
Frontiers in Psychiatry

OPEN ACCESS

EDITED BY

Amit Singhal,
Netaji Subhas University of Technology, India

REVIEWED BY

Yosuke Morishima,
University of Bern, Switzerland
Umaisa Hassan,
Netaji Subhas University of Technology, India

*CORRESPONDENCE

Smita Krishnaswamy

smita.krishnaswamy@yale.edu

Joy Hirsch

joy.hirsch@yale.edu

†These authors share senior authorship

RECEIVED 28 October 2024

ACCEPTED 21 January 2025
PUBLISHED 26 February 2025

CITATION

Singh R, Zhang Y, Bhaskar D, Srihari V, Tek C,
Zhang X, Noah JA, Krishnaswamy S and
Hirsch J (2025) Deep multimodal
representations and classification
of first-episode psychosis via
live face processing.
Front. Psychiatry 16:1518762.
doi: 10.3389/fpsyt.2025.1518762

COPYRIGHT

© 2025 Singh, Zhang, Bhaskar, Srihari, Tek,
Zhang, Noah, Krishnaswamy and Hirsch. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Original Research

PUBLISHED 26 February 2025

DOI 10.3389/fpsyt.2025.1518762
Deep multimodal
representations and
classification of first-episode
psychosis via live face processing
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Vinod Srihari6, Cenk Tek6, Xian Zhang3,6, J. Adam Noah3,6,
Smita Krishnaswamy1,2,5*† and Joy Hirsch1,3,6,7,8,9*†

1Wu Tsai Institute, Yale University, New Haven, CT, United States, 2Department of Computer Science,
Yale University, New Haven, CT, United States, 3Brain Function Laboratory, Department of Psychiatry,
Yale University, New Haven, CT, United States, 4Mila-Quebec AI Institute, Montreal, QC, Canada,
5Department of Genetics, Yale School of Medicine, New Haven, CT, United States, 6Department of
Psychiatry, Yale University, New Haven, CT, United States, 7Department of Comparative Medicine,
Yale University, New Haven, CT, United States, 8Department of Medical Physics and Biomedical
Engineering, University College London, London, United Kingdom, 9Department of Neuroscience,
Yale University, New Haven, CT, United States
Schizophrenia is a severe psychiatric disorder associated with a wide range of

cognitive and neurophysiological dysfunctions and long-term social difficulties.

Early detection is expected to reduce the burden of disease by initiating early

treatment. In this paper, we test the hypothesis that integration of multiple

simultaneous acquisitions of neuroimaging, behavioral, and clinical information

will be better for prediction of early psychosis than unimodal recordings. We

propose a novel framework to investigate the neural underpinnings of the early

psychosis symptoms (that can develop into Schizophrenia with age) using

multimodal acquisitions of neural and behavioral recordings including functional

near-infrared spectroscopy (fNIRS) and electroencephalography (EEG), and facial

features. Our data acquisition paradigm is based on live face-toface interaction in

order to study the neural correlates of social cognition in first-episode psychosis

(FEP). We propose a novel deep representation learning framework, Neural-PRISM,

for learning joint multimodal compressed representations combining neural as

well as behavioral recordings. These learned representations are subsequently

used to describe, classify, and predict the severity of early psychosis in patients, as

measured by the Positive and Negative Syndrome Scale (PANSS) and Global

Assessment of Functioning (GAF) scores to evaluate the impact of

symptomatology. We found that incorporating joint multimodal representations

from fNIRS and EEG along with behavioral recordings enhances classification

between typical controls and FEP individuals (significant improvements between

10 − 20%). Additionally, our results suggest that geometric and topological features

such as curvatures and path signatures of the embedded trajectories of brain

activity enable detection of discriminatory neural characteristics in early psychosis.
KEYWORDS

RNN - recurrent neural network, face processing, multimodal representation, path
signature feature, representation learning, first episode psychosis (FEP)
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1 Introduction

Schizophrenia is a complex mental disorder affecting millions of

people worldwide. Individuals suffering from this condition face

significant cognitive and social impairments. Current diagnostic

methods, often based on static or single-subject studies, fail to

capture the dynamic nature of social cognition, especially in

interpreting facial expressions. This presents a challenge in early

detection of the condition and subsequent early interventions that

could improve the quality of life. Moreover, most existing methods

focus on analyzing different neuroimaging and behavioral

modalities separately, missing the intricate interactions between

neural activities and their relationships to behavior. To address this,

we propose a novel approach that combines live social interactions

with multimodal neuroimaging (fNIRS, EEG) and facial expression

analysis. Our method captures dynamic neural correlates of live

face-to-face interactions in first-episode psychosis (FEP) patients,

using a deep recurrent geometric autoencoder framework, that we

call Neural-PRISM, to learn joint representations from these

modalities, offering new insights and early predictive capabilities

for clinical outcomes.

