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on facial multimodal data
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Department, Third Xiangya Hospital of Central South University, Changsha, China
Introduction: Depression is a serious mental health disease. Traditional scale-

based depression diagnosis methods often have problems of strong subjectivity

and high misdiagnosis rate, so it is particularly important to develop automatic

diagnostic tools based on objective indicators.

Methods: This study proposes a deep learning method that fuses multimodal

data to automatically diagnose depression using facial video and audio data. We

use spatiotemporal attention module to enhance the extraction of visual features

and combine the Graph Convolutional Network (GCN) and the Long and Short

Term Memory (LSTM) to analyze the audio features. Through the multi-modal

feature fusion, themodel can effectively capture different feature patterns related

to depression.

Results: We conduct extensive experiments on the publicly available clinical

dataset, the Extended Distress Analysis Interview Corpus (E-DAIC). The

experimental results show that we achieve robust accuracy on the E-DAIC

dataset, with a Mean Absolute Error (MAE) of 3.51 in estimating PHQ-8 scores

from recorded interviews.

Discussion: Compared with existing methods, our model shows excellent

performance in multi-modal information fusion, which is suitable for early

evaluation of depression.
KEYWORDS

depression, multi-modal data, feature fusion, spatial-temporal attention, artificial
intelligence
1 Introduction

Depression, also known as clinical depression or depressive disorder, is a prevalent and

serious mental health condition that manifests through persistent low mood, lack of energy,

and other symptoms that significantly impact an individual’s thoughts, emotions,

behaviors, and overall health (1). According to the World Health Organization,

approximately 280 million people worldwide suffer from depression, with 15% of those

affected eventually dying by suicide (2). The multifaceted nature of depression, influenced
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by social, psychological, and biological factors, underscores the

necessity for a comprehensive approach to its treatment (3).

Long-term stress, genetic predispositions, and adverse social

environments are key contributors to the onset of depression,

necessitating multifaceted treatment strategies to help patients

regain a healthy life.

Traditional methods for diagnosing depression often rely on

clinical evaluations by doctors and self-reports from patients. These

scale-based methods are fraught with challenges such as high

subjectivity, potential misdiagnosis, regional disparities, and a

general lack of medical awareness. Moreover, the subtle nature of

depressive symptoms means many individuals fail to recognize their

condition promptly, leading to delayed treatment and worsening

symptoms. Therefore, developing auxiliary diagnostic tools based

on objective indicators is crucial for improving early diagnosis and

treatment outcomes.

Recent advancements in artificial intelligence (AI) and deep

learning have introduced new possibilities for assisting in the

diagnosis of depression. These technologies have shown promise

in identifying patterns and features indicative of depression through

various data modalities (4). However, there are still some

limitations in the research aimed at automatic diagnosis of

depression. Some studies only consider global features and ignore

local features in facial video data, which may lead to insufficient

capture of subtle facial changes related to depression. Other studies

only consider video data without combining audio information,

ignoring the importance of multimodal information. In addition,

the design of some models is too complex, which leads to the poor

interpretability of the model and the difficulty in understanding its

inner mechanism. We address the limitations of previous related

work and propose a novel multimodal deep convolutional network,

aiming to overcome these problems and provide a more efficient

solution for the automatic diagnosis of depression.

In this study, we propose a novel deep learning approach that

leverages multimodal data fusion to automatically diagnose

depression using facial video and audio data. Our method enhances

the extraction of visual features through a spatiotemporal attention

module and combines Graph Convolutional Networks (GCN) and

Long Short-Term Memory (LSTM) networks to analyze audio

features. By integrating these multimodal features, our model

effectively captures diverse patterns associated with depression. Our

experimental results demonstrate that the proposed method

outperforms existing approaches in terms of performance metrics,

making it a promising tool for the early evaluation and diagnosis of

depression. The main contributions of our study are as follows:
Fron
1. We introduce a novel multimodal network architecture

that comprehensively integrates video and audio

information, significantly enhancing the reliability of

depression diagnosis.

2. We design a feature fusion model that effectively

combines temporal and spatial features, providing a more

comprehensive representation of video data and facilitating a

deeper analysis of the patient’s psychological state.
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3. We employ a combined GCN and LSTM model to process

audio data, constructing a graph structure to analyze Mel-

Frequency Cepstral Coefficients (MFCC), thereby improving

the interpretability and accuracy of the diagnostic process.
This paper is organized into five sections. The first section

presents the research background, discusses the status and

challenges of depression identification, and introduces the

objectives and significance of the study. The second section

reviews recent methods for depression evaluation using both

single-modal and multi-modal data. The third section details the

proposed method, including the overall network architecture and its

components. Section four includes the experimental environment,

training process, dataset details, results and discussions. Finally,

section five summarizes the contributions of this study, evaluates

the advantages and limitations of the proposed method, and

outlines directions for future research.
2 Related work

Studies have shown that depression state is closely related to

patients’ head and face activities (5). Currently, some studies have

tried multi-modal fusion of facial video information and other types

of data, such as voice features and text information, to improve the

accuracy of depression diagnosis. By utilizing multiple sources of

information, the emotional state and psychological characteristics

of patients can be captured more comprehensively, leading to more

accurate assessment.

