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Lab of Digital Image and Intelligent Computation, Shanghai Maritime University, Shanghai, China

Effective mental sub-health early warning mechanism is of great significance in the

protection of individual mental health. The traditional mental health assessment method

is mainly based on questionnaire surveys, which may have some uncertainties. In this

study, based on the relationship between the default mode network (DMN) and themental

health status, we proposed a human mental sub-health early warning method by utilizing

two-fold support vector machine (SVM) model, where seafarers’ fMRI data analysis

was utilized as an example. The method firstly constructed a structural-functional DMN

template by combining the anatomical automatic labeling template with the functional

DMN extracted by independent component analysis. Then, it put forward a two-fold

SVM-based classifier, with one-class SVM utilized for the training of the initial classifier

and two-class SVM utilized to refine the classification performance, to identify seafarers’

mental health status by utilizing the correlation coefficients (CCs) among the areas of

structural-functional DMN as the features. The experimental results showed that the

proposed model could discriminate the seafarers with DMN function alteration from

the healthy control (HC) effectively, and further the results demonstrated that when

compared with the HC group, the brain functional disorders of the mental sub-healthy

seafarers mainly manifested as follows: the functional connectivity of DMN had obvious

alteration; the CCs among the different DMN regions were significant lower; the regional

homogeneity decreased in parts of the prefrontal cortex and increased in multi-regions

of the parietal, temporal and occipital cortices; the fractional amplitude of low-frequency

fluctuation decreased in parts of the prefrontal cortex and increased in parts of the parietal

cortex. All of the results showed that fMRI-based analysis of brain functional activities

could be effectively used to distinguish the mental health and sub-health status.

Keywords: fMRI, default mode network, support vector machine, mental, seafarer

Introduction

Under the strain of modern life, many people are in a certain sub-health state between health and
disease. The early detection and careful nursing canmake the sub-healthy people recuperate to their
health; on the contrary, the sub-health status is likely to further develop into disease. Mental sub-
health is one of series of sub-health status, and mainly performed as unexplained mental fatigue,
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mood disorders, thought disorders, panic, anxiety, low self-
esteem, nervous, reckless, even suicidal thoughts. Mild mental
sub-health status may not influence individuals’ life or work
temporarily, but for some special occupations such as seafarers,
their mental health status seriously affects the efficiency and the
success or failure of their jobs. The poor mental or psychological
state even may be prone to accidents, which could do damage
to the patients and their families, even to the society. For
example, for the seafarers, because of the loneliness, separation
from families, stress, lack of shore leave, short ship turn abound
times, job security and cultural problems, etc. (Iversen, 2010),
working at sea certainly was potential to be fatiguing, and it
might be linked to longer-term individual ill-health, such as
anxiety and depression, etc., which may leave serious hazards
for the safe maritime operations (Wadsworth et al., 2008).
An accepted statistical result from the international maritime
community showed that 80% of the marine casualties were
caused by human factors. Thus, the prediction and discovery
of the mental disorders are very important, promising and
challenging, especially in the early stage. However, as far as we
know, there are still little quantitative and objective methods
for mental health evaluation. The traditional mental health
assessmentmethods weremainly based on questionnaire surveys,
which might not assess the mental health status accurately due
to the incomplete design of questionnaire or subjective wills of
testees.

Neuropsychology is a special branch of psychology that
focuses on brain functioning, which is used to explore the
structure and function of the brain as they relate to specific
psychological processes and behaviors. It was advocated that the
mental is the brain’s subjective response for the objective reality,
and the brain is the operating platform of the mental (Giles,
2002). Thus, abnormal brain functional activities likely reveal
some psychiatric disorders, which probably affect the higher-level
cognitive psychological activity, such as introspection, memory,
consciousness, sensation and social interaction, etc.

Human brain is the most complex organization, and it
controls our emotions, memories, dreams, hopes, fears and
all subconscious or conscious minds. Among various of
brain research methods, functional magnetic resonance imaging
(fMRI) is a kind of powerful, safe and non-invasive method
for the study of human brain function with high spatial
resolution and relatively good temporal resolution (Poldrack
et al., 2011), and is extensively used by the psychologists,
psychiatrists and neurologists to analyze the mental function of
human individuals. FMRI technology was originally applied to
studying brain activation under the designed tasks; however, it
has limitations when participants were unable to better execute
the pre-designed task. Fortunately, resting-state fMRI modality
has provided a new opportunity for the study of brain’s intrinsic
activities.

