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Introduction and methods: To discover biomarkers for schizophrenia (SCZ) at

the metabolomics level, we registered this systematic review (CRD42024572133

(https://www.crd.york.ac.uk/PROSPERO/home)) including 56 qualified articles,

and we identified the characteristics of metabolites, metabolite combinations,

and metabolic pathways associated with SCZ.

Results: Our findings showed that decreased arachidonic acid, arginine, and

aspartate levels, and the increased levels of glucose 6-phosphate and

glycylglycine were associated with the onset of SCZ. Metabolites such as carnitine

and methionine sulfoxide not only helped to identify SCZ in Miao patients, but also

were different betweenMiao patients andHan patients. The decrease in benzoic acid

and betaine and the increase in creatine were the notable metabolic characteristics

of first-episode schizophrenia (FESCZ). The metabolite combination formed by

metabolites such as methylamine, dimethylamine and other metabolites had the

best diagnostic effect. Arginine and proline metabolism and arginine biosynthesis

had a clear advantage in identifying SCZ and acute SCZ. Butanoate metabolism

played an important role in identifying SCZ, toxoplasma infection and SCZ

comorbidity. Biosynthesis of unsaturated fatty acids was also significantly enriched

in the diagnosis and treatment of SCZ.

Discussion: This study summarizes the current progress in clinical metabolomic

research related to SCZ, deepens understanding of the pathogenesis of SCZ, and

lays a foundation for subsequent research on SCZ-related metabolites.

Systematic review registration: https://www.crd.york.ac.uk/PROSPERO/home,

identifier CRD42024572133.
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1 Introduction

Schizophrenia (SCZ) is a clinically common severe mental

illness, affecting approximately 1 in every 300 people, accounting

for 1% of the global population. It is one of the top 10 leading causes

of disability worldwide (1). Studies show that men are more likely to

suffer from SCZ at a younger age (2). Symptoms of SCZ begin to

appear between the ages of 20 and 29 and include delusions,

hallucinations, and a lack of coordination between thinking and

behavior (positive symptoms), and insociability, world-weariness,

anorexia, and decreased energy (negative symptoms), and decreased

attention and memory (cognitive dysfunction) (3). The social

misunderstanding and stigmatization of patients with SCZ further

aggravate their psychological burden and limit their social

participation and rehabilitation opportunities. There is evidence

that the life expectancy of people with SCZ is reduced by 15 to 25

years due to suicide, accidents, antipsychotic medications, lower

quality of life, and various comorbidities such as cardiovascular

disease, hypertension, and diabetes, inadequate medical care, and

premature aging (4).

As of this writing, the diagnosis of SCZ remains overly

subjective, not only because the symptom spectrum is complex

and similar to other mental disorders, but also because of a lack of

objective disease biomarkers (5). Moreover, the experience of

clinicians is uneven, and it is difficult to make an accurate

diagnosis based solely on a subjective understanding of

symptoms. Thus, there is a significant clinical demand for

biomarkers that can aid in the diagnosis of SCZ (6). The lack of

reliable biomarkers leads to delays in diagnosis, preventing patients

from receiving timely and effective treatment. Therefore, identifying

biomarkers associated with SCZ is crucial for early diagnosis

and treatment.

Metabolomics is an important part of system biology, and its

research objects are small molecules with molecular weight less than

1,000 Da, such as sugars, organic acids, lipids, amino acids and

aromatic hydrocarbons (7). Metabolomics techniques have been

widely applied in basic research in recent years, such as nuclear

magnetic resonance (NMR) technology, gas chromatography-mass

spectrometry (GC-MS), liquid chromatography-mass spectrometry

(LC-MS), and capillary electrophoresis-mass spectrometry (CE-

MS) (8). Principal component analysis and partial least squares

discriminant analysis provide a statistical foundation for identifying

differential metabolites. According to varying research objectives,

metabolomics can be classified as either non-targeted metabolomics

or targeted metabolomics (9). In non-targeted metabolomics, the

entire metabolome of an organism is comprehensively searched to

detect any metabolic characteristics in which there are significant

changes between the experimental and control groups; while in

targeted metabolomics, target metabolites are studied to verify

biomarkers. In metabolomics, there is a terminal effect and an

amplification effect, which can reflect organisms’ disease

physiological states more directly and sensitively than genomics

or transcriptomics. Compared with genomics and proteomics,

metabolomics studies have fewer substances and a simpler

information bases, which gives metabolomics a unique advantage
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in disease diagnosis and biomarker discovery. The use of

metabolomics to study SCZ has attracted more and more

attention in recent years, and related research is on the rise.

However, the quality of these studies has been mixed, and the

aims and methods of these studies have been multifarious, so it is

currently necessary to consider many studies together to

form consensus.

