AUTHOR=Geiser Christian , Bishop Jacob , Lockhart Ginger , Shiffman Saul , Grenard Jerry L. TITLE=Analyzing latent state-trait and multiple-indicator latent growth curve models as multilevel structural equation models JOURNAL=Frontiers in Psychology VOLUME=4 YEAR=2013 URL=https://www.frontiersin.org/journals/psychology/articles/10.3389/fpsyg.2013.00975 DOI=10.3389/fpsyg.2013.00975 ISSN=1664-1078 ABSTRACT=
Latent state-trait (LST) and latent growth curve (LGC) models are frequently used in the analysis of longitudinal data. Although it is well-known that standard single-indicator LGC models can be analyzed within either the structural equation modeling (SEM) or multilevel (ML; hierarchical linear modeling) frameworks, few researchers realize that LST and multivariate LGC models, which use multiple indicators at each time point, can also be specified as ML models. In the present paper, we demonstrate that using the ML-SEM rather than the SL-SEM framework to estimate the parameters of these models can be practical when the study involves (1) a large number of time points, (2) individually-varying times of observation, (3) unequally spaced time intervals, and/or (4) incomplete data. Despite the practical advantages of the ML-SEM approach under these circumstances, there are also some limitations that researchers should consider. We present an application to an ecological momentary assessment study (