Al Jazaery and Guo (6) used 3D convolutional neural networks

to extract deep spatio-temporal features of closely cropped aligned

facial regions and relatively large head regions respectively, and

then used recurrent neural networks to continue learning spatio-

temporal information for final prediction. It is the first application

of 3D convolutional neural networks to depression level analysis

and shows great promise. But it focuses more on visual-based non-

verbal data and does not take audio into account. Sun Haohao et al.

(7) performed face detection, alignment and cropping on video

frames in AVEC2013 (8) and AVEC2014 (9) depression databases

to obtain the whole face image and the local eye and mouth region.

Then, the deep convolutional neural network that fuses the

attention mechanism of the channel layer is used to extract the

corresponding global features and local features. The multiple visual

features learned are more discriminative than the global features

alone. But this study does not consider the influence of the audio.

Yuchen Pan et al. (10) proposed the Spatio-Temporal Attention

Depression Recognition Network (STA-DRN), which mainly uses

the spatio-temporal attention (STA) mechanism to generate spatial

and temporal attention vectors, so as to capture the global and local

spatio-temporal relationships of features. In the STA module, there

is also an attention vector fusion strategy that fuses spatial and

temporal domain information. This model can capture the dynamic

change process of facial expression and enhance the feature

correlation in the process of depression recognition. JH Kim et al.
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(11) introduces the customized VGG-19 (CVGG-19) architecture,

which integrates designs from VGG, Inception-v1, ResNet, and

Xception to enhance facial emotion recognition (FER). The CVGG-

19 significantly improves performance by 59.29% and reduces

computational cost by 89.5% compared to the original VGG-19.

Additionally, CVGG-19 achieves an average F1-score that is 3.86%

higher than Inception-V1, ResNet50, and Xception architectures.

Constantino Álvarez Casado et al. (12) extracted remote

photoplethysmography (rPPG) signals directly from facial videos

and computed a variety of statistical, geometric and physiological

features including heart rate. These features were fed into machine

learning regression models to identify different levels of depression.

The results of this approach are comparable to other audiovisual

models based on voice or facial expression.

Some studies only focus on audio information for depression

recognition. Momoko Ishimaru et al. (13) input the feature vector

converted from audio data into graph convolution layer and dense

layer in turn, and finally obtain the prediction score. This new

regression model uses the generated graph-structured data to

express correlations between audio features, which can be

exploited to assess the severity of depression. Li et al. (14) built

speech signals into speech graphs based on feature similarity to

input Graph-LSTM neural network for classification. The network

is a new graph neural network structure combining LSTM

aggregator and weighted pool, which enhances the interpretability

of the model and can effectively identify speech emotional features.

However, the model also has the shortcomings of redundant speech

graph features and lack of visual features.

Some advancements in bimodal speech emotion recognition

(SER) using both acoustic and text data, focusing on the significance

of attention mechanisms and fusion strategies in combination with

traditional deep learning techniques. Also there are some challenges

such as limited datasets and difficulties in data acquisition (15).

Uddin et al. (16) input the preprocessed audio clips and video

clips into the spatio-temporal network based on audio and video. The

dynamic feature descriptor Volume Local Directional Structural

Pattern is introduced to encode the structure, so as to extract the

dynamic facial features. Then, Temporal Attentive Pooling is used to

summarize the segmentation features, and Multi-modal factorized
Frontiers in Psychiatry 03
bilinear pooling is used to fuse the multimodal features. Finally, the

corresponding BDI-II scores were obtained by regression to estimate

the severity of depression. This method has strong feature extraction

ability and considers multi-modal data but ignores the association

between high-level semantic features and channels. Ming Fang et al.

(17) comprehensively considered video, audio and text information,

and designed a multi-modal fusion model with multi-level attention

mechanism (MFM-Att) for depression detection. The model uses two

LSTMs to learn video and audio features, and a Bi-LSTM with

attention mechanism to learn text features, and then inputs these

three outputs into the MFM-Att for feature fusion. This design can

make information complementary between different modalities.

However, the complexity of the model needs to be improved.

Improving the interpretability of diagnostic models for

depression is crucial for clinical practice. David Gimeno-Gomez

et al. (18) present a simple and flexible multimodal temporal model

capable of recognizing nonverbal cues to depression from noisy

real-world videos. They visualize the level to which these features

contribute to the results through integrated gradients (19) based on

audio-speech embeddings, facial emotion embeddings, facial, body

and hand signatures, as well as gaze and blink information.
3 Methods

Figure 1 shows the framework of the proposed method for

diagnosing depression based on multimodal data. Firstly, visual

information and audio information are extracted from the recorded

videos of the participants, and the two kinds of information are

pretreated separately. Then, the feature extraction is performed on

the preprocessed data and the multimodal feature set is obtained by

feature fusion. After that, the processed features are classified and

the respective classification results are output. This framework

allows the model to synthesize visual and audio information,

which helps to deeply mine the hidden information in the data.