In 1995, Biswal and his colleagues firstly showed the
spontaneous low frequency fluctuations (<0.08Hz) in the
blood oxygen level dependent (BOLD) fMRI signal, and
these spontaneous fluctuations were coherent within some
specific neuro-anatomical systems such as the somatomotor
system (Biswal et al., 1995). This phenomenon can be called

functional connectivity (FC) (Friston, 1994), which means the
correlations of physiological signals recorded from spatially
distinct brain regions. Some other studies reported that this
coherent phenomenon also existed in several other brain systems,
such as visual, auditory, and language processing cortices (Lowe
et al., 1998, 2000). Furthermore, Raichle and his colleagues firstly
proposed the DMN, which provided a new perspective for the
resting-state fMRI study, and was widely used in the studies of
cognitive neuroscience, neuropsychology and clinical medicine,
etc. (Orrù et al., 2012). Several reports have informed that
DMN played important roles in the higher cognitive activities
of human beings, such as monitoring the external environment
and supporting internal mentation (Ghatan et al., 1995; Raichle
et al., 2001; Kelley et al., 2002; Mitchell et al., 2006; Gilbert et al.,
2007; Gruber et al., 2009). The previous studies reported that the
DMN mainly consisted of several regions including the medial
prefrontal cortex (MPFC), posterior cingulated cortex (PCC)
or precuneus, and bilateral inferior parietal cortices (bIPC),
which could be located in the prefrontal, parietal, temporal and
occipital cortices. Among these brain areas, prefrontal cortex
acted a great part in planning complex cognitive behavior
(Yang and Raine, 2009), such as the personality expression,
decisionmaking andmoderating social behavior, etc.; the parietal
cortex integrated sensory information from different modalities,
particularly determining spatial sense and navigation (Penfield
and Rasmussen, 1950); the temporal cortex was involved in
the retention of visual memories, processing sensory input,
comprehending language, storing new memories, emotion and
deriving meaning (Squire and Zola-Morgan, 1991); and the
occipital cortex was the visual processing center of the brain
which also had the function related to memory and motion
perception (Sveinbjornsdottir and Duncan, 1993).

Numerous studies using the resting-state fMRI modality
demonstrated that contrast to the healthy control (HC) group,
patients with neurological or psychiatric disorders suffered the
abnormality of spontaneous neural activity in certain brain areas,
especially in DMN. For example, Greicius et al. (2004) reported
that the Alzheimer’s disease group showed decreased resting-
state activity in the posterior cingulated cortex and hippocampus,
suggesting that disrupted connectivity between these two regions
may account for the posterior cingulated hypometabolism
commonly detected in positron emission tomography studies
of early Alzheimer’s disease. Bluhm et al. (2007) also reported
that schizophrenic patients had significantly less correlation
between spontaneous slow activity in the posterior cingulated
and that in the lateral parietal, medial prefrontal, and cerebellar
regions. Connectivity of the posterior cingulated cortex was
found to vary with both positive and negative symptoms in
schizophrenic patients (Bluhm et al., 2007). Besides, recently,
regional homogeneity (ReHo) (Zang et al., 2004) and fractional
amplitude of low-frequency fluctuation (fALFF) (Zou et al.,
2008) were also used to explore the alteration of DMN activity.
For example, the schizophrenia patients were reported with a
decrease of ReHo, which distributed over the bilateral frontal,
temporal, occipital, cerebellar posterior, right parietal and left
limbic lobes (Liu et al., 2006), and researchers also found
significant abnormal ReHo in resting brain in first-degree
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relatives of schizophrenic patients (Liao et al., 2012); the ADHD
(Attention-deficit hyperactivity disorder) patients showed a
significant increased fALFF in the bilateral lingual gyrus, right
precentral gyrus and left cuneus and a decrease in the cerebellum,
the bilateral superior frontal gyrus and middle frontal gryus
(Cheng et al., 2012).

However, currently, most of the resting-state fMRI-based
researches mainly focus on investigating the brain functional
disorders of the mental-illness or psychiatric patients in
comparison with the healthy controls. There are still few studies
paying attention to the active detection of mental disorders.
Resting-state fMRI-based DMN functional connectivity analysis
is significant for the exploration of brain’s neural physiological
activities in clinical applications. The abnormalities of DMNmay
contribute to a variety of symptomatic behaviors in diseases.
Here we regarded the abnormal FC of DMN as the criterion
of mental sub-health, and the FC was measured by using the
Pearson correlation coefficients (CCs) among different DMN
regions. Thus, precise positing method for ROIs was a key for
guaranteeing the reliability of CCs, and we firstly established
the structural-functional DMN by intersecting the structural and
functional masks, which could remedy some shortcomings of the
conventional methods (see Section Establishment of Structural-
functional DMN Template for detail).

Over the past few years, there has been growing interest
in using various machine learning methods to analyze the
relationship between the cognition and brain networks, possibly
providing the mental health assessment model for the psychiatric
or potential disorders. For example, support vector machine
(SVM) (Vapnik and Chervonenkis, 1991; Cortes and Vapnik,
1995; Vapnik, 2000) has its unique advantages in dealing with
the datasets that are small, non-linear, and high-dimensional,
and has been widely used in many research directions with
the dramatically best results for pattern classification. SVM
was originally put forward for supervised two-class training,
which required both positive and negative examples as priori
knowledge in the training process. For solving the unsupervised
problem, Schölkopf et al. (2001) proposed the one-class SVM,
which could perform an unsupervised classification with only
positive information. Founding on the heuristic of the former
researches, in this study, we used the CCs among the DMN
regions as the learning features, and established a two-fold SVM-
based (TFSVM) classifier model for the mental sub-health active
detection, with one-class SVM (OCSVM) utilized to construct
the initial classifier and two-class SVM (TCSVM) further used
to refine the classification performance. The training process
not only made the TFSVM classifier do automatical anomaly
detection, but also made it more accurate and robust.