To this end, we used a systematic review to summarize current

research progress in SCZ at the metabolomics level, elaborate on the

metabolite changes related to SCZ, reveal the pathogenesis of SCZ,

and determine a metabolite combination that can identify patients

with SCZ, so as to lay a foundation for a more accurate diagnosis of

SCZ. Moreover, this study also explores the current challenges in

metabolomics research related to SCZ, providing direction for future

studies. Through this systematic review, insight and ideas for the

diagnosis, prognosis, and disease detection of SCZ are provided.
2 Methods

This systematic review was registered with PROSPERO

(CRD42024572133) in accordance with the requirements of a

routine systematic review.
2.1 Literature search

We searched for metabolite studies related to SCZ in PubMed,

Embase, and Web of Science databases, with a literature time span

from database establishment to August 2024. The search strategy

was formulated using a combination of subject words and free

words. The main subject terms were: “schizophrenias”, “dementia

praecox”, “schizophrenic disorders”, “disorder,schizophrenic”,

“disorders , schizophrenic” , “schizophrenic disorder” ,

“metabolomics”, “metabolome”, “metabolic flux analysis”,

“metabolic profiling”, “metabolic signature”, “metabolic

biomarker” and “meta-bolic profile”. The literature was searched

separately by two researchers, and if there was any disagreement, it

was decided by senior literature experts. The specific search strategy

can be found in the Supplementary Materials. We searched for

relevant literature based on the pre-established search strategy, and

then imported the retrieved literature into NoteExpress

(version 4.1.0).
2.2 Inclusion and exclusion criteria

2.2.1 Inclusion criteria

1. Study subjects: patients with SCZ diagnosed by the

Diagnostic and Statistical Manual of Mental Disorders

(DSM) or International Classification of Diseases (ICD)-10.

2. Research types: case-control, randomized controlled

trials, etc.

3. Research content: the diagnosis and prognosis of SCZ

through metabolomics.
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4. Data types: human-involved clinical studies, including

clinical and metabolomic data.

5. Language type: English.
2.2.2 Exclusion criteria
Duplicate literature or literature published with already-

published data; literature involving other diseases or literature not

involving metabolite studies; comments and letters; animal

experiment literature; review, Mendelian randomization research,

protocol, and case reports; literature with incomplete data or data

that cannot be extracted; research on intervention mechanisms;

literature that was unavailable in full-text format.
2.3 Information extraction

After determining the final included literature based on the

inclusion and exclusion criteria, we began to extract relevant

information from the included studies. First, we recorded the

extracted author name, publication year, journal, country,

research subjects, gender, group settings, research type, sample

size, analysis platform, research purpose, sample type, whether it

was a targeted study, any changes in related metabolites, and the

pathways involved in Excel. If a study included both case-control

studies and self-controlled studies before and after intervention, it

was divided into two studies to extract the data.
2.4 Methodological quality assessment

We used QUADOMICS (Quality Assessment of Diagnostic

Accuracy Studies for Omics), a quality assessment tool specifically

modified for omics studies, in assessing the methodological quality of

studies related to differential metabolites that can be used in the

diagnosis of SCZ (10). This tool evaluates the methodological quality

of the literature from 16 dimensions: patient selection, selection of

diagnostic criteria, randomization methods, description of specimen

types, interpretation of results, reproducibility of trial protocols, and

rigor of trial execution. As for studies related to metabolites associated

with SCZ prognosis, we used the QUIPS (Quality In Prognosis Studies

tool for evaluation (11). This tool assesses the quality of a study from six

perspectives: selection of participants, study attrition, measurement of

diagnostic factors, measurement of outcomes confounding factors of

the study, and statistical analysis and reporting. Documents that meet

75% and above of the items are considered high-quality documents,

those that meet 50-75% are considered medium-quality documents,

and those that meet less than 50% are considered low-quality

documents (12).
2.5 Statistical analysis

In order to comprehensively summarize the current progress of

metabolomics research in SCZ, we recorded the countries, specimen
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types, metabolite detection technologies, related metabolites and

metabolic pathways involved in the study, and used descriptive

statistics to analyze their frequencies and percentages. Then, we

used visualization to display them.

We conducted a summary statistical analysis of the metabolites

involved in high-quality literature, collated information on the

accuracy (Area Under Curve, AUC) of metabolite combinations

in the diagnosis and prognosis analysis of SCZ and completed the

metabolic pathway enrichment using MetaboAnalyst 6.0 online

software (http://www.metaboanalyst.ca/). This comprehensive

analysis of significantly enriched pathways in high-quality

literature revealed the pathological mechanisms associated

with SCZ.

We used Adobe Illustrator (2024 version) to create a flowchart

for literature search and screening, and mapped the study sites via

Wei Sheng Xin (https://www.bioinformatics.com.cn/). Other plots

were completed in Rstudio (version 4.4.2); the histogram of

specimen classification and the enrichment map of metabolite

pathways for the high-quality literature were conducted in the

ggplot2 package (version 3.5.1). We drew the literature quality

assessment chart with the dplyr package (version 1.1.4) and ggplot2

package (version 3.5.1) and prepared the high-quality literature

accumulation histograms using the reshape2 package (version 1.4.4)

and ggplot2 package (version 3.5.1).
3 Results

3.1 Literature search and screening results

Based on the pre-determined search strategy, we retrieved 215,

341, and 902 articles from the PubMed, Embase, and Web of

Science databases, respectively. After importing the above 1,458

documents into NoteExpress, 306 duplicate documents were

eliminated by author, publication year and title. After reading the

title, abstract and full text to eliminate unqualified documents, 56

documents were ultimately included. The literature search and

screening process is depicted in Figure 1.
3.2 Basic characteristics of the
included literature