In the process of facial behavior feature extraction, we use the

spatio-temporal attention module to strengthen the correlation

between features and video frames. For audio features, GCN and

LSTM are mainly used.
FIGURE 1

Framework for depression diagnosis.
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3.1 Visual feature extraction

In order to effectively extract information from the facial

behavior features, we propose Temporal-Spatial Network for

Depression Diagnosis (TSNet-DD). The proposed model

incorporates a temporal attention module and a spatial attention

module to capture global and local features at the temporal and

spatial levels from video frames. The core of TSNet-DD is that it can

use the Temporal-Spatial Attention Module (TSAM) to enhance the

correlation between pixels and frames.

The overall architecture of TSNet-DD network is shown in

Figure 2. The initial layer of the network uses a 7×7×7 convolution

kernel to perform downsampling with a step size of 1×2×2 to

extract low-level features of the input image. Next, a 3×3×3 pooling

operation with a step size of 1×2×2 is performed in the second layer,

and the resulting features are denoted as Fv . The subsequent

module1, module2, module3 and module4 correspond to different

convolutional layers in the ResNet, and each module consists of a

different number of residual blocks. TSNet32-DD corresponds to

the ResNet18, that is, each module contains two residual blocks, and

two sub-modules are also contained within each residual block. In

ResNet18, these submodules are 3×3 convolutional layers, while in

our network, we introduce TSAM. Therefore, a total of 32 TSAMs

are used in the ResNet18-based network, and we refer to this

network as TSNet32-DD.

Similarly, in the ResNet34-based network, there are 3,4,6 and 3

residual blocks in each module (sections marked red in Figure 2).
Frontiers in Psychiatry 04
Each residual block still contains two TSAMs, resulting in a total of

64 TSAMs in the final network, thus this network is called TSnet64-

DD. After all residual modules, a pooling operation is performed on

the feature map to resample the features into fixed shapes, and

finally a fully connected layer is used to classify the subjects.

The feature extraction module TSAM in TSNet-DD contains a

temporal attention module and a spatial attention module. These

two modules are used to generate the temporal attention weight

vector Wt and spatial attention weight vector Ws of the input Fv ,

respectively, so as to obtain the corresponding temporal feature Ft
and spatial feature Fs. Then, these two kinds of features are fused to

capture the intrinsic relationship between spatial-temporal features,

assigning adaptive weights to the features with spatio-temporal

information. The structure of TSAM is shown in Figure 3.

The fusion process of temporal attention module and spatial

attention module could be expressed by the following formula:

Fts = Ft + Fs (1)
3.1.1 Temporal attention module
For video data of patients with depression, intra-frame temporal

changes are crucial for depression recognition. Such temporal

changes can be short term or long term dynamics spanning

several seconds. Although short-term features could capture

dynamic information between several frames, their ability to

extract long-term dynamic features is limited. To address this

problem, we introduce a temporal Attention module (TAM) for
FIGURE 2

Architecture of TSNet-DD.
frontiersin.org

https://doi.org/10.3389/fpsyt.2025.1508772
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Jin et al. 10.3389/fpsyt.2025.1508772
enhancing temporal information. The specific structure of this

module is shown in Figure 4.

In the TSnet-DD model, after the second layer of 3×3×3 pooling

operation, the feature Fv is obtained, and its size is assumed to be

H×W×C. The feature Fv is sent to the TAM. Firstly, the global average

pooling and max pooling operations are performed respectively to

obtain two 1×1×C channel descriptions. Subsequently, these two

descriptions are fed into a two-layer neural network with shared

weights for processing. Then the resulting two features are added

and the weight coefficient Wt is obtained through the sigmoid

activation function. Finally, Wt is multiplied with the original input

feature Fv to obtain the new scaled feature Ft . The process of TAM can

be summarized as follows:

Wt = s(Conv(AvgPool(Fv)) + Conv(MaxPool(Fv))) (2)

Ft = Fv*Wt (3)

To further visualize the architecture and data transfer process of

TAM, we show its pseudo-code in Algorithm 1.
Fron
Step 1 Input: Feature map FvϵR
H�w�c

Step 2 Global Average Pooling: Favg = AvgPool(Fv) where

Favg   ϵR
1�1�c.

Step 3 Global Max Pooling: Fmax = MaxPool(Fv) where Fmax  ϵ

R1�1�c.

Step 4 Shared Network: Wt = s(Conv(Favg) + Conv(Fmax)) where
Wt   ϵR

1�1�c, and s is the sigmoid function.

Step 5 Attention Scaling: Ft = Fv*Wt where * denotes

element-wise multiplication.
Algorithm 1. Pseudocode of temporal attention module.
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3.1.2 Spatial attention module
In our collection of videos about people with depression, some

useful features usually appear in a sequence of consecutive video

frames. Therefore, whether features can identify spatial order

information is crucial in depression diagnosis. In addition,

different locations of the face have their own unique features, and

there are subtle relationships between these location features that

cannot be captured by our naked eyes (20). With this in mind, we

employ a Spatial Attention Module (SAM) to generate spatial

vectors to capture the spatial information. The structure of SAM

is shown in Figure 5.

