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The recurrence and treatment resistance of depression remain significant

issues, primarily due to an inadequate understanding of its pathogenesis.

Recent scientific evidence indicates that gut microbiota influence estradiol

metabolism and are associated with the development of depression in

nonpremenopausal women. Integrating existing studies on the regulation of

estradiol metabolism by microorganisms in nature and the relevance of its

degradation products to depression, recent scientific explorations have further

elucidated the key mechanisms by which gut microbiota catabolize estradiol

through specific metabolic pathways. These emerging scientific findings

suggest that the unique metabolic effects of gut microbiota on estradiol may

be one of the central drivers in the onset and course of depression in non-

menopausal women.
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GRAPHICAL ABSTRACT
1 Introduction

Depression is a prevalent mental illness with potentially

devastating consequences for individuals and society,

characterized by prolonged depressed moods, negative thoughts,

and fatigue (1). The World Health Organization (WHO) predicts

that depression will become the most socioeconomically

burdensome disease globally by 2030 (2). Depression is

acknowledged to result from a combination of innate genetic

predispositions and acquired environmental influences (3). In

depressed patients, genetic factors and adverse childhood

experiences are recognized as major contributors to depressed

moods (4). Advancements in basic research have led to a

preliminary understanding of the pathological mechanisms of

depression, characterized by abnormalities in four main areas:

brain function, the hypothalamic-pituitary-adrenal (HPA) axis,

the immune system, and the gut-brain axis. Abnormalities in

brain function primarily include neurotransmitter deficiencies (5),

imbalances in Brain-Derived Neurotrophic Factor (BDNF)

administration (6, 7), impaired neuroplasticity, and disruptions in

neuronal circuits (8). Dysfunctions of the HPA axis are primarily

characterized by dysregulation of the negative feedback mechanism

(9, 10). Alterations in the immune system primarily involve

increased expression of inflammatory molecules (11–13), while

brain-gut dysfunction primarily relates to gastrointestinal

disorders and abnormalities in the intestinal microbiota (14).

Despite receiving appropriate treatment for depression, many

patients remain vulnerable to relapse. Numerous studies (15–17)

have demonstrated that, following initial successful treatment, 50%

to 85% of individuals who have recovered from depression

experience at least one recurrence of their condition. Moreover,

additional research (18) indicates that patients may experience an
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average of approximately four relapses, and the risk of treatment

resistance may increase with each recurrence of depression. This

phenomenon could be attributed to the unclear understanding of

the pathogenesis. There is a significant disparity in the prevalence of

depression between the sexes, supported by statistical evidence

indicating that women are approximately twice as likely as men

to develop depression during their lifetime (19, 20). Research (21)

has demonstrated that women experiencing depression during the

premenopausal stage exhibit significantly lower levels of estradiol

(E2) hormone compared to healthy women of the same age in

control groups. Academic pioneers theorized over a century ago

about a potential link between E2 and depression (22). The theory

posits that maintaining appropriate levels of E2 in the blood is

crucial for ensuring positive emotion regulation and mental health.

Recent studies have reinforced the link between E2 and individual

mood, particularly depression (23). E2 levels in women naturally

decline during specific physiological transitions, such as postpartum

recovery (24) and menopause (25), rendering them more

susceptible to depressive symptoms during these periods. Around

3%-4% of women undergo declines in E2 levels unrelated to

menopause, lactation, or pregnancy (26, 27), with primary

ovarian insufficiency being the primary cause (28). Decreased E2

levels may result from various endocrine disorders, including

congenital adrenal hyperplasia, hyperprolactinemia, and

polycystic ovary syndrome. However, the precise mechanism and

underlying cause of estrogen reduction in these conditions remain

incompletely understood. Decreased E2 levels are often

accompanied by abnormalities in the compositional abundance of

intestinal microbiota (29). Depressed patients exhibit notable

alterations in the composition of the intestinal microbiota,

characterized by a relative increase in bacteria belonging to the

phylum Aspergillus and Actinobacteria (30). Certain bacterial
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species within both phyla have been observed to degrade steroids in

natural environments (31), implying their potential indirect

involvement in the onset and progression of depression through

interference with metabolic pathways of steroid radicals like E2 and

the production of related metabolites.