According to the Global Burden of Disease 2019 Study (1, 2),

schizophrenia affects 23.6 million individuals worldwide. It is marked

by positive symptoms such as delusions, hallucinations, and

disorganized thinking, as well as negative symptoms including

reduced speech, social withdrawal, and diminished emotional

expression. The wide spectrum of cognitive and neurophysiological

dysfunctions associated with Schizophrenia impose a profound

impact on quality of life and social functioning. Moreover, the

estimated economic burden of schizophrenia in the USA doubled

from 2013 to 2019, reaching $343.2 billion in 2019 (3). This

underscores the importance of developing effective early diagnosis

strategies and treatment options to better manage this challenging

disorder. However, studying schizophrenia using only unimodal

neuroimaging or behavioral data is challenging because each offers

a limited perspective, making it difficult to fully understand and

address the cognitive and social deficits associated with the disorder.

EEG offers high temporal but low spatial resolution, whereas, fNIRS

provides better spatial but lower temporal resolution. Similarly,

relying solely on behavioral data, like facial expression analysis,

does not reveal the underlying neural mechanisms contributing to

the observed impairments in schizophrenia. Some studies based on

unimodal neuroimaging recordings include resting state functional

magnetic resonance imaging (fMRI) (4–7) and resting state scalp

electroencephalography (EEG) (8, 9). Although schizophrenia is

often associated with disordered social interactions, much of the

current understanding of its underlying neurophysiology comes from

studies of single brains without social interaction. To address this

issue we focus on dynamic behavior during social interactions.

Recently, an emerging focus on live social interactions between

pairs of individuals, rather than single subjects, has improved the

understanding of dynamic face processing as a proxy for real-life

social interactions (10–12). These foundational findings provide a

theoretical framework to study live face-to-face interactions in

autism spectrum disorder (ASD) (13), where social difficulties are

a primary symptom. This research prompts new questions about
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atypical dynamic and interactive face processing as an indicator of

underlying neurophysiology for social function and/or social

disability in schizophrenia. We hypothesize that the neural

systems of FEP patients as compared to TD individuals reflect

characteristic atypical social functioning and suggest that they could

serve as early indicators of risk, predictors of disease progression,

and potential targets for interventions such as neuromodulation.

Thus, here we apply this novel method of neural and behavioral

recordings during live social interactions to isolate fundamental

neural correlates characteristic of atypical social cognition

in schizophrenia.

Functional magnetic resonance imaging (fMRI) provides high

spatial but limited temporal resolution (approximately 2 seconds).

However, fMRI is limited to single subject tasks, other constraining

conditions, and a high magnetic field that limits simultaneous

measurement of related behaviors. Functional near infrared

spectroscopy, fNIRS, like fMRI also measures the hemodynamic

response function (HRF) but at much higher temporal resolution. A

limitation of fNIRS, relative to fMRI, is the shallow signal

penetration that is restricted to superficial cortex. However,

superficial cortical activity is assumed to reflect subcortical

activity from deeper structures, and the fNIRS technology adds

the key dimension of live behaviors within live social interactions.

Thus, this limitation of responses to superficial cortex and relatively

low spatial resolution is balanced with advantages of two-person

social neuroscience behaviors that extend conventional

singlesubject neuroscience to dyadic functions and live reciprocal

social interactions that cannot be observed using conventional

neuroimaging methods. Here we apply live two-person interactive

paradigm with simultaneous EEG and fNIRS recordings to

investigate social cognitive mechanisms by live (ecologically valid)

facial expressions (14) in both typically developing (TD) and FEP

participants. These investigations are not possible with fMRI

because live face-to-face imaging is difficult and the high

magnet ic field prevents incorporat ing other imaging

modalities simultaneously.

To gain insights from this multimodal data, in this paper we

propose a novel multimodal representation learning framework

called neural-PRISM (Path Representations for early Identification

of Schizophrenia via Multimodal translation) for extracting

signatures of brain activity in FEP. The proposed neural-PRISM

is a recurrent geometric autoencoder framework that learns

compressed and informative latent representations of multiple

modalities including fNIRS, EEG, and behavior in form of facial

action units(AUs) (15). These representations reveal a highly

structured and temporally organized trajectory in 3-D, with high-

curvature segments corresponding to transitions in brain activity

between live interactions and rest. Both encoder and decoder

networks consist of multiple long short-term memory (LSTM)

(16, 17) layers to learn latent representations from neuroimaging

(EEG and fNIRS) as well as behavioral (faceAU) modalities. These

latent trajectories are utilized for distinguishing between FEP

patients and typically developed (TD) individuals, as well as for

forecasting clinical scores, such as Positive and Negative Syndrome

Scale (PANSS) and Global Assessment of Functioning (GAF) scores

(18, 19) that indicate the severity of psychosis. The learned
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representations are utilized via nonlinear dimensionality reduction

method, t-PHATE (20), to visualize the neural activity in a three

dimensional Euclidean space. We call these time lapse trajectories as

neural motifs, which are further utilized for computing geometrical

(curvatures) and topological (path signatures) features and

discriminate between TD and FEP individuals.