In SAM, the input feature Fv can determine where the features

are meaningful. Firstly, the average pooling and maximum pooling

of the channel dimension are performed on Fv respectively to obtain

two channel descriptions of size H×W×1, then the two descriptions

are concatenated together in the channel dimension. Next, through

a 7×7 convolutional layer and the activation function sigmoid, the

weight coefficientWs are obtained. Finally, theWs is multiplied with

the input feature Fv to obtain the final spatial attention vector Fs.

This process can be expressed as follows:

Ws = s(Conv(½AvgPool(Fv),MaxPool(Fv)�)) (4)

Fs = Fv*Ws (5)

The flow of the Spatial Attention Module is shown in

Algorithm 2.
Input: Feature map FveRH�w�cChannel-wise Average

Pooling: Favg = AvgPool(Fv ,  axis = C) where Favg   ϵR
H�W�1.

Channel-wise Max Pooling: Fmax = MaxPool(Fv,  axis = C)

where Fmax   ϵR
H�W�1.

Concatenation: Fconcat = ½Favg ;  Fmax� where Fconcat   ϵR
H�W�2.
FIGURE 3

Temporal-spatial attention mechanism.
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Fron
Convolution: Ws = s (Conv(Fconcat)) where Ws   ϵR
H�W�1, and s is

the sigmoid function.

Attention Scaling: Fs = Fv ∗Ws where ∗ denotes element-

wise multiplication.
Algorithm 2. Pseudocode of spatial attention module.
3.2 Audio feature extraction

The researchers found that people with depression tended to

speak in a monotonous and lower tone than healthy controls (21).

Therefore, in addition to the analysis of visual features, it is

particularly important to mine the key features hidden in speech

signals for the diagnosis of depression. See Figure 6 for the audio

feature processing method used in this paper.
tiers in Psychiatry 06
We use Mel-frequency Cepstral coefficients (MFCC) of audio

data as effective features for depression recognition (22). MFCC

takes into account the auditory properties of the human ears and

can well capture the features in speech. The calculation process of

MFCC is as follows: Firstly, the input audio signal is pre-weighted to

enhance the high-frequency components. Then, the pre-weighted

signal is divided into multiple short-time frames, and a window is

applied to each frame to reduce the spectral leakage. Next, the fast

fourier transform is performed on each windowed frame to convert

the time domain signal to the frequency domain. Then the power

spectrum of each frame is calculated. Finally, the power spectrum is

passed through a bank of Mel filters, and its output is log

transformed and discrete cosine transformed. At this point, we

have the MFCC feature vector for each frame of the input audio.

After that, we consider the MFCC feature vector of each frame as a

node, and calculate the feature similarity of each node based on the

Euclidean distance between its feature vectors, so as to construct the
FIGURE 5

Spatial Attention Module.
FIGURE 4

Temporal attention module.
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edges between nodes. In this process, we set a threshold of 0.5 to

limit the addition of edges, that is, only adding edges between nodes

with high enough feature similarity and small enough distance.

Finally, we assign a corresponding weight to each edge based on the

inverse of the distance to better capture the local and global features

in the audio signal. The specific algorithmic architecture of MFCC

Calculation is shown in Algorithm 3.
Fron
Step 1:Apply a pre-emphasis filter to the audio signal Xt.

Step 2: Divide the signal into overlapping frames.

Step 3: Windowing: Apply a Hamming window to each frame.

Step 4: Compute the Fast Fourier Transform of each

frame.

Step 5: Apply a Mel filter bank to the power spectra.

Step 6: Take the logarithm of the Mel-filtered spectra.

Step 7: Apply the Discrete Cosine Transform to

obtain MFCCs.
Algorithm 3. Pseudocode of MFCC calculation.

To explore the complex patterns and temporal features of audio

data, we input the constructed graph structure data into GCN and

LSTM for processing. GCN aggregates the features of nodes and

their neighbors through convolution operations. LSTM could

capture long and short-term dependencies in the sequence.

Algorithm 4 further details the process of combining GCN and

LSTM. By combining GCN and LSTM, we can capture the high-

level graph features of each node and the dynamics and

dependencies in the time series. Finally, by subsampling and

classifying the complex features, we can obtain a diagnosis of

whether the speaker in the audio has depression or not.
Step 1: Construct a graph (G = (V, E)) where each node (Vi)

represents an MFCC feature vector of a frame.

Step 2: Compute edge weights based on feature similarity

(Euclidean distance).