The 56 articles included in this study involved 6,772 participants,

with one study only including male patients and two studies only

including female patients. Since two of the studies (13, 14) included

both case-control and pre-and post-intervention self-control studies,

each study was split into two studies for statistical analysis. The

sample size for a single study ranged from 29 to 481. The 58 study

sites were distributed in Japan (5), China (36), the United Kingdom

(2), the United States (2), Brazil (3), Germany (4), and the remaining

6 were completed in Poland, Australia, the Czech Republic, Russia,

Finland and Malaysia, respectively. 52 studies were designed to

identify any metabolites that differed between people with SCZ and

healthy controls. One study was conducted to compare the
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metabolites of SCZ between Chinese Han and Miao ethnic groups

and the healthy population. Two studies involved first-episode

schizophrenia (FESCZ). One study focused on patients with

chronic schizophrenia (CSCZ). Three studies explored metabolite

differences in untreated SCZ patients. What’s more, two studies

explored the blood metabolites that differ in cognitively impaired

and cognitively intact SCZ patients. One study explored the plasma

differential metabolites of SCZ with violence tendency and SCZ

without violence tendency. Another study investigated salivary

metabolites in patients with clozapine-induced salivation and in

patients without clozapine-induced salivation. Another explored the

differential metabolites of the pituitary gland after autopsy in SCZ

patients, and another explored metabolite differences in patients with

SCZ caused by toxoplasma gondii infection. Two studies explored the

differences in metabolites before and after intervention based on self-

control before and after intervention. One study explored the

metabolomic differences between SCZ with and without auditory

hallucinations. 54 studies employed a case-control design, while two

were cross-sectional studies. 51 studies were diagnostic, 5 were used

for complication identification, and 2 involved prognostic analysis.

Among the 58 metabolomics studies related to SCZ, 49 used blood as

the specimen, which may be because blood sampling provides

convenience for clinical research. In addition, 39 of these 58 studies

performed metabolomics studies using LC-MS and 5 used NMR

techniques to detect metabolites. In 37 studies, non-targeted
Frontiers in Psychiatry 04
metabolomics technology was used, and targeted technology was

used in 19. Two studies did not report whether targeted technology

was used. See Supplementary Table S1; Figure 2 for details.
3.3 Quality evaluation results

Of the 51 diagnostic studies, 39 met the scoring criteria on at

least 12 dimensions and were rated as high quality, while the

remaining 12 were rated as medium quality. One of the two

prognostic analyses adequately controlled for confounders and

considered dropout to reduce bias. Of the 7 studies that identified

complications and analyzed prognosis, 5 were high-quality and 2

were intermediate-quality. See Figure 3 for specific information.
3.4 Overview of metabolic biomarkers
associated with SCZ

One study (15) explored the metabolic differences in serum levels

between patients with CSCZ and healthy individuals, and found that

glutamate metabolism and the urea cycle were severely downregulated

after onset. Meanwhile, another study (16) discovered significant

differences in serum metabolites between Han and Miao

schizophrenics and healthy controls in China. The metabolites Han
FIGURE 1

Flowchart of literature retrieval and screening.
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andMiao patients had in common were: fatty acids and derivatives (e.g.,

indole-3-butyric acid, 2-oxovalic acid, eicosapentaenoic acid), amino

acids (e.g., glutamate, pyroglutamic acid, proline, taurine), and other

types (e.g., bilirubin, uric acid, a-tocopherol). The pathways with

significant metabolic alteration in Miao patients were the arachidonic

acid metabolism and a-linolenic and linoleic acid pathway. Meanwhile

in Han Chinese patients, arginine and proline metabolism, arachidonic

acid, alaninemetabolism, the urea cycle, and glycine and serine pathways

had changed significantly. Lipid and amino acid metabolism were

common metabolic pathways across different ethnic groups of

patients. Two studies (17, 18) compared the differences in plasma

metabolites between patients with FESCZ and a normal population.

They discovered that in patients with FESCZ, levels of creatine, isocitrate,

succinic acid, itaconic acid, and L-2-hydroxyglutarate were all

upregulated, while levels of betaine, nonanoic acid, benzoic acid,

perillic acid, L-3,4-dihydroxyphenylalanine (L-dopa), dopamine 3-O-

sulfate, norepinephrine sulfate, and normetanephrine were
Frontiers in Psychiatry 05
downregulated. Additionally, alterations were observed in the

metabolic pathways of homocysteine metabolism, creatine kinase-

emia, oxidative stress, aromatic amino acid metabolism, glutamate

metabolism, nucleotide metabolism, and the tricarboxylic acid cycle.