To summarize, the contributions of this paper are as follows: (i)

a novel live interactive paradigm with simultaneous fNIRS, EEG,

and facial expression recordings to study the relationship between

the neural correlates of FEP patients stimulated by social interaction

and (ii) a novel recurrent geometric autoencoder framework called

neural-PRISM for learning joint representations of multiple

modalities. (iii) Empirical results demonstrating effective

representation learning via visualization as well as classification

result showing early FEP prediction.
2 Methods

2.1 Dataset and experimental setup

The proposed method employs dyads that include one

individual who serves as the live expressive face stimulus and the

other partner categorized as either typically developed (TD) or first

episode psychosis (FEP) patient. Dyads faced each from across a

table at a distance of approximately 140 cm and table-mounted eye-

tracking systems were positioned to measure continuous eye

movements of the subject. Functional NIRS and EEG data were

also synchronized and continuously acquired hemodynamic and

electrocortical responses of the subject during the experiment. The

dyads were separated by a “smart glass” in the center of the table

that controlled face gaze times (the glass was transparent during

gaze periods) and “rest times” (the glass was opaque during rest)
Frontiers in Psychiatry 03
(12). The face gaze times were controlled according to the time

series illustrated in Figure 1.

2.1.1 Participants
Our study involved 14 FEP patients (2 females, 12 males; mean

age: 24.2 ± 4.1 years) and 19 typical controls (8 females, 8 males and

3 identified as another gender; mean age: 25.1 ± 9.0 years). FEP

patients were recruited from Connecticut Mental Health Center and

Yale New Haven Hospital and the typically developing (TD)

participants were recruited from the local community. All

participants provided written informed consent in accordance

with guidelines approved by the Yale University Human

Investigation Committee (HIC # 1501015178).

2.1.2 Paradigm
The dyads were seated 140 cm across a table from each other. A

“Smart Glass” (glass that is capable of alternating its appearance

between opaque and transparent upon application of an

appropriate voltage) panel was positioned in the middle of the

table 70 cm away from each participant. In both conditions of direct

and diverted face gaze, the subject was instructed to gaze at the eyes

of their partner who watches emotionally valanced movie clips

followed by direct or diverted gaze toward the subjects face

(Figure 1). In the direct face gaze condition, dyads had a direct

face-to-face view of each other. On the other hand, in the diverted

face gaze condition the stimulus look at the subject’s shoulder.

The actor watches a 4 second movie (joyful or sad) and then

looks at the partner’s (subject’s) eyes or his shoulders (diverted face

gaze) for 5 seconds. These sequence of tasks were repeated twice for

each pair. Then there is a 12 second rest period, when the smart

glass is made opaque. The same process (30 seconds) is repeated

three times for each condition. The subjects were instructed to

watch the actor’s (stimulus) face all the time. The actor was
FIGURE 1

Experiment setup: the subject’s brain is being scanned with simultaneous fNIRS (functional nearinfrared spectroscopy), EEG (electroencephalogram),
and facial expression recordings. The actor watches a (positive/negative) movie for 4 seconds followed by looking at the subject (eye contact/no eye
contact) for 5 seconds. The same process of 9 seconds is repeated again before the smart glass is made opaque for 12 seconds (rest period). This
sequence of 30 seconds activity is repeated three times in a single run. Channel layout for simultaneous EEG and fNIRS recordings: red dots
represent the 32 EEG electrodes and green dots represent the 134 fNIRS channels.
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instructed to watch short movies followed by direct or diverted gaze

toward the subject.

2.1.2.1 Movie library

Emotionally evocative videos (movies) that are intended to elicit

natural facial expressions were collected from publicly accessible

sources and trimmed into 3-5 second clips. Video stimuli are

pretested and rated for emotive properties along with 283

Amazon Mechanical Turk participants who rated 134 videos. The

criteria for inclusion were that the videos be about 3-5 seconds in

duration and have emotive inducing properties in accordance with

three categories that we refer to as: adorables, creepies, and neutral

landscapes. This is to avoid any presumption of emotional labels.

This library of video clips has been employed previously to elicit

dynamic and spontaneous facial expressions within a similar live-

interaction paradigm (12). No video is repeated in any session.

2.1.3 Functional near-infrared spectroscopy
signal acquisition

A Shimadzu LABNIRS system (Shimadzu Corp., Kyoto, Japan)

was used to collect fNIRS data at a sampling rate of 123 ms (8.13

Hz). Forty emitters and forty detectors (80 optodes total) were

placed in the cap in a 134-channel layout covering frontal, parietal,

temporal, and occipital lobes (see channel layout in Figure 1) (21).

Each emitter transmitted three wavelengths of light, 780, 805, and

830 nm, and each detector measured the amount of light that was

not absorbed. The amount of light absorbed by the blood was

converted to concentrations of OxyHb and deOxyHb using the

Beer-Lambert equation. Custom-made caps with interspersed

optode and electrode holders were used to acquire concurrent

fNIRS and EEG signals (Shimadzu Corp., Kyoto, Japan). The

distance between optodes was 2.75 cm or 3 cm, respectively, for

participants with head circumferences less than 56.5 cm or greater

than 56.5 cm. Caps were placed such that the most anterior midline

optode holder was almost 2.0 cm above nasion, and the most

posterior and inferior midline optode holder was on or below inion.