Step 3: Aggregate features from neighboring nodes: Hl+1 =

s (D−1=2AD−1=2HlWl), where A is the adjacency matrix, D is

the degree matrix, Hl is the feature matrix at layer l,

and Wl is the weight matrix.
tiers in Psychiatry 07
Step 4: LSTM Layer: Capture temporal dependencies: Ht =

LSTM(xt,  ht−1), where xt   is the input at time t and ht is the

hidden state.
Algorithm 4. Pseudocode of GCN-LSTM model.
3.3 Video-audio fusion

Assuming that the final extracted visual feature is FV and the

obtained audio feature is FA, we now discuss how to fuse these two

features. In view of the fact that not all modality features play a

positive role in the severity assessment of depression, we propose a

Video-Audio Fusion Network (VAFN) to fuse the feature

information of the two modalities. The structure of VAFN is

shown in Figure 7. The input of VAFN is the multi-modal feature

FMM = FV , FAf g, and the output feature is the fused FVA. The nature
of video and audio data are different, which leads to different feature

vector dimensions. Therefore, in the actual processing, we first

perform zero-padding on the side with smaller size in FV and FA to

ensure that the resulting dimensions of FVP and FAP are consistent.

Then, FVP and FAP are superimposed in the horizontal and vertical

directions respectively to obtain HVA and VVA. A fully connected

layer is used to reduce the dimension of VVA, and the attention

weight vector VVAF is obtained. Finally, HVA and VVAF are

multiplied to obtain the final multi-modal fusion feature FVA. The

obtained fusion features are max-pooling and classified to obtain

the depression prediction results. The entire fusion process

described above is summarized in Algorithm 5.
Step 1: Zero-pad the smaller feature vector FV or FA to

match dimensions.

Step 2: Concatenate the padded features horizontally

and vertically: HVA=[FVP ;FAP], VVA=[FVP ;FAP].

Step 3: Apply a fully connected layer to VVA to obtain an

attention weight vector VVAF=FC (VVA)

Step 4: Multiply HVA with VVAF to obtain the fused feature

FVA = HVA* VVAF.
Algorithm 5. Pseudocode of VAFN.
4 Experiments

4.1 Experimental settings

The GPU used in this paper is NVIDIA RTX3090. The

development and testing are carried out in the Python3.9

environment, and the integrated development tool is Pycharm.
frontiersin.org
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We use PyTorch v1.12.0 as the deep learning framework and use

CUDA 11.6 in the model training process. The operating system is

Windows10. In order to alleviate the over-fitting problem, we use

the AdamW optimizer for training, and add the Dropout layer to

the network backbone. The dropout rate is set between [0.4, 0.6]. As

for optimization, the learning rate is set to be 10e−4 for modality

feature extraction and 5×10e−5 for modality fusion with linear

schedule strategy. During training, the number of iterations is

consistently set to 5000.

In this study, we used the Extended Distress Analysis Interview

Corpus (E-DAIC) dataset (23, 24) to validate our proposed method.

The E-DAIC dataset is an extended version of the WOZ-DAIC

dataset (23) and consists of semi-structured clinical interviews

designed to identify psychological distress conditions such as

anxiety, depression, and PTSD. In E-DAIC dataset, OpenSMILE

(25) was used to extract the acoustic features of subjects, including

Mel-frequency cepstral coefficients (MFCC) (26), and OpenFace

(27) was used to extract the corresponding visual features. Facial

features, eye fixations, head poses, and motor units are included. To

protect the privacy of participants, the dataset provides these
Frontiers in Psychiatry 08
extracted features directly instead of raw video recordings. The E-

DAIC dataset consists of clinical interview transcripts from 219

participants, along with corresponding assessments of depression

and PTSD severity. To ensure a representative distribution of the

data, the training set contains 163 samples, the validation set

contains 56 samples, and the test set contains 10 samples. Each

participant in the E-DAIC dataset was annotated according to their

Patient Health Questionny-8 (PHQ-8) score (28), with scores

higher than 10 classified as 1 (indicating the presence of

depression) and scores lower than 10 labeled as 0 (indicating the

absence of depression).
4.2 Evaluation metrics

Evaluation measures to evaluate the depression diagnostic

model included F1 score (Equation 7) (29), root-mean-square

error (RMSE, Equation 8) and mean absolute error (MAE,

Equation 9) (30). The F1 score is the harmonic average of

precision and recall (Equation 6) and is used to comprehensively
FIGURE 7

Video-audio fusion network.
FIGURE 6

Audio feature extraction.
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measure the performance of the depression diagnostic model.

RMSE can reveal how the model performs in extreme cases, such

as severely overestimating or underestimating a patient"s

depression, which can have a significant impact on clinical

decision making. MAE gives the average difference between the

model prediction and the actual value.

Precision =
TP

TP + FP
,  Recall =

TP
TP + FN

(6)

F1  =  2� Precision� Recall
Precision + Recall

(7)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
No

N
i=1(yi − ŷ i)

2

r
(8)

MAE =
1
No

N
i=1 yi − ŷ ij j (9)
4.3 Results

4.3.1 Comparison with other methods
In this study, we preliminarily use video data and audio data

separately for depression recognition based on single-modal

features, and the results are shown in Table 1. Specifically, for

video features, we compare the proposed TSNet-DD with references

(6, 10, 12). It shows that TSNet-DD consistently outperforms the

other three models, and TSNet64-DD outperforms TSNet32-DD.