After using the classifier to predict the seafarers’ mental health
status, we explored the altered DMN activities of the sub-healthy
seafarers in contrast to the HC group by using some biomarkers,
such as the FC, the regional homogeneity (ReHo), and the
fractional amplitude of low-frequency fluctuation (fALFF). The
detailed implementation process will be demonstrated later,
and finally, results and analysis will be presented together
with interpretations and conclusions related to advantages and
limitations of this new mental sub-health early warning model.

Materials and Methods

Experiment Data Acquisition and Preprocessing
Seafarers’ fMRI Dataset
In this research, 79 seafarers [ages between 37 and 57] that
participated in the experiment came from a shipping company
of Shanghai. They all have 10–20 years sailing experience and
came from various positions, such as political commissar, mate,
helmsman and seaman, etc. During the data acquisition process,
all of the participants were informed about the purpose of this
study and given the written informed consent in accordance
with the Declaration of Helsinki. The resting-state fMRI data
of seafarers were acquired in the Shanghai Key Laboratory of
Magnetic Resonance of the East China Normal University. All
the participants were instructed to keep the bodymotionless, eyes
closed, relaxed (don’t think anything systematically) and awake;
their ears were stuffed up with the earplugs in order to reduce
effect of the machine noise. BOLD fMRI dataset was acquired
using echo planar imaging with 36 slices providing whole-brain
coverage and 160 volumes. Other main parameters were listed as
follows: GE 3.0 Tesla, gradient echo EPI, TR = 2000ms, matrix
size 64×64, in-plane resolution= 3.75mm× 3.75mm, and slice
thickness= 4mm.

Healthy Control Group Dataset
Seventy four samples [ages between 36 and 58] were selected
as the healthy controls in the study. Twenty resting-state fMRI
data of them were acquired in the Shanghai Key Laboratory
of Magnetic Resonance (SKLMR) of the East China Normal
University with the same scan-parameters with the seafarers.
The rest were selected from the resting-state fMRI datasets that
downloaded from the public neuroimaging database (http://
www.nitrc.org/frs/?group_id=296). Table 1 showed the detail
information and scan- parameters of those datasets. The healthy
controls were used to create the mean normal functional DMN
template and to train the two-fold SVM classifier.

Data Preprocessing
We used DPARSF (http://rfmri.org/DPARSF) for preprocessing.
For the seafarer data, the first 10 time points were discarded
for scanner calibration and for subjects to get used to the
circumstance. For the HC data, the first N time points
(N = 25, 42, 25, 10 correspond to different dataset) were
discarded so that all subjects had the same length of time
series in further processing. Then, part of the preprocessing
were performed, including slice-timing, head motion correction,
nuisance covariates (movement artifacts, white matter and CSF
signals) regression, and spatial normalization (resampling voxel
size= 2×2×2mm3). Subjects with headmotionmore than 2mm
or 2◦ (5 seafarers and 0 healthy controls) of maximal rotation
throughout the course of scanning were excluded from further
analysis. Then, for FC calculation, the further preprocessing
including smooth (FWHM = 5), detrend, and temporal filtering
(0.01–0.08Hz); for ReHo calculation, the further preprocessing
including detrend and temporal filtering (0.01–0.08Hz); for
fALFF calculation, the further preprocessing including smooth
(FWHM= 5) and detrend.
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Feature Extraction
Establishment of Structural-functional DMN Template
According to the existing research results, functional DMN
mainly includes the medial prefrontal cortex (MPFC), posterior
cingulated cortex (PCC), and bilateral inferior parietal cortex
(bIPC). Besides, these brain areas can also be corresponded to
prefrontal, parietal, temporal and occipital cortexes in anatomy.
The precise positing of DMN is the first critical factor. At present,
there are two frequently-used methods for mask construction,
one is anatomy-based structural location method by using
Anatomical Automatic Labeling (AAL) (Tzourio-Mazoyer et al.,
2002) or Brodmann area; the other is functional network

detection method base on some data driven method, such as
independent component analysis (ICA) (Hyvärinen and Oja,
1997, 2000). However, the DMN structural template defined by
AAL contains amounts of regions which may not be detected
in the functional activation when using the functional image
technology. In addition, the functional template obtained by
ICA may include some false positive voxels due to machine
or physical noise, and it is difficult to further divide the
functional DMN to different brain regions(Buckner et al., 2008).
Therefore, in this study, we established the DMN template by
combining the functional method with the structural method,
which can make up some shortcomings of the conventional

TABLE 1 | Information and scan-parameters of healthy control datasets.