A lighted fiber-optic probe (Daiso, Hiroshima, Japan) was used to

remove all hair from the optode holder before optode placement.

2.1.4 Electroencephalograph signal acquisition
A g.USBamp (g.tec medical engineering GmbH, Austria)

system with 2 bio-amplifiers and 32 electrodes was used to collect

EEG data at a sampling rate of 256 Hz. Electrodes were arranged in

a layout similar to the 10-10 system; however, exact positioning was

limited by the location of the electrode holders, which were held

rigid between the optode holders. Electrodes were placed as closely

as possible to the following positions: Fp1, Fp2, AF3, AF4, F7, F3,

Fz, F4, F8, PC5, PC1, PC2, PC6, T7, C3, Cz, C4, T8, CP5, CP1, CP2,

CP6, P7, P3, Pz, P4, P8, PO3, PO4, O1, Oz, and O2. Conductive gel

was applied to each electrode to reduce resistance by ensuring

contact between the electrodes and the scalp. As gel was applied,

data were visualized using a bandpass filter to allow frequencies

between 1 and 60 Hz. The ground electrode was placed on the

forehead between AF3 and AF4, and an ear clip was used

for reference.
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2.1.5 Facial features acquisition
The behavioral data for the subjects was simultaneously acquired

in form of facial action units (AUs) using OpenFace (22) and

Logitech C920 face cameras. OpenFace is one of several available

platforms that provide algorithmically derived tracking of facial

motion in both binary and continuous format. The automatic

detection of facial AUs using these tools has become a foundational

method in facial expression analysis, where facial movements are

characterized as dynamic patterns reflecting the anatomy of facial

muscles. While a direct link between specific emotions and activation

patterns has been proposed (23), this approach focuses on breaking

down facial expressions into discrete muscular components and their

dynamics, without associating them with emotional labels. The facial

AU data from OpenFace included 17 distinct classifications of

anatomical configurations.
2.2 Representation learning
and classification

With the proposed experimental setup for data collection

discussed in the previous section, we propose a novel deep

recurrent geometric autoencoder framework for classification and

learning neural motifs of the FEP patients. Here, the term “neural

motifs” refers to the underlying signatures of time-lapse

neuroimaging data in a compressed low-dimensional space.

2.2.1 Latent trajectories from multimodal
translation via recurrent autoencoders

We propose a deep recurrent geometric autoencoder

framework, neural-PRISM (Path Representations for early

Identification of Schizophrenia via Multimodal translation), to

learn unimodal and multimodal (joint) representations.

Autoencoders are powerful machine learning models trained in a

self-supervised fashion to reconstruct inputs by learning their

abstract representations in the latent space. Besides learning

representations for a single modality, the encoder decoder

framework can also be utilized for learning joint representations

of two neuroimaging modalities with input to the encoder being

data from one modality and the decoder output being the other

modality (Figure 2A). We utilize deep recurrent neural networks

(RNNs) (24) for encoder as well as decoder to capture the time

dependency of the neural recordings and facial action units. Both

the encoder and decoder networks consist of RNN layers: the

encoder network encodes the multidimensional input neural

recordings (EEG or fNIRS) x into latent representations:

ht =  ENC(xt−1, ht−1)             ∀t =  1, 2,…, t , (1)

where t is the length of the input sequence. The dimensions of

the input at each time-point is xt ∈ R134 for fNIRS or facial action

units and xt ∈ R32 for EEG. The latent embeddings ht represent the

compressed time encoded information in the input. The final latent

embedding ht encapsulates the temporal patterns present in the

input and serves as the initialization for the decoder. The decoder

network takes the latent embeddings ht and generates the
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reconstructed data, with its outputs computed at each time step t:

yt =  DEC(yt−1, ht )                 ∀t =  1, 2,…, t 0, (2)

where t′ is the sequence length of the Decoder output modality.

In our settings, the EEG data has 7680 samples corresponding to the

30 second block while fNIRS and face AU constitute 244 samples.

Note that we consider HbDiff signal (25) as fNIRS recordings.

A Long-Short-Term-Memory (LSTM) RNN, as shown in

Figure 2B, was chosen over the vanilla RNN because the latter

experiences the vanishing-gradient problem during model training,

which inhibited it from effectively leveraging context between

elements by maintaining its internal state. For the decoder

network, teacher forcing method (26, 27) was employed, in which

the groundtruth samples yt are fed back into the model to be

conditioned on for the prediction of later outputs. These fed back

samples force the RNN to stay close to the ground-truth sequence.

Three LSTM layers were used in both the encoder and decoder

networks, with a latent dimension of 128. In the learning process,

we utilized root mean square error (RMSE) as a loss function for

training encoder and decoder networks, while cross entropy loss

was used for training classification models. Adam optimizer is used

along with ℓ2 regularization to prevent overfitting. The learning rate

and weight decay (ℓ2 regularization) hyperparameters were tuned

through grid search.