The TSNet64-DD model achieved the highest F1 score of 0.853,

demonstrating its ability to capture both spatial and temporal

features effectively. This improvement over previous models (6,

10, 12) suggests that our temporal-spatial attention mechanism

significantly enhances feature extraction. Although the RMSE value

of TSNet64-DD is slightly higher than that of TSNet32-DD at 5.11,

the small difference in RMSE here is negligible compared to the

advantages of its F1 value andMAE value. For audio data, the GCN-

LSTMmodel achieved an F1 score of 0.827, outperforming previous

models (13) and (14). This indicates that combining GCN and

LSTM can effectively capture the complex patterns in audio features

related to depression. Although the MAE value of GCN-LSTM is
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not the lowest, considering the characteristic that MAE is

insensitive to outliers and its excellent performance on F1, we

believe that GCN-LSTM has a unique advantage in processing

audio features of depression.

Subsequently, we fuse facial video features and audio features to

evaluate the performance of multimodal data in depression

diagnosis. The results are shown in Table 2. We find that the

model based on multi-modal data consistently outperforms the

performance using only single-modal data in terms of F1 value. The

F1 value of our proposed method finally reaches 0.922, which is not

only better than the performance of all single-modal data, but also

the highest in all experiments based on multi-modal data. This may

be due to the diversity of the input data, and it indicates that there

are clear differences in facial visual features and voice features

between patients with depression and healthy participants. It turns

out that the multimodality-based assistive method has its unique

significance in depression diagnosis when the privacy of the

participants is protected as much as possible.

To provide a comprehensive evaluation of our model’s

performance, we also included the Receiver Operating

Characteristic (ROC) curve and the Area Under the Curve (AUC)

values. The ROC curve is a graphical representation that illustrates

the diagnostic ability of a binary classifier system as its

discrimination threshold is varied. The AUC provides an

aggregate measure of performance across all possible classification

thresholds. Our model’s ROC curves for both single-modal and

multi-modal data are shown in Figure 8. The AUC values for

TSNet64-DD, GCN-LSTM, and VAFN(TSNet64+GL) are

summarized in Table 3. The results indicate that our multi-modal

fusion model achieves the highest AUC value, further confirming its

superior performance in distinguishing between depressed and

non-depressed individuals.

In addition, our proposed models strike a balance between

computational complexity and performance. The computational

complexity of TSNet-DD is primarily determined by the number of

convolutional layers and the attention modules. The attention

modules add a small overhead due to the additional operations

for attention weight calculation. Despite the added complexity of

the attention modules, TSNet-DD is designed to be non-redundant,

ensuring efficient processing without unnecessary computational

overhead. This balance between complexity and efficiency allows

TSNet-DD to achieve high performance while maintaining

reasonable computational requirements. GCN-LSTM combines

the strengths of GCN and LSTM to process audio features. GCN

is used to aggregate features from neighboring nodes, while LSTM

captures temporal dependencies. GCN-LSTM is designed to handle
TABLE 1 Results of depression recognition under single-modal features.

feature model F1 RMSE MAE

video RNN-C3D (6) 0.723 8.07 5.78

STA-DRN (10) 0.702 8.94 6.77

RFR (12) 0.710 8.49 6.57

TSNet32-DD 0.800 5.11 5.03

TSNet64-DD 0.853 5.23 4.45

audio GCNN (13) 0.690 9.28 6.65

GLNN (14) 0.788 8.43 5.04

GCN-LSTM 0.827 6.67 6.28
TABLE 2 Results of depression recognition under multi-modal features.

model F1 RMSE MAE

MFM-Att (17) 0.895 7.29 4.03

GCN 0.918 6.24 3.88

VAFN(TSNet32+GL) 0.903 5.77 4.00

VAFN(TSNet64+GL) 0.922 6.06 3.51
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the variability and noise in audio data effectively. While the

combination of GCN and LSTM increases the computational

complexity, the model’s ability to capture complex patterns and

temporal features justifies the additional computational cost. VAFN

fuses the feature information from both video and audio modalities.

It uses zero-padding to handle different feature vector dimensions

and attention mechanisms to assign adaptive weights to the

features. The overall complexity of VAFN depends on the

individual complexities of TSNet-DD and GCN-LSTM, along

with the additional operations for feature fusion. The fusion

process involves concatenation, fully connected layers, and

attention weight calculation, which add to the computational

load. VAFN is designed to leverage the complementary

nature of visual and audio features, resulting in improved

diagnostic performance. The fusion process, while adding some

computational overhead, is optimized to ensure that the model

remains efficient and scalable.

4.3.2 Ablation study
To better understand the contributions of various components

in our proposed model, we conducted an ablation study. This study

evaluates the impact of the Temporal-Spatial Attention Module

(TSAM), the combination of Graph Convolutional Network (GCN)

and Long Short-Term Memory (LSTM) for audio features, and the
Frontiers in Psychiatry 10
Video-Audio Fusion Network (VAFN). We performed experiments

by systematically removing or modifying these components and

observing the resulting changes in performance metrics.

We first assess the effect of the TSAM by comparing the full

TSNet64-DD model with a variant that does not include the TSAM.