Dataset Number TR(ms) Volumes Slices Matrix size In-plan resolution(mm × mm) Slice thickness(mm)

Milwankee_b 39 2000 175 64 36× 64 4× 3.75 3.75

New_York_a 8 2000 192 39 64× 64 3× 3 3

New_York_b 7 2000 175 33 64× 80 3× 3 4

SKLMR 20 2000 160 36 64× 64 3.75× 3.75 4

FIGURE 1 | Implementation diagram of the classification process:

OCSVM provides an initial classifier, which is used to predict the

class labels of seafarers. The negative-class samples are selected,

together with the healthy control samples whose class labels are set to “1,”

as the training data with the class labels are set to “-1.” The TCSVM training

process can be repeated to further refine the classifier.
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methods. The construction process can be described as
follows:

(i) Functional DMN template construction: FastICA package
(Hyvärinen and Oja, 1997) was first utilized to process
each subject data regarding to the HC group dataset,
and after that, we extracted the DMN of each subject.
During this procedure, the components’ orders of FastICA
were automatically estimated by Laplace approximation
method (Minka, 2000), which was used in many researches
(Wang et al., 2013, 2015a,b). Then the mean DMN was
calculated according to all of the extracted DMNs of the
healthy control subjects. Meanwhile, the mean DMN was
further normalized to the corresponding z-score scale map.
Finally, we achieved the functional DMN template by the
z-thresh operation with threshold equal to 2.0 (McKeown
et al., 1998). In order to facilitate the subsequent template
building process, we firstly extracted the voxels with value
equal to or greater than 2.0 and then reassigned them to
logical value 1.0, whereas the rest set to logical value 0.

(ii) Structural DMN template construction: the four areas
including prefrontal, parietal, temporal, and occipital
cortices were extracted according to the AAL by utilizing
wfu_pickatlas (http://fmri.wfubmc.edu/cms/software)
(Maldjian et al., 2003, 2004), with four different areas were
marked as 1, 2, 3, 4 respectively.

(iii) Structural-functional DMN template construction:
Following the two steps above, we used the “ImaCalc”
function of SPM8 (www.fil.ion.ucl.ac.uk/spm/) to construct

the structural-functional DMN template by the following
steps: first, loading the structural-template and functional-
template respectively as mask i1 and i2; then, calculating the
expression i1.∗i2; finally, the structural-functional template
was obtained with labels (1, 2, 3, 4) correspond to four
different regions.

Correlation Analysis
Based on the structural-functional DMN template established
above, we firstly extracted four ROIs of DMN according to the
different labels (1, 2, 3, 4), which represented the prefrontal,
parietal, temporal, and occipital cortices respectively. After that,
the correlation coefficients of ROIs were calculated as learning
features for the training process of TFSVM-based mental health
assessment classifier. Here, we used the Pearson’s correlation:

ρX,Y =
cov(TC (X) ,TC(Y))

√
Var(TC(X))× Var(TC(Y))

(1)

where TC(X) and TC(Y) represent the average time series of
ROIX and ROIY; Var(TC(X)) and Var(TC(Y)) represent the
variance of the average time course of ROIX and ROIY.

TFSVM-based Mental Health Assessment
In our study, we assigned the class label “+1” to the HC
group, and “−1” to the mental sub-healthy seafarers, which were
considered as the negative-class samples. Fifty samples of HC
group were randomly selected as the positive-class training set,
with the rest as the testing set. Figure 1 illustrated the learning

FIGURE 2 | The distributions of CCs among different DMN regions

of the HC group, the mental sub-healthy seafarers, and the

mental healthy seafarers. The CCs of the mental sub-healthy

seafarers were significant lower than that of the HC group; the

distribution of the CCs of the mental healthy seafarers was similar to

that of the HC group.
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FIGURE 3 | DMN areas with decreased functional connectivity in mental sub-healthy seafarers. (A) Regard the prefrontal cortex as seed point with FC

decreased in multi-regions of DMN; (B) regard the parietal as seed point with FC decreased in the prefrontal and parietal cortices.

TABLE 2 | Prefrontal cortex based DMN areas with decreased functional

connectivity in mental sub-healthy seafarers comparing with healthy

controls.