Two studies (19, 20) compared the metabolic differences between

untreated SCZ patients and healthy individuals, finding that the

differential metabolites were concentrated in aspartic acid, carnitine,

lithocholic acid, lyso-phosphatidylcholine, lyso-phosphatidy

lethanolamines, phosphatidylcholine, phosphatidylethanolamine, and

g-aminobutyric acid (GABA). It was worth mentioning that 41 studies

(6, 13, 21–59) reported a series of differential metabolites related to SCZ,

including eicosanoids, docosahexaenoic acid, eicosapentaenoic acid,

ethanamide, eicosadienoic acid, linolic acid, arginine, tryptophan and

other metabolites. Two studies (60, 61) reported changes in metabolites

induced by cognitive function, including sphinganine, D-glutamine,

pyrrolidonecarboxylic acid, choline and creatine, lactic acid, aspartic

acid, erythronic acid and 2-furoic acid. What’s more, one study (62)
FIGURE 3

Quality assessment chart of included literature. (A) Results of a methodological quality assessment of studies related to differential metabolites that
can be used for the diagnosis of schizophrenia. (B) Results of a methodological quality assessment of studies related to differential metabolites that
can be used to predict the prognosis of schizophrenia.
FIGURE 2

Results of the basic characteristics of the included literature. (A). Distribution of research locations included in the literature. (B). Classification of
specimens involved in the study. (C). Round pie chart of the metabolite detection technique. (D). Round pie chart of whether to target detection.
NMR, nuclear magnetic resonance; GC-MS, gas chromatography-mass spectrometry; LC-MS, liquid chromatography-mass spectrometry; CE-MS,
capillary electrophoresis-mass spectrometry; MS, mass spectrometry.
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reportedmetabolites associated with violent tendencies in SCZ, including

vanillylmandelic acid, glycerol, glyceraldehyde, malic acid and L-

methionine. One clinical trial (63) explored the metabolite changes

induced by salivation in patients with SCZ induced by clozapine such as

guanosine, adrenaline, pyroglutamate, histidine, deoxycytidine,

histamine, D-ornithine, isoleucyl-glutamate, hypoxanthine and

kynurenine. A study from Germany (64) investigated SCZ from the

perspective of pituitary metabolites and found differences in metabolites

such as signal-induced proliferation-associated protein 1, protein

KIAA1199, fibrinogen beta chain, prolactin, and secretagogin. Another

study (65) revealed a correlation between toxoplasma infection and the

onset of SCZ, involving metabolites such as alpha hydroxyglutaric acid,

caprolactam, 3,30-thiopropionic acid, adenosine monophosphate,

inosine, hypoxanthine and xanthine. A different study (66) analyzed

the metabolites related to auditory hallucination, and found that

metabolites such as phenylalanine, pyrroline hydroxyl carboxylic acid

and pyruvate were related to auditory hallucination. Two studies (13, 14)

reported metabolite changes in SCZ patients after antipsychotic

treatment, including: tyrosine, linoleic acid, palmitic acid, oleic acid,

tryptophan, uric acid, lactate, aspartate, glycine, myo-inositol, glucuronic

acid, stearic acid, glycerol, lactobionic acid, lysoPC, sulfate, linoleic acid,

oleic acid, palmitoleic acid, g-linolenic acid, oxoglutaric acid,

and androsterone.
3.5 Metabolites associated with SCZ in
high-quality literature

Frequency analysis of the metabolites involved in high-quality

research showed the commonalities of metabolomics research in

different backgrounds (see Figure 4). Compared with the healthy

control population, the main up-regulated metabolites of SCZ were

glucose 6-phosphate and glycylglycine; the main down-regulated

metabolites were arachidonic acid, arginine, aspartate, citrate,

creatinine, glutamine, LPC (14:0), LPC (15:0), LPC (17:1), LysoPC

(18:0), oleic acid, stearic acid and tryptophan. Metabolites with up-
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regulation in some studies and down-regulation in others included:

cholesterol, cortisol, creatine, GABA, glucose, glycerol, L-arginine,

lactic acid, lactate, leucine, LPC (16:0), myo-inositol, ornithine,

proline, pyroglutamic acid. There were also differences in

metabolites between Miao and Han SCZ patients. Glutamate and

methionine sulfoxide were up-regulated more often in Miao SCZ

patients than in Han SCZ patients, and carnitine and

decanoylcarnitine were more often down-regulated in Miao SCZ

patients. Within the Miao population, there were also differences in

metabolites between SCZ patients and healthy people. Compared

with the healthy Miao population, on the one hand, the main up-

regulated metabolites in Miao SCZ patients were: phthalic acid, 3-

hydroxybenzoic acid, methionine sulfoxide, N-acetyl-L-2-

aminoadipa, suberic acid, 5-aminopentanamide, 9-oxo-nonanoic

acid, caprylic acid, camphanic acid, perillic acid and cholic acid

glucuronide, on the other hand, the main down-regulated metabolites

were: cystine, aspartylphenylalanine, leucine, aminobutyric acid,

decanoylcarnitine, 3-carboxy-4-methyl-5-pr, carnitine, nicotinamide

riboside, pentachlorophenol, coniferyl alcohol, 3-3,4,5-trime

thoxyphen and abscisic acid. Compared to healthy individuals,

creatine was significantly upregulated in FESCZ patients, while

betaine, nonanoic acid, benzoic acid and perillic acid were

significantly downregulated. The metabolic profile of pituitary

tissue in patients with SCZ was also altered. Compared to healthy

individuals, SCZ patients showed significantly upregulated levels of

fibrinogen beta chain, proopiomelanocortin, and myosin-9 in their

pituitary tissue, while levels of prolactin, secretagogin, catenin delta-2,

transglutaminase 2, apolipoprotein A2, tubulin beta chain, and alpha-

2-hs-glycoprotein were significantly downregulated. Compared to

healthy individuals without toxoplasma infection, SCZ patients with

concurrent toxoplasma infection showed a significant increase in a-
hydroxyglutaric acid and caprolactam, while inosine, hypoxanthine,