The results are shown in Table 4. It demonstrates that the TSAM

significantly improves the performance of the model, highlighting its

importance in capturing temporal and spatial features. Next, we

evaluate the impact of using GCN and LSTM for audio feature

extraction. We compare the full GCN-LSTM model with variants

that use only GCN or only LSTM. The results are shown in Table 5.

The results indicate that the combination of GCN and LSTM

outperforms the individual models, demonstrating the effectiveness

of integrating both graph-based and temporal features for audio data.

Finally, we assess the impact of the VAFN by comparing the full

VAFN(TSNet64+GL) model with variants that use only video

features (TSNet64-DD) or only audio features (GCN-LSTM). The

results are shown in Table 6. The results clearly show that the fusion

of video and audio features significantly enhances the performance,

confirming the complementary nature of these modalities. The

ablation study confirms that each component of our proposed

model contributes to its overall performance. The TSAM enhances

the extraction of temporal and spatial features from video data, the

combination of GCN and LSTM effectively captures complex audio

patterns, and the VAFN successfully integrates multimodal features

to improve diagnostic accuracy. These findings validate the design

choices and highlight the importance of multimodal data fusion in

the automatic diagnosis of depression.
4.3.3 Effects of different subject groupings
We divide the dataset into three categories by sex: male group,

female group, and mixed gender group. For each data set, we
FIGURE 8

Comparison of different ROCs.
TABLE 3 Results of different model’s AUC values.

model AUC FLOPs

TSNet64-DD 0.912 453,787,648

GCN-LSTM 0.880 4,915,200

VAFN(TSNet64+GL) 0.950 463,424,512
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conducted experiments based on single mode and multi-mode

respectively. In the video mode experiment, we adopt TSNet64,

which has better performance. The experimental results are shown

in Figure 9, Figure 10 and Figure 11. We find that for each modal,

the F1 values of the mixed gender group are consistently lower than

those assessed on either the male or female group alone. In addition,

the female group almost always outperformed the male group,

which may be due to a category imbalance between the samples. It

also suggests that men and women differ in the information

conveyed in facial behavior and speech during the diagnosis of

depression. In addition, for each subject group, the experimental

results based on the multimodal feature set are generally better than

those based on the single-modal feature set, which is mainly due to

the diversity of training data which brings more abundant features.
4.4 Interpretability analysis

Deep learning techniques are usually ‘black-box’, but in clinical

practice we need more transparent models to increase their

credibility and interpretability. Therefore, we perform an

interpretability analysis of our model. We show the attribution

scores for audio, gaze, action unit (AU), and pose, where higher

values indicate strong attribution to positive predictions. The E-

DAIC dataset has more than 19,000 frames of facial images for each
TABLE 5 Impact of GCN and LSTM on audio feature extraction.

Model F1 RMSE MAE

GCN-LSTM 0.827 6.67 6.28

GCN only 0.742 7.89 7.12

LSTM only 0.756 7.65 6.87
TABLE 6 Impact of Video-Audio Fusion Network (VAFN) on multimodal
feature fusion.

Model F1 RMSE MAE

VAFN(TSNet64+GL) 0.922 6.06 3.51

TSNet64-DD 0.853 5.23 4.45

GCN-LSTM 0.827 6.67 6.28
TABLE 4 Impact of Temporal-Spatial Attention Module (TSAM) on video
feature extraction.

Model F1 RMSE MAE

TSNet64-DD 0.853 5.23 4.45

TSNet64-DD w/o TSAM 0.789 6.12 5.37
FIGURE 9

Comparison of different subject groups on video modal features.
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sample, and we aggregate every 100 frames into a whole to explain

depression detection. As shown in Figure 12, AU contributes to the

model diagnostic results to the highest degree, followed by pose and

audio, and the smallest contribution is gaze. We further visualize

the degree of influence of each AU feature on the diagnostic results
Frontiers in Psychiatry 12
of different frames through the contribution matrix. As can be seen

in Figure 13, AU04, AU05, AU14, AU15, AU17, AU23, AU26, and

AU45 have a higher degree of influence, indicating a stronger

correlation with depression. These units thus play a more

significant role in the diagnostic process for depression.
FIGURE 10

Comparison of different subject groups on audio modal features.
FIGURE 11

Comparison of different subject groups on multimodal features.
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FIGURE 12

Contribution of different indicators over frames.
FIGURE 13

Contribution matrix of AU and frames.
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4.5 Discussions

This study introduces a novel multi-modal deep convolutional

network that leverages multi-source data fusion to provide a more

effective solution for the automatic diagnosis of depression. We utilize

a feature fusion module to effectively integrate temporal and spatial

features, thereby extracting a more comprehensive representation that

is conducive to analyzing the psychological state of patients. Our

model’s complexity is balanced by its non-redundant design, ensuring

efficient processing without unnecessary computational overhead.

From our comprehensive test results, several noteworthy insights

can be gathered. The proposed TSNet-DD model for video data

demonstrates significant advantages in capturing both spatial and

temporal features. For audio data, the GCN-LSTM model effectively

captures complex patterns related to depression. The fusion of video

and audio features further improves diagnostic performance,

demonstrating the complementary nature of visual and audio features.