Anatomical

area

AAL Number

of voxels

Peak MNI

coordinates

(x,y,z)

Peak

t value

Prefrontal

cortex

Frontal_Sup_Medial_L 132 −10, 58, 22 −3.9472

Cingulum_Ant_L

Frontal_Sup_L

Parietal/

temporal/

occipital

cortex

Angular_L

Occipital_Mid_L

Temporal_Mid_L

Parietal_Inf_L

345 −52, −68, 26 −5.6042

Parietal

cortex

Precuneus_L/R

Cuneus_L

Cingulum_Post_L

226 −4, −56, 46 −4.4093

R, right; L, left; AAL, Anatomical Automatic Labeling atlas; MNI, Montreal Neurological

Institute.

process, and the classifier was obtained mainly by the following
steps that showed in the block diagram:

(i). OCSVM training and classifying process: for the absence
of the negative-class samples, the OCSVM was used firstly
to construct the initial classifier, with the correlation
coefficients among the DMN’s areas of the positive-class
samples (labeled by “+1”) as the learning features. During
this process, grid search (Hsu et al., 2003) with seven-fold
cross-validation was utilized to search the best parameters
n and g, n = 0.01, g = 0.009, where n represents the

v ∈ (0 1) in the OCSVM algorithm, g represents the γ

in the RBF kernel. The relevant parameters were explained
in Appendix—one-class SVM. Then the initial model was
used to predict the seafarer-samples, and 5 seafarers were
detected as the negative-class samples (mental sub-healthy
seafarers), with the class labels set to “−1.” Using the
initial OCSVM classifier to predict the 24 testing data, the
prediction accuracy was 91.67% with 2 HC were detected as
abnormal samples (labeled by “−1”). The FPR (ratio of false
positive, which means the normal labeled as the abnormal)
of the OCSVM classifier was 8.33%, and the TPR (ratio
of true positive, which means the normal labeled as the
normal) was 91.67%.

(ii). TCSVM training and classifying process: After the
process (i) was implemented, the negative-class samples
corresponding to the mental sub-healthy seafarers were
retrieved. With combining the negative-class samples
(labeled by “−1”) and the 50 HC samples (labeled by “+1”)
as new training set, the TCSVM method was utilized in the
reclassification process. Furthermore, the TCSVM training
and classifying process were repeated to further refine
the classification accuracy of the two-fold SVM classifier,
until the result was stable, which meant there was no new
seafarer sample to be detected as negative. Finally, 10
seafarers were detected as mental sub-health with alterative
DMN functional connectivity, and their class labels were
set to “−1.” During this process, grid search with five-fold
cross-validation was utilized to search the best parameters
c and g in every TCSVM training producer. The relevant
parameters were explained in Appendix- the introduction
of TCSVM algorithm. Using the final classifier to predict
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the 24 testing data, the prediction accuracy was 95.83%
with 1 HC detected as abnormal samples (labeled by “−1”).
The FPR of the final classifier was 4.17%, and the TPR was
95.83%.

In a word, the proposed TFSVM classifier fully took advantage
of the unsupervised and supervised learning merits of OCSVM
and TCSVM respectively, which heldmore accurate classification
performance than the OCSVM did in unsupervised learning and
broke through the two class label priori restriction of TCSVM.

Functional Connectivity Analysis
Inspired by previous DMN studies which reported that the
prefrontal and parietal cortices were the core regions of DMN, we
respectively regarded the prefrontal cortex and parietal cortex as
seed points and calculated the FC of DMN. The detail procedure
could be described as follows: firstly, we respectively extracted

TABLE 3 | Parietal cortex based DMN areas with decreased functional

connectivity in mental sub-healthy seafarers comparing with healthy

controls.

Anatomical

area

AAL Number

of voxels

Peak MNI

coordinates

(x,y,z)

Peak

t-value

Prefrontal

cortex

Frontal_Sup_Medial_L/R 451 −6, 46, 0 −5.2889

Cingulum_Ant_L/R

Frontal_Sup_L/R

Frontal_Med_Orb_R

Parietal

cortex

Precuneus_L/R

Cuneus_R

183 8, −66, 40 −4.7463

Parietal

cortex

Angular_R 220 50, −58, 30 −6.6391

Parietal

cortex

Cingulum_Post_L/R 179 −4, −56, 44 −3.4711

Precuneus_L/R

Cingulum_Mid_R

Prefrontal Frontal_Sup_Medial_L/R

Frontal_Sup_R

366 8, 58, 38 −6.3596

R, right; L, left; AAL, Anatomical Automatic Labeling atlas; MNI, Montreal Neurological

Institute.

the mean time series of the two regions as the seed time series;
then, the Pearson correlation coefficient r of the seed time
series and every voxel of DMN were calculated; after that, given
the value r to the corresponding voxel, and the individual FC
maps were obtained; finally, the FC maps were normalized to
the corresponding z-score scale maps (z_FC maps) for further
two-sample t-test analysis.

ReHo Analysis
The ReHo (Zang et al., 2004) was utilized to describe the
functional connectivity of regional brain areas, and it was
proposed based on the theoretical assumption that a given
voxel is temporally similar to those of its neighbors. Kendall’s
coefficient of concordance (KCC) was used to measure the ReHo
of the time series of a given voxel with those of its nearest N
neighbors (N = 26) in a voxel-wise way.