The final latent embeddings htare fed to a multilayer perceptron

(17) layer in order to classify FEP vs TD individuals. The learned

trajectories ðh1,h2,…t Þ in the latent space are further analyzed

topologically and geometrically, as described in the following

section. Our recurrent geometric autoencoder framework also

offers a foundational approach for translating between different

modalities. While other studies, such as (28), have focused solely on

modality translation using resting-state EEG and fNIRS data, our

primary goal here is not to advance translation techniques. Instead,

the translation between neuroimaging modalities (EEG and fNIRS)

and behavioral modalities (FaceAU) is an additional outcome of

our framework.

2.2.2 Topological and geometrical summarization
of latent trajectories

We summarize the high-dimensional latent trajectories

obtained from the recurrent autoencoder using path signatures,

subsequently leveraging these path signatures for classification. Path
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signatures (29), as effective descriptors of ordered data, capture

essential characteristics of trajectories and have been successfully

applied in various domains of neuroscience. For instance, path

signatures have been employed to predict Alzheimer’s diagnosis by

modeling disease progression trajectories (30), to detect epileptic

seizures by analyzing electroencephalogram (EEG) patterns (31), in

early autism diagnosis through behavioral pattern recognition (32),

and in seizure forecasting (33).

Next, we reduce the dimensionality of the latent representations

using the manifold learning technique tPHATE (20). tPHATE

preserves local and global structures in the data, while

simultaneously enabling us to visualize it in 3-D. By embedding

the high-dimensional latent trajectories into a lowerdimensional

space, we can compute and analyze the geometric features of the

resulting low-dimensional trajectories, such as curvature. Here we

employ curvature as a feature for classification, as it encapsulates

information about changes in trajectory direction. Curvature

analysis of dynamic trajectories has been widely used in scientific

machine learning, including shape analysis in computer vision (34),

understanding particle movement in physics (35), and analyzing

motor control and movement dynamics in neuroscience (36, 37).

Overall, our approach of using geometrical and topological

summaries of latent trajectories (see Figure 3), described below,

enables a nuanced classification framework that leverages both

temporal ordering and geometric properties of brain activity.

Path Signatures Given the latent trajectory hðtÞ = ðh1,h2,…t Þ,
is first rescaled to unit variance, reducing scale discrepancies among

features. This is accomplished by standardizing each component of

the path h(t) as follows:

h
0
i(t) =

hi(t) − mi

si
(3)

where µi and si are the mean and standard deviation,

respectively, of the i-th component across all time points. This

normalization step ensures that each dimension contributes equally

to the signature computation, minimizing bias toward features with

larger scales.

To further address variability in the duration and sampling

intervals across different modalities, we apply a time rescaling that

standardizes the time interval of analysis. Specifically, we transform

the time interval of interest [a,b] to the standard interval [0,1]:
FIGURE 2

(A) Schematic of our neural-PRISM recurrent geometric autoencoder framework. Facial expressions are encoded in form of action units (FaceAUs).
(B) Architecture of encoder and decoder networks. Both encoder and decoder networks have long short term memory (LSTM) recurrent neural
network layers to learn latent trajectories.
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t0 =
t − a
b − a

(4)

Following these preprocessing steps, we compute the k-th level

path signatures, Sk(h′(t)) for k = 1,…,N (see Supplementary

Material Appendix A for details). Each computed signature is

then normalized:

Snormk(h
0(t)) =

Sk(h0(t))
∥ Sk(h0(t)) ∥

(5)

The normalized path signatures are subsequently fed into a

four-layer multilayer perceptron (MLP) for classification.

2.2.2.1 PHATE and t-PHATE

Traditional dimensionality-reduction techniques such as PCA, t-

SNE (38) and UMAP (39) are suboptimal: they are sensitive to noise,

scramble global structures, fail to capture fine-grained local details,

and often lack scalability for large datasets (40). To overcome these

challenges, PHATE (potential of heat diffusion for affinity-based

transition embedding) (40) provides a scalable dimensionality-

reduction method that gives accurate, denoised visualizations of

both local and global structures without imposing strong

structural assumptions.

By incorporating time-varying features, t-PHATE (20) extends

the PHATE algorithm to model the temporal properties of input

signals, capturing both temporal autocorrelation and stimulus

specific dynamics. When applied to fMRI data from cognitive

tasks, it denoises the data and enhances access to brain-state

trajectories compared to voxel data and other embeddings like

PCA, UMAP, t-SNE and PHATE. Through the integration of

temporal relationships between LSTM cells at different time

points, t-PHATE generates a low-dimensional (3-D) embeddings

that capture both the spatial organization of LSTM states and their

temporal progression.