and xanthine were significantly downregulated. Effective treatment

can reverse metabolic changes. After treatment, patients with SCZ

showed a significant increase in palmitic acid, phenylalanine,

tyrosine, uric acid, and g-tocopherol, and a significant decrease in
FIGURE 4

Accumulation histograms of metabolites associated with SCZ in high quality literature. Lyso-PC, Lyso-phosphatidylocholine; GABA, g-aminobutyric acid.
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androsterone, aspartate, glucuronic acid, glycine, myo-inositol, and

stearic acid. Oleic acid and linoleic acid exhibited upregulation in

some studies and downregulation in others. Comprehensive analysis

revealed that tyrosine and g-tocopherol were downregulated in

patients with SCZ and significantly upregulated after effective

treatment. Therefore, we speculate that tyrosine and g-tocopherol
can not only be used for the accurate identification of SCZ patients,

but also for predicting treatment outcomes.
3.6 The predictive potential of metabolite
combinations related to SCZ in high-
quality literature

A total of 30 studies used metabolites or metabolite

combinations to identify SCZ or predict treatment prognosis,

among which 8 (16, 27, 35, 44, 47–50) used multiple individual

metabolites for AUC analysis, and 22 (6, 13, 14, 19–21, 26, 30, 31,

34, 36, 38, 39, 42, 43, 51–57) used metabolite combinations. At the

single metabolite level, methionine sulfoxide had the highest

accuracy in identifying Miao SCZ patients (test set AUC = 0.98)

and c-glucys had the highest accuracy in identifying general SCZ

patients (test set AUC = 0.8874). Pyruvate can be used to predict

whether SCZ patients will experience auditory hallucinations

(AUC=0.8394 in test). At the level of metabolite combination, the

metabolite group formed by methylamine, dimethylamine, N-(1-

deoxy-1-fructosyl) isoleucine, phenylalanylphenylalanine, LPA

(18:1 (9Z)/0:0), and oleamide showed the best accuracy in

identifying SCZ patients (training set AUC=1, test set AUC=1),

thencholic acid, 4,8 dimethylnonanoyl carnitine, 3-hydroxycapric

acid and prostaglandin A2 also showed good performance (training

set AUC=0.9917, test set AUC=0.9945). The metabolite panel

consisting of PC 32:1, Pe 34:2, PE (O-34:3), and aspartic acid

performed well in identifying both untreated SCZ and medically

treated SCZ patients (training set AUC = 0.936, test set AUC =

0.963). Myoinositol, uric acid, and tryptophan can serve as a

metabolite combination to predict the treatment efficacy in SCZ

(test set AUC=0.949). Imidazolepropionic acid, erythronic acid,

homoserine, and aspartic acid can be used to predict the salivation

induced by chlorpromazine treatment in SCZ (test set AUC=0.791).
3.7 Summary of metabolic pathways
associated with SCZ

We conducted metabolic pathway enrichment analysis by

matching the metabolites in the high-quality literature with the

MetaboAnalyst 6.0 database. This resulted in 6 major categories and

98 metabolic pathways (Figure 5). Compared with healthy controls,

there were significant enrichment pathways in SCZ such as arginine

and proline metabolism, arginine biosynthesis, neomycin,

kanamycin and gentamicin biosynthesis, glutathione metabolism,

alanine, aspartate and glutamate metabolism, valine, leucine and

isoleucine biosynthesis, galactose metabolism, glyoxylate and

dicarboxylate metabolism, biosynthesis of unsaturated fatty acids,
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starch and sucrose metabolism, pantothenate and CoA

biosynthesis, beta-alanine metabolism and other pathways. In the

comparison between ethnic Miao and Han SCZ patients in China,

the metabolite pathway enrichment analysis identified pathways

such as nitrogen metabolism, arginine biosynthesis, butanoate

metabolism, and histidine metabolism. Valine, leucine and

isoleucine biosynthesis, nicotine and nicotinamide metabolism,

butanoate metabolism and other pathways were significantly

enriched in the comparison between SCZ patients and the healthy

control population within the Miao ethnic group in China.