W =
∑

(Ri)
2 − n(R)2

1
12K

2(n3 − n)
(2)

where W is the KCC among given voxels, ranged from 0 to 1;
Ri is the sum rank of the ith time point; R = [(n+ 1)K] /2
is the mean of the Ri’s; K is the number of time series within a
measured cluster (K = 27, one given voxel plus N) and n is the
number of ranks (n = 150). After that, the KCC value was given
to this voxel and individual ReHo maps were obtained. Then the
ReHo maps were normalized to z-score maps, and two-sample
t-test with p < 0.05 was performed to explore the altered ReHo
of mental sub-healthy seafarers in contrast to HC group. During
this procedure, all voxels belonged to the DMN, and the KCCwas
calculated based on the preprocessed fMRI data without smooth.

fALFF analysis
The fALFF (Zou et al., 2008) was suggested to reflect the intensity
of regional spontaneous brain activity. After the preprocessing,
we first extracted voxels that belonged to the DMN, and the time
series for each voxel was transformed to a frequency domain
without band-pass filtering. After that, the square root was
calculated at each frequency of the power spectrum, and the sum
of amplitude across 0.01–0.08Hz was divided by that across the
entire frequency range, i.e., 0–0.25Hz. Then, the ratio was given
to this voxel and the correspondingly individual fALFF maps

FIGURE 4 | DMN areas with decreased and increased regional homogeneity in multi-regions of DMN regarding to the mental sub-healthy seafarers.
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were obtained. Similarly, the fALFF maps were normalized to z-
score maps, and two-sample t-test with p < 0.05 was utilized
to explore the altered fALFF of mental sub-healthy seafarers in
contrast to HC group.

Results

After the prediction of the seafarers’ mental health status, we
evaluated the differences of FC, ReHo and fALFF between the
10 mental sub-healthy seafarers and the HC group by using a
two-sample t-test with p < 0.05. The t-test procedures were
performed on the individual z-score maps in a voxel-by-voxel
manner based on the following formula:

TABLE 4 | DMN areas with decreased or increased regional homogeneity

in mental sub-healthy seafarers comparing with healthy controls.

Anatomical

area

AAL Number

of

voxels

Peak MNI

coordinates

(x,y,z)

Peak

t-value

Prefrontal

cortex

Frontal_Sup_Medial_L

Cingulum_Ant_L

Frontal_Sup_L

239 −8, 54, 2 −6.3117

Parietal/

temporal

cortex

Temporal_Mid_L

Angular_L

235 −48, −54, 22 4.9141

parietal

cortex

Precuneus_L/R 922 −12, −54, 18 5.309

Cingulum_Post_L/R

Cingulum_Mid_R

Cuneus_L/R

parietal/

temporal

cortex

Angular_R

Occipital_Mid_R

Parietal_Sup_R

Temporal_Mid_R

Occipital_Sup_R

304 36, −74, 50 4.2039

parietal/

occipital

cortex

Angular_L

Parietal_Inf_L

Occipital_Mid_L

141 −46, −60, 42 3.3074

R, right; L, left; AAL, Anatomical Automatic Labeling atlas; MNI, Montreal Neurological

Institute.

T =
X̄1 − X̄2

√

S21(n1−1)+ S22(n2−1)
n1 + n2 − 2 ( 1

n1
+ 1

n2
)

(3)

where X̄1 and X̄2 represented the average of FC, ReHo or
fALFF of the mental sub-health seafarers and the HC group
respectively; S21 and S22 represented the corresponding variance.
Finally, clusters with |T| > 2.1 and with a minimum volume
of 784mm3 (P < 0.05, AlphaSim correction using the REST
software, http://www.restfmri.net/forum/rest), were thought to
have significant differences between these two groups.

Figure 2 illustrated the distributions of CCs among different
DMN regions of the HC group, the mental sub-healthy seafarers,
and the mental healthy seafarers. The number 1–6 along the
horizontal axis respectively represented the CC distributions of
six pairs of cortices (prefrontal and parietal cortices, prefrontal
and temporal cortices, parietal and temporal cortices, prefrontal
and occipital cortices, parietal and occipital cortices, temporal
and occipital cortices). From this figure, we could observe that the
CCs of the mental sub-healthy seafarers were significant lower
than that of the HC group; by contrast, the distribution of the
CCs of the mental healthy seafarers was similar to that of the HC
group.

The results of two-sample t-test on FC maps of the mental
sub-healthy seafarers and the HC group were presented in
Figure 3, where the prefrontal cortex and the parietal cortex
were used as the seed points in (A) and (B) respectively.
Compared with the HC group, when taking the prefrontal cortex
as seed point, the mental sub-healthy seafarers showed significant
decreased FC inmulti-regions of theDMN,whichwere presented
in Figure 3A and Table 2 in detail. Similarly, when taking the
parietal cortex as seed point, the mental sub-healthy seafarers
showed significant decreased FC in the prefrontal and parietal
cortices, which were presented in Figure 3B andTable 3 in detail.