2.2.2.2 Geometrical feature extraction

One observation from the t-PHATE embeddings is that the rate

of directional change over time in each trajectory correlates with the
Frontiers in Psychiatry 06
intensity of attention shifts during task-switch periods. This insight

motivates the further use of three-dimensional t-PHATE

embeddings for feature extraction in the form of curvature

measures. More precisely, the curvature at a specific point reflects

the rate of change of the curve at that point, or in mathematical

terms, it represents the magnitude of the second derivative of the

curve at that point. A plane curve given by Cartesian parametric

equations x = x(t) and y = y(t), the curvature kappa, sometimes also

called the “first curvature” (41), is defined by

k = df=ds =
x0y00 − y0x00

(x02 + y02)3=2

where x′ and x″ denote first and second order derivatives,

respectively. Here we consider 1-dimensional curves in 3-

dimensional Euclidean space, specified parametrically by x = rcost

and y = rsint, which is tangent to the curve at a given point. The

curvature is then

k =
x0y00 − y0x00

(x02 + y02)3=2
=
r2

r3
=
1
r

(6)

For curvature at point p, we fit a circle S1(p,r) centered at p with

radius r in the plane spanned by principal components of the 3-

dimensional t-PHATE trajectory. The inverse of radius 1/r gives the

curvature at p. More precisely, at each point p of the curve C, we

select a local neighborhood of points around p. The size of this

neighborhood, a user-defined hyper-parameter (set here to 8% of

the total curve length), determines the number of points sampled

symmetrically around p. The neighborhood is then centered by

subtracting the mean of these points from each point, ensuring that

the analysis is performed relative to the center of mass. Next,

Singular Value Decomposition (SVD) is applied to the centered

neighborhood, yielding two vectors that span the local plane and a

normal vector perpendicular to this plane. A circle is then fitted to

the points in the local plane using a least-squares method. The

curvature at p is subsequently calculated as the reciprocal of the

radius (1/r) of the fitted circle, assuming that locally the trajectory

approximates a circular arc. This procedure is repeated for all points
FIGURE 3

Classification of subjects based on curvature and path signatures of the latent trajectories obtained from the recurrent autoencoder. (A) Curvature
computation is performed using circle fitting in 3D tPHATE coordinates. (B) Path signatures are directly computed from the latent trajectory.
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along the trajectory, giving a curvature profile across the entire

curve. The four curvature values at four task switching times

(including switching from gaze to rest) are then selected to be fed

into a three-layer MLP for classification.
3 Results

We present our experimental results in two parts. First, we

present the classification results from learned representations

followed by prediction of GAF and PANSS scores. Next, we

present the joint learned representations and show the distinction

between TD and FEP individuals via topographical data analysis

techniques. Results on modality translation, which is an additional

outcome of the neural-PRISM framework, are presented in

Supplementary Material Appendix B.
3.1 Classification

We divide the dataset into 30 seconds blocks such that each

subject has 24 blocks of data: with positive/negative valence movies

and direct/diverted gaze, corresponding to each condition, we have

6 blocks. In order to evaluate the performance of our method, we

employ leave-one-subject-out cross validation scheme, the samples

from one subject are used for testing, while samples from other

subjects are used as the training set. It has to noted here that if we

randomly choose certain blocks from all the data samples and split

it into training and test sets, we achieve close to ideal 100%

classification accuracy on test samples (with fNIRS recordings

only) similar to the studies in previous works (8, 9). This is

because the training set has some cues or signatures of every

subject and as a consequence the leaned model is able to

generalize in this setting.

We train the encoder-decoder model with different EEG bands

namely: delta [0.5–3 Hz], theta [4–7 Hz], and alpha [8–13 Hz] along

with fNIRS and facial action units. The classification accuracy

achieved using fNIRS data on withheld subject blocks is
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determined to be 85%, outperforming traditional support vector

machine (SVM) accuracy of 71% and stand-alone MLP accuracy of

67%. Incorporating multimodal joint representations improves the

classification and fNIRS + EEG data yields best classification

accuracy of 88% (Figure 4A). Moreover, similar trend is observed

when using path signatures of latent trajectories (Figure 4B).

3.1.1 Predicting GAF and PANSS scores
The Global Assessment of Functioning (GAF) (19, 42) covers

the range from positive mental health to severe psychopathology, is

an overall (global) measure of how patients are doing in their day-

to-day life. GAF measures the degree of mental illness by rating

psycho-logical, social and occupational functioning (43). The

Positive and Negative Syndrome Scale (PANSS) (44, 45) was

developed in order to provide a well-defined instrument to

specifically assess both positive and negative symptoms of

schizophrenia as well as general psychopathology.