However, it is important to acknowledge some limitations inherent

in our study. First, due to the lack of publicly available high-quality

datasets in this field, our research focuses specifically on E-DAIC

datasets. Future research should aim to extend this approach to

include different datasets for various psychiatric disorder diagnoses.

Additionally, it is important to categorize different levels of depression,

which we plan to address in future studies. Furthermore, inspired by

ACFun (31) and LMAC-ZS (32), future research could explore the

integration of additional data types, such as textual information, into the

model to enhance classification performance. This integration could

provide the model with a more comprehensive contextual

understanding, thereby improving its ability to recognize emotional

states. Considering the inherent limitations of deep learning—black-box

—we can draw from the methodologies proposed in LMAC-ZS to

enhance our model’s interpretability. This kind of interpretability

mechanism not only contributes to transparency in clinical

applications but also provides significant directions for future research.

Overall, our results underscore the importance of multi-modal

data in improving the accuracy and reliability of depression diagnosis.

Future work should focus on expanding the dataset to include more

diverse populations and exploring additional modalities such as text

or physiological signals to further enhance diagnostic capabilities.
5 Conclusion

On the premise of protecting the privacy of patients, this paper

discusses the method of realizing the high precision diagnosis of

depression. We design TSNet-DD architecture for video data to

comprehensively consider the temporal and spatial features of video

frames through the spatial-temporal attention mechanismmodule. For

audio data, we use a combination of GCN and LSTM to capture high-

level graph features and dynamic changes in timing. Finally, the multi-

modal feature fusion is realized through the video-audio fusion

network. The experimental results show that our method has certain

potential in the automatic diagnosis of depression. In the future,

researchers can further explore the sensitive features of automatic

recognition of depression through larger data sets and more diverse

modalities, so as to improve the recognition accuracy and providemore
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powerful diagnostic and treatment support for clinicians. In addition, it

is crucial to classify different levels of depression, which we plan to

address in future studies.
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27. Baltrusǎitis T, Robinson P, Morency L-P. (2016). Openface: an open source facial
behavior analysis toolkit. In: 2016 IEEE winter conference on applications of computer
vision (WACV). IEEE, pp. 1–1.

28. Kroenke K, Strine TW, Spitzer RL, Williams JB, Berry JT, Mokdad AH. The
PHQ-8 as a measure of current depression in the general population. J Affect Disord.
(2009) 114:163–73. doi: 10.1016/j.jad.2008.06.026

29. Powers DM. Evaluation: from precision, recall and F-measure to ROC,
informedness, markedness and correlation. arXiv preprint arXiv:2010.16061. (2020).

30. Chai T, Draxler RR. Root mean square error (RMSE) or mean absolute error
(MAE)?–Arguments against avoiding RMSE in the literature. Geoscientific Model Dev.
(2014) 7:1247–50. doi: 10.5194/gmd-7-1247-2014

31. Ji J, Wei K, Zhang Z, Deng C. ACFun: abstract-concrete fusion facial stylization.
In: The Thirty-eighth Annual Conference on Neural Information Processing Systems, .

32. Paissan F, Libera LD, Ravanelli M, Subakan C. Listenable maps for zero-shot
audio classifiers. arXiv preprint arXiv:10.48550/arXiv.2405.17615. (2024).
frontiersin.org

https://doi.org/10.1186/s12916-015-0325-4
https://doi.org/10.1186/s12916-015-0325-4
https://www.who.int/news-room/fact-sheets/detail/depression/
https://doi.org/10.1016/j.jagp.2017.04.004
https://doi.org/10.1111/cns.2018.24.issue-11
https://doi.org/10.1109/T-AFFC.5165369
https://doi.org/10.1109/T-AFFC.5165369
https://doi.org/10.11834/jig.210397
https://doi.org/10.1016/j.eswa.2023.121410
https://doi.org/10.1109/ACCESS.2024.3377235
https://doi.org/10.1109/TAFFC.2023.3238641
https://doi.org/10.3390/diagnostics13040727
https://doi.org/10.3390/diagnostics13040727
https://doi.org/10.1186/s13636-023-00303-9
https://doi.org/10.1109/ACCESS.2023.3325037
https://doi.org/10.1109/TAFFC.2022.3179478
https://doi.org/10.1016/j.bspc.2022.104561
https://doi.org/10.1016/j.jvoice.2021.06.018
https://doi.org/10.1016/j.jad.2008.06.026
https://doi.org/10.5194/gmd-7-1247-2014
https://doi.org/10.3389/fpsyt.2025.1508772
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org

	Diagnosis of depression based on facial multimodal data
	1 Introduction
	2 Related work
	3 Methods
	3.1 Visual feature extraction
	3.1.1 Temporal attention module
	3.1.2 Spatial attention module

	3.2 Audio feature extraction
	3.3 Video-audio fusion

	4 Experiments
	4.1 Experimental settings
	4.2 Evaluation metrics
	4.3 Results
	4.3.1 Comparison with other methods
	4.3.2 Ablation study
	4.3.3 Effects of different subject groupings

	4.4 Interpretability analysis
	4.5 Discussions

	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


