et al.,
2012), and has been linked to subsequent memory (Smith et al.,
2013).

Alternatively, consistent durations may help establish a
temporal schema to which events can be anchored and learned,
leading to improved subsequent retrieval. Previous work has
shown that spatial and semantic schemas can facilitate the
learning of new schema-consistent information (Tse et al., 2007;
Van Kesteren et al., 2014). Similarly, shared contextual features
can play a role in the acquisition of sequential information by
promoting the associative binding of items within a sequence
(DuBrow and Davachi, 2013; Ezzyat and Davachi, 2014). One
possibility, therefore, is that temporal schemas operate in a
similar manner, promoting the learning of new information by
using contextual information related to the interval duration
structure between events. Although our data do not speak
to this issue, repeating interval durations may facilitate the
binding of item representations within mini-sequences into a
single episode during encoding, which may lead to enhanced
memory. This is not inconsistent with previous research
demonstrating that regularities in temporal duration can enhance
the acquisition of an ordinal motor sequence (O’Reilly et al.,
2008).

The results from Experiment 2 suggest that temporal
regularities during learning could help to mitigate negative
effects of accumulating memory interference. A key finding
in recognition studies is that previously learned information
can interfere with memory for new information, known as
proactive interference (Criss and Shiffrin, 2004; Criss et al.,
2011). A build-up of this interference can occur in which

increasing the number of items tested decreases the accuracy
of yes/no responses and induces forgetting (Criss et al.,
2011). It is plausible that richer memory representations
and/or information that is bound to a schema are less
susceptible to proactive interference effects. For example, as
suggested previously, temporal expectations may improve the
quality of representations (Rohenkohl et al., 2012), thereby
potentially increasing the discriminability of target items.
Alternatively, contextual information related to the interval
duration structure at encoding could facilitate the filtering
of irrelevant mnemonic information (thus, limiting proactive
interference from previously learned items; Jacoby et al.,
2013). Although further work is necessary to investigate these
suggestions, they are consistent with participants demonstrating
greater recollective memory for the temporally structured task,
during the second test phase.

The main finding from Experiment 3, that the benefit
of temporal expectation on recognition memory can also
apply to incidentally encoded stimuli is important given
that everyday experiences do not always involve explicit
encoding of information, and provides further support for the
importance of temporally structured experiences on mnemonic
processes. The findings from Experiment 3 also converge
with recent fMRI work suggesting that the hippocampus may
be sensitive to the interval duration information contained
within sequences (Barnett et al., 2014). Using a paradigm
similar to that of Experiment 3, in which participants were
required to monitor interval durations between scene images
across two successively presented sequences, Barnett et al.
(2014) demonstrated that there was greater hippocampal activity
when sequences were repeated with identical, as opposed
to non-matching interval durations. Although speculative,
this observation may offer potential insight into the neural
mechanisms underlying the enhanced subsequent memory effect
observed in Experiment 3. More specifically, the hippocampus,
which has been shown to signal the passage of time between
distinct events on the order of seconds (Pastalkova et al., 2008;
MacDonald et al., 2011), may take advantage of the interval
duration structure of events during mnemonic processing,
with temporally structured events enhancing the encoding of
information.

Finally, our findings raise a number of interesting questions
that merit future research. For example, in the current set
of experiments recognition memory was assessed immediately
after study. One question, therefore, is whether increasing the
length of the study-test delay (i.e., retention interval) may
have an impact on the difference in recognition memory
performance observed between the temporally structured and
unstructured tasks. Since the present data suggest that items
embedded within a structured temporal framework may be
more resistant to the detrimental effects of interference, we
anticipate that the observed recognition memory benefits would
still be present (or perhaps be even more apparent) when the
interval between study and test is increased. Further work is
also necessary to provide insight into how temporal structure
influences the manner in which information is encoded. For
instance, as suggested above, one possibility is that temporally
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structured frameworks promote items within a sequence to be
bound together as a single episode rather than as individual
events.

CONCLUSION

Our results suggest that when our experiences are underpinned
by a consistent temporal structure such as a predictive
rhythm, our memories for these experiences can be enhanced.
Events that follow a predictable temporal structure may signal
important information with regards to the environment and thus,
enhancing our capacity for remembering this information may
serve as an important adaptive mechanism.
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