The classification probability scores during testing of

classification model were utilized to predict the PANSS and GAF

scores. The probability scores corresponding to the 24 blocks of data

for each FEP patient were averaged to get the predicted score. Note

that the ground truth scores were not used during training of our

classification model. The correlation coefficient between predicted

scores and true GAF role scores is computed at 0.4789 while

correlation between positive symptom PANSS score was 0.5082

(Figures 4C, D). However, the predicted scores did not have good

correlation with the negative PANSS scores (0.1630).
3.2 Learned representations

The learned latent representations of the unimodal and

multimodal autoencoders are used to compute the time lapse t-

PHATE trajectories. We subsequently analyze these trajectories and

compute curvatures at different task switching times. We observe

that the curvatures for FEP patients are larger than those for TD

individuals, indicating the attentional dysregulation and sensitivity

to the presence of emotional distractors in FEP patients (46, 47).
FIGURE 4

Diagnosis of first episode psychosis (FEP) patients using latent trajectories obtained from neuralPRISM and prediction of disease severity scores. (A)
Classification of TD (typically developed) and FEP subjects using a 2-layer MLP (multi-layer perceptron) trained on latent trajectories derived from unimodal
EEG (electroencephalogram) data as well as multimodal EEG + FaceAU (facial action units) and EEG + fNIRS (functional near-infrared spectroscopy) data. (B)
Classification of TD and FEP subjects using a 4-layer MLP trained on path signatures of latent trajectories derived from unimodal and multimodal data. (C)
Block-averaged probability scores obtained from the classifier in (A) are correlated with GAF (global assessment of functioning) scores. (D) Block-averaged
probability scores obtained from the classifier in (A) are correlated with PANSS (positive and negative syndrome scale) positive symptom score. Note that the
PANSS and GAF scores are normalized to [0,1] for clarity.
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Additionally, visualizing the learned embeddings in 3-D space using

t-PHATE enables the identification of task switching times from

movie watching to direct/diverted gaze and vice-versa (Figure 5A

shows example trajectories). The curvatures at various switching

times were analyzed for both FEP and TD individuals. By

computing curvatures using only EEG unimodal representations,

the greatest distinction between TD and FEP individuals was

observed in the theta band (Figure 5B). Moreover, by integrating

different modalities - fNIRS and FaceAU - with EEG, clear

discrimination emerges in both the alpha and delta bands

(Figures 5C, D). Another point to note here is the higher

curvatures for FEP patients in case of directed gaze as compared

to diverted gaze condition, suggesting higher neural activity in FEP

patients during directed gaze. To analyze the sensitivity with respect

to positive vs negative emotions, we depict the curvature values in

Figure 6. We observe that (i) the curvatures of FEP patients are

larger than TD individuals and (ii) the curvatures of FEP patients

are larger for negative emotions stimulated by negatively

valenced movies.
4 Discussion

In this study, we introduced a deep recurrent geometric

autoencoder framework for multimodal representation learning

and classification of first episode psychosis individuals. Our study

is based on a live faceto-face interaction paradigm to investigate the

neural correlates of social cognition in early psychosis. We

hypothesized that incorporating multiple neuroimaging
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modalities (fNIRS and EEG) along with behavioral recordings

(facial tracking) can predict early psychosis symptoms better than

unimodal recordings alone.

Our proposed neural-PRISM framework consists of LSTM based

encoder and decoder networks together with geometric and topological

characterizations of the trajectory. The encoder network is trained to

output latent trajectories over time and the decoder network is trained

to output reconstructed modality conditioned on the encoder output.

By training the networks to minimize the difference between the

predicted and recorded (ground truth) output modalities, the

autoencoder learns compressed joint embeddings of multimodal

neural trajectories in the latent space (encoder output). Although the

classification between FEP and TD individuals is based on the

embedding at the final time points, the entire learned trajectories are

utilized to capture geometrical features that facilitate characterization of

early psychosis patients. Recurrent neural networks have been used for

modeling brain dynamics (48). A Long-Short-Term-Memory (LSTM)

RNN was chosen over the vanilla RNN because the latter experiences

the vanishing-gradient problem duringmodel training, which inhibited

it from effectively leveraging context between elements by maintaining

its internal state. Transformers (49) are usually used to model very long

range dependencies especially for large-scale tasks such as document

summarization and will be suitable for sleep studies or when the

recordings live in streaming fashion. Although transformers can be

trained in parallel, the LSTMs require less parameters than

transformers. Some other scenarios where transformers can be

suitable are real-time decoding from EEG to fNIRS or brain-

computer interface for processing live streaming data of

neuroimaging signals (50).
FIGURE 5

(A) Example t-PHATE visualizations (geometrical motifs) of learned representations in 3dimensional Euclidean space: first row is for TD (typically
developed) and second row corresponds to FEP (first episode psychosis) patients. These examples are obtained from joint EEG (electroencephalogram)
and fNIRS (functional near-infrared spectroscopy) representations. Curvatures of geometrical motifs: (B) unimodal EEG, (C) Multimodal EEG + FaceAU
(facial action units), and (D) Multimodal EEG + fNIRS. p-values are obtained through Mann–Whitney U test. Higher curvatures for FEP patients in case of
directed gaze as compared to diverted gaze condition suggest higher neural activity in FEP patients during directed gaze.
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The classification and severity prediction results in Figure 4 as

trajectory curvature analysis on our embeddings results in Figure 5

support our hypothesis, where the multimodal representations

provide better discrimination for FEP patients. The curvatures of

trajectories associated with the task-switching paradigm may

indicate rapid transitions between events, which could be

reflected in the EEG data which has higher temporal resolution.

Moreover, higher curvatures of FEP patients validate the attentional

dysregulation and sensitivity to the presence of emotional

distractors in FEP patients (46, 47), underlying the validity of

our approach.