Pathways such as histidine metabolism, glycine, serine and

threonine metabolism, argenine and proline metabolism, nitrogen

metabolism, argenine biosynthesis, and butanolate metabolism

were significantly enriched in comparison between FESCZ

patients and the healthy controls. Only the purine metabolism

and butanoate metabolism pathways were significantly enriched in

the comparison between SCZ patients co-infected with toxoplasmos

and healthy people not infected with toxoplasmosis. The

biosynthesis pathways of unsaturated fatty acids, phenylalanine,

tyrosine, and tryptophan, phenylalanine metabolism, ascorbate and

aldarate metabolism, inositol phosphate metabolism, and linoleic

acid metabolism were significantly enriched in the comparison

before and after effective treatment.
4 Discussion

4.1 Research implications

In this study, different metabolites in serum, plasma,

cerebrospinal fluid (CSF), saliva, prefrontal cortex and pituitary

tissues were found between SCZ patients and healthy controls, such

as arachidonic acid, GABA, tryptophan and proline. These

metabolites are involved in the pathogenesis of SCZ through a

variety of metabolic pathways, including glutathione metabolism,

butanoate metabolism, histidine metabolism, linoleic acid

metabolism and kynurenine pathway, involving various biological

mechanisms, such as oxidative stress response, energy metabolism,

purine metabolism. This study has facilitated the deepening of

clinical staff’s understanding of the pathogenesis of SCZ. At the

same time, it has provided clinical staff with a potential diagnostic

biomarker combination and provided options for subsequent

accurate diagnosis.
4.2 Comparison to previous studies

A systematic review of body fluid metabolomics for SCZ

patients analyzed the differential metabolites and metabolic

pathways between SCZ patients and healthy subjects (5), the

study found that the content of polyunsaturated fatty acid

(linoleic acid) and creatinine decreased in SCZ patients, which is

consistent with the results of our study. In our study, in addition to

the literature on serum, plasma, CSF, and peripheral blood

mononuclear cells, we also selected studies involving the
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prefrontal cortex and pituitary gland. Thus, the specimens in this

study are both more comprehensive and more convincing.

Lipidomics, as a branch of metabolomics, can also be used to

study the differences in metabolites and metabolic pathways

between patients and healthy controls. A recent systematic

review, including brain tissue (prefrontal cortex) and peripheral

blood, analyzed lipidomic changes in SCZ patients from four

perspectives: triglycerides, phospholipids, sphingolipids, and

steroids (67). The study found that the levels of sulfates, N-

acylphosphotidylserines, ethanolamine, and choline plasminogen

were significantly upregulated in brain tissue, while the levels of

phosphatidylethanolamine, lysophosphatidylethanolamine,

phosphatidylcholine, lysophosphatidylcholine, and ethanolamine

plasminogen were significantly downregulated in peripheral

tissues. Moreover, the level of ethanolamine plasmalogen was
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significantly down-regulated in the plasma of patients with both

first-episode and recurrent SCZ, which is crucial for clinical

diagnosis. In our study, we also revealed that the plasma levels of

phosphatidylethanolamine and lysophosphatidylcholine had

decreased in women with SCZ. Moreover, we found that

isocitrate, succinic acid and itaconic acid were up-regulated, and

L-3,4-dihydroxyphenylalanine (L-dopa), dopamine 3-osulfate and

norepinephrine sulfate were down-regulated in FESCZ patients.

Another study has shown abnormal metabolism of isoform 1 of

dimethylarginine dimethylaminohydrolase (DDAH1) and arginase

in patients with SCZ, manifested specifically by abnormally elevated

levels of asymmetric dimethylarginine (ADMA), dimethylamine,

and ornithine (68), However, the study found no significant

difference in arginine levels between SCZ patients and controls.

Ourstudy not only revealed that ADMA and ornithine increased in
FIGURE 5

Enrichment results of metabolites pathways in high-quality literature. The size of the circle represents the number of metabolites, and the larger the circle,
the more metabolites are enriched. The color of the circle represents the significance of the enrichment analysis. The redder the color of the circle, the
more significant the enrichment analysis. (A) Schizophrenia versus healthy control. (B) Miao ethnic schizophrenia versus Miao ethnic healthy control. (C) Miao
ethnic schizophrenia versus Han ethnic schizophrenia. (D) First-episode schizophrenia versus healthy control. (E) Schizophrenia patients co-infected with
toxoplasmos versus healthy control not infected with toxoplasmosis. (F) Schizophrenia patients at baseline versus schizophrenia patients after intervention.
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SCZ patients, but also that ornithine can be used to predict whether

cognitive function of SCZ patients is impaired, and L-ornithine and

D-ornithine decreased in SCZ patients. In contrast to previous

studies, we also found that arginine levels decreased in patients with

SCZ, but the results for L-arginine levels were not consistent across

studies. Several systematic reviews have indicated that omega-3

dietary supplementation can mitigate negative symptoms in FESCZ

and partially alleviate the symptoms of CSCZ patients (69). Our

study also indicated that the content of omega-6 polyunsaturated

fatty acids (PUFA) increased in patients with SCZ. Therefore, we

speculate that different types of fatty acids may play distinct roles in

the pathogenesis of SCZ. More and more studies are exploring the

role of the kynurenine pathway in the pathogenesis of SCZ. It is

generally believed that the kynurenic acid (KYNA) content

increases in the central nervous systems (CNS) of SCZ patients,

and that the kynurenine pathway is over-activated in SCZ patients

(70). However, in our study, we found that KYNA levels had

declined in peripheral serum, which may have been due to the

inability of KYNA to penetrate the blood-brain barrier. The above

comparison further confirms the role of specific metabolites in the

diagnosis and prognosis of SCZ.
4.3 Mechanism analysis

A single study may be affected by confounding factors, making

it difficult to derive strong persuasiveness. Therefore, in this

systematic review, we comprehensively analyzed multiple studies

and found that the changes from metabolites to pathways further

revealed the pathological mechanism of SCZ at the metabolite level.