In addition, we further calculated the local features, such as
ReHo and fALFF, of DMN to investigate the differences of brain
functional activities between the mental sub-healthy seafarers
and the HC group. The mental sub-healthy seafarers showed
a decreased ReHo in parts of prefrontal cortex and increased
ReHo in many sub-regions of the parietal, temporal and occipital
cortices (Figure 4, Table 4). In addition, the mental sub-healthy
seafarers also showed a decreased fALFF in some areas of the

FIGURE 5 | DMN areas with decreased fractional amplitude of low-frequency fluctuation (fALFF) in the prefrontal cortex, and increased fALFF in the

parietal cortex regarding to the mental sub-healthy seafarers.
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TABLE 5 | DMN areas with decreased or increased fractional amplitude of

low-frequency fluctuation (fALFF) in negative-class seafarers comparing

with healthy controls.

Anatomical AAL Number of Peak MNI Peak

area voxels coordinates(x,y,z) t-value

Prefrontal Frontal_Sup_Medial_L/R 120 −4, 58, 2 −4.2828

cortex Cingulum_Ant_L/R

Parietal Precuneus_L/R 217 0, −68, 28 4.4146

cortex Cuneus_L/R

R, right; L, left; AAL, Anatomical Automatic Labeling atlas; MNI, Montreal Neurological

Institute.

prefrontal cortex and increased fALFF in parts of the parietal
cortex (Figure 5, Table 5).

Discussion

Mental sub-health is detrimental not only to the sufferers,
but also to their families, their friends, and even the society.
Early warning for mental disorders is very important, promising
and challenging. Based on the previous researches, the resting-
state cognition was shown to correlate with mental health
(Diaz et al., 2013), and the DMN activity has been proven to
be closely associated with human higher cognition (Buckner
et al., 2008), such as many potential functions, ranging
from internal processes, e.g., self-reflection, to diffused passive
attention. Abnormal DMN functional activities could reveal
some psychiatric or psychoanalytic disorders, such as the Autism
(Wass, 2011), Mild cognitive impairment (Rombouts et al.,
2005), Major depression (Greicius et al., 2007), Bipolar disorder
(Strakowski et al., 2004), Anxiety (Etkin and Wager, 2007) and
Parkinson disease (van Eimeren et al., 2009), etc. Thus, our
study took the disordered functional connectivity of DMN as
the criterion for abnormal DMN functional activities, which
may result in mental sub-health status. Here, the FCs were
expressed as the CCs among different DMN regions, which
were further utilized as the learning features in the training
process of mental health assessment classifier by using the
proposed TFSVM method. During this training procedure, for
the absence of adequate prior knowledge, OCSVM was firstly
utilized for the training of the initial classifier (with the predicted
accuracy of 91.67% using in the testing dataset), which predicted
5 seafarers as negative class samples. However, the OCSVM
was primitively presented for outlier detection. According to
its optimization problem (see Appendix—one-class SVM), the
parameter v controlled the upper bound of the classification error
ratio and the lower bound of the numbers of the support vectors.
Thus, even though all of the training samples were labeled by
“+1,” there were always some subjects, who were detected as
outliers (labeled by “−1”) via OCSVM due to that v could not
be zero. Besides, the results of the OCSVM classification were
sensitive to the given v-value, and might contain some error
messages. Therefore, after the OCSVM training procedure, the
TCSVMwas further utilized to refine the classifier’s performance.
The final classifier’s prediction accuracy for the testing dataset

increased to 95.83%, and 10 seafarers were lastly labeled as
negative class samples.

After the assessment process, we evaluated the differences of
DMN between the 10 mental sub-healthy seafarers and the HC
group. The result showed that when compared with the HC
group, the CCs among the different DMN regions regarding to
themental sub-healthy seafarers were significant lower. However,
there were no significant differences between the mental healthy
seafarers and the HC group. In addition, we also evaluated the
FC, ReHo and fALFF differences between the two groups by
using a two-sample t-test. The t-test results showed that when
comparing with the HC group, there were significant disorders of
DMN functional activities for the mental sub-healthy seafarers.
When taking the mean time series of the prefrontal cortex as
the seed time series, there was significant decreased FC in multi-
regions of the prefrontal, parietal, temporal and occipital cortices.
When taking the mean time series of the parietal cortex as the
seed time series, there was significant decreased FC in multi-
regions of the prefrontal and parietal cortices. Besides, the mental
sub-healthy seafarers also showed decreased ReHo and fALFF
in parts of the prefrontal cortex, increased ReHo in many other
regions of the DMN, and decreased fALFF in sub-regions of
the parietal cortex. Those regions of DMN where the disorders
occurred in were relevant to the higher cognitive activities of
the human beings, such as the memory, the self-examination,
monitoring the external environment, and the ability of logical
thinking, etc., which might reflect in the mental health status.
As Diaz et al. (2013) reported, the Comfort clearly focused
on physical and mental well-being, and we speculated that the
functional activities of DMN were stable and normal with the
Comfort phenotype. Thus, the disordered phenomenon could
reflect the mental sub-healthy or unhealthy status. In order to
further verify the prediction results, we analyzed the assessment
results regarding to the SCL-90 (Symptom Checklist 90) testing
for the mental sub-healthy seafarers, and the results showed that
most of these mental sub-healthy seafarers had a mild form
of some mental dysfunctions, such as obsession, depression,
anxiety, hostile or bigotry, etc., which validated that the proposed
TFSVM-based classifier could be effectively used to the anomaly
detection and was of great significance to the early warning for
human mental sub-health.