Our results confirm the potential of our framework for

facilitating classification and detection of early psychosis. We

achieve higher classification accuracy from multimodal (EEG and

fNIRS/FaceAU) joint representation learning than achieved solely

from fNIRS data validating the usefulness of multimodal data

processing. Moreover, our paradigm along with multivariate data

analysis show correlations with early positive symptoms and this

may aid clinicians at targeting for intervention.

Although the number of participants in the study is small, the

current set of data provides foundational results with multivariate

analysis techniques for potential future studies on larger

populations as well as application of these tools to additional

populations including chronic schizophrenia. Further

generalization across subjects will require a larger sample size

with a primary emphasis on understanding FEP through neural

recordings stimulated by live face processing.

While fNIRS has been extensively used for neuroimaging in

infants and children, its application in adult cognitive research has

been limited, primarily due to sparse optode coverage and lower

spatial resolution (around 3 cm) compared to fMRI. Nevertheless,
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its advantages, such as tolerance to movement and the absence of

factors like a strong magnetic field, restrictive physical conditions,

the requirement to lie supine, and loud noise, make it a preferable

alternative for live interactive studies involving two individuals (10–

12). Although fNIRS technology cannot record brain activity from

subcortical regions, many studies on social interaction have found

the superficial cortex including right temporoparietal junction to

play a major role in these behaviors (51). Combining fNIRS

recordings with EEG provides additional information that may

represent neural processing at deeper and subcortical levels.

Previous studies have implemented multivariate machine

learning classification methods in a number of multimodal

studies related to diagnosis of psychosis patients including

genomic data, patient records, EEG, structural neural imaging,

task-based fMRI, resting state fMRI, and diffusion tensor imaging

(DTI) (6, 52–56). These modalities were either used in univariate

models or in combination with each other in multivariate models to

best classify which participants were at risk for developing

Schizophrenia or who would best benefit from anti-psychotic

medications. In one study, patient records and structural MRI

were combined using a neural network model to accurately

predict which participants would benefit from clozapine (52).

Convolutional neural network combined with layerwise relevance

propagation were utilized to combine features from structural

magnetic resonance imaging, fMRI, and genetic markers such as

single nucleotide polymorphisms to classify individuals with

schizophrenia (53). Another study distinguished patients with

bipolar disorder from those with schizophrenia using a SVM and

recursive feature elimination models with a multimodal

combination of structural MRI, resting state fMRI, and DTI to

show that regional functional connectivity strength in the left
FIGURE 6

Curvature comparison based on the positive/negative movie watching conditions. (A) unimodal EEG (electroencephalogram), (B) Multimodal EEG +
FaceAU (facial action units), and (C) Multimodal EEG + fNIRS (functional near-infrared spectroscopy). We observe that (i) the curvatures of FEP (first
episode psychosis) patients are larger than TD (typically developed) individuals and (ii) the curvatures of FEP patients are larger for negative emotions
stimulated by negatively valenced movies.
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inferior parietal area might serve as a specific biomarker for

schizophrenia (54). Other studies have used multimodal

recordings of EEG and fMRI to classify individuals with

schizophrenia from control participants. Interestingly, one recent

study did not attempt to integrate the modalities of EEG and fMRI

into models, but rather looked at their univariate ability to classify

patients (56). This study showed that for fMRI modalities, tuned

convolutional neural networks and random forest models showed

the best classification performance. For EEG data it was shown that

the random forest classifier features of spectral entropy, Hjorth

mobility and complexity were most important for the categorization

of patients. One additional study focused on the synthesizing of

EEG to fMRI signals in a multimodal predictive model for

schizophrenia diagnosis. While this study, did not translate the

neuroimaging modalities, it did show validity in the synthesis of the

multimodal signals for classification of schizophrenia patients (55).

A number of recent studies have shown the effectiveness of using

support vector machine and other machine learning methods for

classifying psychosis and TD participants when utilizing both alpha

and theta power spectra (57–60). Because specific differences in these

spectra have been shown previously to best predict diagnosis of TD

versus FEP patients, we also utilized spectral filtering on the EEG data

to compare changes in specific spectra. Specifically, these previous

studies suggest a framework for unimodal EEG recordings that specify

that alpha and theta power spectra features can be used as a screening

tool in diagnosis of psychosis. One study compared low frequency

oscillation spectra using random-forest, support vector machine, and

Gaussian process classifier (GPC), to demonstrate the practicality of

resting-state power spectral density (PSD) to distinguish patients of

FEP from healthy controls (58). Other studies compared alpha and

theta power in First episode psychosis patients to TD subjects during

cognitive control tasks and showed that both alpha and theta power

spectra were different from TD participants (59). Finally a systematic

review of antipsychotic drug treatment on EEG patterns during resting

state demonstrated that the most relevant predictors of a poor response

to antipsychotics included change in theta power compared to healthy

control and a high alpha power and connectivity (60).

In conclusion, this study demonstrated the potential of

multivariate techniques to capture discriminatory patterns in

neural and behavioral recordings of early psychosis. Our findings

provide a foundation for exploring the mechanisms underlying

these conditions and their interconnections.
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