Amino acids are known for supporting neural function in two

ways, directly acting as neurotransmitters to mediate neural

communication and participate in signal transmission in neurons,

and indirectly participating in energy supply as metabolic substrate

(71). It is generally believed that abnormal arginine metabolism is

involved in the pathogenesis of SCZ from multiple perspectives, such

as NO regulation, immune inflammatory response, and

mitochondrial dysfunction. Previous studies have found that the

arginine biosynthetic pathway is a genetic risk factor for SCZ (51),

and our study also found significant enrichment in SCZ versus

healthy populations. Arginine can be decomposed into many

metabolites under different conditions: nitric oxide (NO), citrulline,

ornithine, urea and agmatine. Arginine is a precursor substance for

the synthesis of NO. The gaseous signaling molecule NO plays an

important role in nerve signaling and nerve cell protection, and can

also regulate synaptic plasticity, neurodevelopment and cerebral

blood flow. Excessive free radical NO can produce neurotoxicity

and neurodegeneration (72). NO synthesis is affected in SCZ andmay

be related to changes in arginine metabolites. For example, the levels

of ADMA and ornithine vary significantly in SCZ, and changes in

these metabolites may affect the synthesis of NO and thus the

functional and behavioral performance of neurons (67). Ornithine

can be directed to the production of glutamic acid, glutamine, and

GABA (73), and is a major precursor to polyamine putrescine,

spermidine, and spermine, which are essential for maintaining
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normal cellular function. Immune inflammation is considered an

important factor in the pathogenesis of SCZ. The levels of

inflammatory factors (such as IL-6) are significant in patients with

SCZ, and arginine metabolism is closely related to the inflammatory

response. Arginine regulates the inflammatory response by affecting

the activity of microglial cells, which may alleviate neuronal damage

and the exacerbation of psychiatric symptoms (74). Mitochondrial

dysfunction is closely related to the pathogenesis of SCZ. Changes in

arginine metabolism may affect mitochondrial energy metabolism

(75), leading to insufficient energy and oxidative stress in neurons,

increasing the risk of SCZ.

Arginine metabolism can regulate tryptophan metabolism.

Arginine can activate mTOR signaling pathway, and mTOR

activation can regulate the activity of indoleamine-2,3-dioxygenase

(IDO). IDO is a key enzyme in tryptophan metabolism, which

catalyzes tryptophan metabolism along the kynurenine pathway, thus

affecting the metabolism level of tryptophan (76). The tryptophan

metabolic pathway has been a focus of SCZ researchers. As an essential

amino acid, tryptophan is metabolized in the human body primarily

through two pathways: the 5-HT pathway and the kynurenine

pathway. Approximately 95% of tryptophan is metabolized via the

kynurenine pathway. Specifically, tryptophan is converted into

kynurenine through the catalytic action of tryptophan-2,3-

dioxygenase (TDO) and IDO in the CNS (microglia and astrocytes)

and the peripheral nervous system (liver and kidneys). Kynurenine

then undergoes further metabolism through two branches: 1) it is

converted into KYNA under the action of kynurenine transaminase; 2)

it is first converted into 3-hydroxykynurenine (3-HK) under the action

of kynurenine monooxygenase (KMO), and then generates 3-amino-4-

hydroxybenzoic acid under the action of kynureninase, ultimately

breaking it down into quinolinic acid (70). Quinolinic acid and

KYNA are agonists and antagonists of N-methyl-D-aspartic acid

receptor (NMDAR), respectively, and KYNA is also an a7 nicotinic

acetylcholine receptor (a7nAChR) antagonist. Thus, quinolinic acid

and KYNA are considered neuromodulators (77). Nicotinic

acetylcholine receptors are mainly found in brain regions such as the

hippocampus and the prefrontal cortex which regulate cognitive

function, as well as in midbrain dopaminergic nerve cells.

Additionally, NMDAR can negatively regulate the uptake and release

of glutamate in the presynaptic membrane. Therefore, the abnormally

high content of KYNA can dysregulate multiple neurotransmitters,

such as glutamate, dopamine and acetylcholine (78–81). Research has

indicated that abnormally elevated levels of KYNA are associated with

cognitive function impairment, suggesting that the aforementioned

neurotransmitter may mediate this pathological process (77).

Other than arginine metabolism, proline metabolism is the

most significant pathway for functional enrichment in SCZ (82).

Proline is a nonessential amino acid synthesized by pyrroline-5

carboxylate synthesis (P5CS) and pyrroline carboxylate reductases

(PyCRS), and decomposed by proline dehydrogenase (PRODH)

(83). It is involved in many important metabolic processes, such as

glycolysis, the tricarboxylic acid cycle and the pentose phosphate

pathway. PRODH is the first proline-degrading enzyme in the

metabolic pathway, and it has been identified as a susceptibility

gene for SCZ (84). Animal studies confirm that PRODH knockout
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mice exhibit SCZ-like behavior (85), We speculate that this may be

because reduced proline degradation causes accumulation, and

proline accumulation can independently lead to the onset of SCZ.

This may be because proline has structural similarities with GABA

and glutamate, which may affect the binding site (86).