Based on the fact that our method has showed a good
performance at outlier detection, for perfecting the mental
sub-health early warning mechanism, there still other works
should be done in the next study process. Firstly, considering
that some of the fMRI-data acquisition parameters may
affect the analysis results, we will collect more HC data
and seafarers data with the same age range and scanning
parameters to justify and optimize the classifier’s performance
in the future study. Secondly, according to Diaz and his
colleagues report, the resting-state cognition can be characterized
by seven phenotypes (Diaz et al., 2013). For guaranteeing
the rigor of the study’s result, we will take the results
of the Amsterdam Resting-State Questionnaire (Diaz et al.,
2013) regarding to the HC and the testees as reference
factors. Thirdly, apart from the FC of DMN, the alterative
activities of other brain areas and the information interaction
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between DMN and other brain areas also need to be
concerned; and how those disordered brain function activities
reflect in human’s mental state will be further tracked and
explored.

In conclusion, the results of our experiment proved that
using fMRI technology and two-fold SVM model would
be promising to establish a quantitative early warning
model for human mental sub-health status. Such a learning
method is objective and effective for assessing people’s
mental health, and is of profound significance for psychology
research.
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Appendix

Support Vector Machines
Two-class SVM
Inmachine learning, the TCSVM is a supervised learningmethod
and widely used in pattern recognition field. For a training set
{(

xi, yi
)

, i = 1, · · · , n
}

, xi ∈ RN , yi ∈ {-1, 1}, where xi represents
a feature vector with N dimensions and yi represents its class
label. The TCSVM method aims to find a linear classification
hyperplane that maximizes separation of the two classes, which
means to maximize the margin magnitude 2/ ‖w‖ subject to
yi
(

(xi · w) + b
)

≥ 1, where w and b determine the hyperplane
w · x + b = 0. For improving generalization performance
or classify non-separable samples, training error is permitted
by introducing a slack variables ξi ≥ 0. We can obtain the
hyperplane by the calculation as follows:

min C

N
∑

i=1

ξi +
1

2
‖w‖2 , (1)

subject to yi
(

(xi · w) + b
)

≥ 1− ξi, (2)

where C is called penalty factor, and it controls the tradeoff
between the training error and hyperplane complexity, with a
small C value corresponding to a large margin size. By solving
the Lagrangian dual of (1) and (2), the final decision function can
be written as:

f (x) = sgn

(

N
∑

i=1

αiyi (x · xi) + b

)

, (3)

where αi is Lagrange multiplier, (·) is the inner product, and
w =

∑N
i=1 αiyixi. The linear SVM can be extended to the non-

linear case by using kernelmethods which can project the original
data into a higher dimensional feature space, and the decision
function can be represented as:

f (x) = sgn

(

N
∑

i=1

αiyik (x, xi) + b

)

, (4)

where k(x, xi) = (ϕ (x) · ϕ (xi)) is a kernel function, and
in our study we used the Radial Basis Function (RBF) kernel

which defined as k(x, xi) = e−γ ‖x−xi‖2 , where γ is the width
parameter, and a large γ value corresponds to a small kernel
width.

One-class SVM
Different with the basic SVM algorithm, the training data of
one-class SVM only come from one set with same label. We
consider training data x1, x2, · · · , xn ∈ X, where n ∈ N is
the number of observations, and X ∈ RN is some set. OCSVM
returns a function f that takes the value “+1” in a “small” region
capturing most of the data points, and “−1” elsewhere. Here we
also use the RBF kernel to map the data into a higher dimensional
feature space. We can obtain the hyperplane by the calculation as
follows:

min
1

2
‖w‖2 +

1

vn

N
∑

i=1

ξi − ρ, (5)

subject to (w · ϕ (xi)) ≥ ρ − ξi, ξi ≥ 0, (6)

Since non-zero slack variables ξi is penalized in the objective
function, we can expect that if w and ρ solve the problem, then
the decision function

f (x) = sgn
(

w · ϕ(x)− ρ
)

, (7)

will be positive for most examples xi contained in the training set,
while the ‖w‖will still be small, and v controls the upper bound of
the classification error ratio and the lower bound of the numbers
of the support vectors.

By solving the Lagrangian dual of (5) and (6), and together
with the RBF kernel, the final decision function can be
written as:

f (x) = sgn

(

N
∑

i=1

αik (x, xi) − ρ

)

, (8)

where αi is Lagrange multiplier, and k (x, xi) = (ϕ (xi) · ϕ (x)).
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