AUTHOR=Nicenboim Bruno , Vasishth Shravan , Gattei Carolina , Sigman Mariano , Kliegl Reinhold
TITLE=Working memory differences in long-distance dependency resolution
JOURNAL=Frontiers in Psychology
VOLUME=6
YEAR=2015
URL=https://www.frontiersin.org/journals/psychology/articles/10.3389/fpsyg.2015.00312
DOI=10.3389/fpsyg.2015.00312
ISSN=1664-1078
ABSTRACT=
There is a wealth of evidence showing that increasing the distance between an argument and its head leads to more processing effort, namely, locality effects; these are usually associated with constraints in working memory (DLT: Gibson, 2000; activation-based model: Lewis and Vasishth, 2005). In SOV languages, however, the opposite effect has been found: antilocality (see discussion in Levy et al., 2013). Antilocality effects can be explained by the expectation-based approach as proposed by Levy (2008) or by the activation-based model of sentence processing as proposed by Lewis and Vasishth (2005). We report an eye-tracking and a self-paced reading study with sentences in Spanish together with measures of individual differences to examine the distinction between expectation- and memory-based accounts, and within memory-based accounts the further distinction between DLT and the activation-based model. The experiments show that (i) antilocality effects as predicted by the expectation account appear only for high-capacity readers; (ii) increasing dependency length by interposing material that modifies the head of the dependency (the verb) produces stronger facilitation than increasing dependency length with material that does not modify the head; this is in agreement with the activation-based model but not with the expectation account; and (iii) a possible outcome of memory load on low-capacity readers is the increase in regressive saccades (locality effects as predicted by memory-based accounts) or, surprisingly, a speedup in the self-paced reading task; the latter consistent with good-enough parsing (Ferreira et al., 2002). In sum, the study suggests that individual differences in working memory capacity play a role in dependency resolution, and that some of the aspects of dependency resolution can be best explained with the activation-based model together with a prediction component.