Modern neuroimaging research has shown that the first brain area

affected in patients with SCZ is the hippocampus, and specifically its CA1

area (87). The main pathophysiological mechanisms of hippocampal

dysfunction are hyperactivity, atrophy, and abnormal increase in

glutamate content (88). However, the level of glutamate in SCZ-related

studies has historically been controversial (89). Recent research suggests

that primary pyramidal dysfunction leading to decreased glutamate levels

is at the forefront of SCZ studies (90). Our research reveals new insight

into the changes in glutamate associated with SCZ. It suggests that the

manifestation of positive symptoms in SCZ also depends on secondary

disinhibition effects, which arise from downstream adaptive changes in

inhibitory feedback, resulting in an increase in glutamate levels compared

to previous states. Specifically, the full process of SCZ is divided into three

stages: the genetic susceptibility state, the clinical high-risk state, and the

diagnosed state with symptomatic manifestations. People who are

genetically susceptible have lower levels of glutamate, especially in the

anterior cingulate cortex. The low levels of glutamate in the population

are associated with the core symptoms of SCZ, reflecting reduced

excitability; people at high clinical risk will have a secondary

disinhibition effect, and their levels of glutamic acid will be relatively

excessive, and positive symptomswill also appear.When the deinhibition

state is fully present, the patient will exhibit significant core symptoms,

and glutamate levels will normalize (90). A recent clinical trial has

revealed similar results for glutamate content in the anterior cingulate

cortex by comparing glutamate patients with genetically high risk,

clinically high risk, FESCZ (91). This theoretical interpretation

profoundly explains the broad variation inglutamate content in

patients, and why the linear relationship between glutamate content

and core symptoms of SCZ is elusive.

The pathogenesis of SCZ is related to multiple metabolites, and

some patients may also have sleep disorders. Research has shown that

butanoate metabolism plays an important role in the pathogenic

mechanism of sleep disorders in patients with SCZ (92). Another

study revealed that butanoate metabolism was significantly

downregulated in the gut microbiomes of patients after amisulpride

treatment (93). Our study found that butanoate metabolism was

significantly enriched in Chinese ethnic Miao patients, FESCZ,

patients with SCZ and toxoplasma infection. This shows that

butanoate metabolism is widely involved in the pathogenesis of SCZ,

yet the current understanding of butanoate metabolism in the field of

neuropsychiatry is not comprehensive. Thus, its role remains to be

explored. Butanoate metabolism is significantly downregulated in

patients with Parkinson’s disease (94), and is also significantly

associated with prenatal depression (95). In metabolomics studies,

butyric acid metabolism has been considered a form of carbohydrate

metabolism. We speculate that the correlation between SCZ and butyric

acid metabolism may be mainly due to the downregulation of butyric

acidmetabolism leading to energy supply disorders in patients with SCZ.

Our study is generally consistent with the key pathological

mechanisms (oxidative stress, neuroinflammation, energy
Frontiers in Psychiatry 10
metabolism) discovered in previous studies (5). In fact, there are

many metabolites closely related to the pathological mechanisms of

SCZ, such as lipid metabolites: LPC (18:0), LPC (20:0), PC (18:2/

18:2), PC (O-16:0/18:2), LPE (20:4), and PE (P-18:0/18:2), which

collectively improve the diagnostic accuracy of SCZ (39). As a long-

chain organic acid, fatty acid metabolism plays an important role in

the pathogenesis of SCZ. PUFA are important fatty acids which can

be classified as either w-3 fatty acids or w-6 fatty acids. Linoleic acid
and linoleic acid are w-3 fatty acids and w-6 fatty acids, respectively,
which affect the energy supply of SCZ (13, 14, 46, 50). Arachidonic

acid is another important w-6 fatty acid, and it has the most

consistent findings in SCZ considering that the content of

arachidonic acid is decreased in patients with SCZ (5, 46, 50).

In summary, the multiple metabolites we found in this study

not only summarize the metabolic disorders related to SCZ, but also

indicate the direction for effective treatment. Metabolites are widely

involved in the pathogenesis of SCZ and are also effective indicators

for judging and predicting treatment effectiveness.
4.4 Challenges in current research

There has been considerable progress in metabolomics research

in both experimental design and metabolite detection techniques.

However, the current research results cannot fully explain the

pathological mechanism of the disease, and many challenges

remain in this field. Firstly, the current trial designs primarily

focus on case-control studies, exploring the metabolic changes in

patient populations by comparing them with healthy individuals.

This comparative approach is beneficial for uncovering the

pathological mechanisms of diseases at the metabolic level. At

present, the case-control design of SCZ has been well studied, and

we suggest that more metabolomics studies be placed on clinical

treatment to explore the mechanism of effect from the

metabolomics level. Secondly, considering the convenience of

sampling, most of the current research analyzes the changes of

metabolites in the serum and plasma, and the changes of

metabolites in the peripheral circulation system cannot

completely reflect the changes of metabolites in CNS. Thus, it has

been suggested that the changes of metabolites in CSF and brain

tissue deserve more attention, and that the changes of metabolites in

both central and peripheral tissues should be considered jointly in

subsequent research. Finally, due to its genetic specificity, SCZ is the

result of the interaction between genetic and environmental factors,

and current research has under-emphasized impoverished regions,

such as Africa. In order to fully understand the pathogenesis of SCZ

in different populations, patients from impoverished regions such as

Africa should also be studied.
5 Conclusions

In this study, we have summarized the current clinical

metabolomics research progress related to SCZ, and thoroughly

explored the metabolite changes related to onset and prognosis
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among different populations. This systematic review summarizes

dozens of studies, deepening our understanding of the pathogenesis

of SCZ and laying the foundation for future research on metabolites

related to SCZ.
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