Gut Microbiota (GM) encompasses the vast array of

microorganisms inhabiting the human digestive tract,

predominantly the colon. Comprising bacteria, fungi, viruses, and

various other types, these microorganisms are abundant and

diverse, collectively weighing between 1-2 kg. Widely

acknowledged as a vital “organ” of the human body, GM plays an

indispensable role in maintaining overall human health. The GM

and the human body have co-evolved into a complex system of

reciprocal symbiosis, where GM thrives in a mutually beneficial

balance while contributing to the health of the human body (32–

34). However, disruptions to this balance can lead to significant

alterations in GM composition and abundance, resulting in

microbial ecological imbalance. This disrupted state may be

closely linked to an elevated risk of various health problems (35–

38). Our recent studies have unveiled that gut microbes regulate

estradiol activity, impacting serum E2 levels via 3b-hydroxysteroid
dehydrogenase (3b-HSD) expression (39), closely linked to

depression development. Notably, estradiol-degrading bacteria are

present in nature, displaying intricate metabolic pathways for E2.

These microorganisms synthesize various enzymes, converting E2

into diverse metabolites, potentially influencing depression onset

and progression. These diverse metabolites may potentially

influence the onset and development of depression. Therefore, a

multidimensional and integrative analytical approach is necessary

to investigate how the gut microbiota influences depression,

particularly through the estradiol metabolic pathway. This paper

examines four aspects: molecular mechanisms of E2 in depression,

the role of microorganisms in E2 regulation, impact of estradiol

degradation products in nature on depression, the E2-gut

microbiota relationship, and the gut microbiota’s impact on

depression through E2 metabolism.
2 The molecular mechanisms of
estradiol in depression

E2 plays a pivotal endocrine regulatory role in premenopausal

women, primarily synthesized from cholesterol in the ovaries,

corpus luteum, and placenta. Ovarian sheath cells produce

androgens but lack the capacity for estrogen production.

Conversely, granulosa cells, housing aromatase, convert

androgens from sphingocytes into E2. Sphingocytes and

granulosa cells collaborate in various ways to synthesize and

regulate ovarian estrogens. E2 is a vital steroid hormone widely

recognized as the most biologically active estrogen. E2 is crucial for

maintaining overall physiological function in women, with a broad

spectrum of roles. It regulates the menstrual cycle’s regularity,

supports normal development and function of reproductive

organs, influences breast tissue development, and is vital for

maintaining bone strength and cardiovascular health. Moreover,

E2 acts as both a gonadal and neuroactive steroid hormone (40, 41).
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One of its primary functions is to influence mood regulation,

cognitive function, and various other brain-related physiological

processes by modulating the release of key neurotransmitters in the

central nervous system, including 5-hydroxytryptamine (5-HT), g-
aminobutyric acid (GABA), norepinephrine (NE), and dopamine

(DA) (42), as well as at other molecular levels (43, 44). Table 1

provides a comprehensive summary of the molecular mechanisms

underlying the impact of changes in estradiol concentration on the

pathogenesis of depression. Figure 1 illustrates the potential

mechanisms of estradiol involvement in depression.
2.1 The impact of estradiol
on neurotransmitters

2.1.1 5-Hydroxytryptamine
5-HT, commonly known as serotonin, plays diverse roles in the

central and peripheral nervous systems. It was first isolated and

identified by Maurice Rapport and Irvine Page in 1948 (45). In the

central nervous system, 5-HT interacts extensively with the 5-

hydroxytryptaminergic nervous system, which spans the

forebrain, brainstem, and cerebellum. Neural projections from the

anastomosing lateral nucleus regulate fundamental physiological

functions, including temperature regulation, appetite control, sleep-

wake cycles, vomiting, and sexual behavior. Meanwhile, projections

to the caudate nucleus are linked to pain perception and motor tone

regulation (46). Additionally, 5-HT is essential for emotional

stability (47), and disruptions in 5-HT function can lead to

depression, impulsive behaviors, and, in some cases, a heightened

risk of suicide (48).

Pathophysiological studies have further explored serotonin’s

role in emotional regulation, with reduced transmission efficiency

identified as a key hypothesis for depression mechanisms (49).

Research supports this, showing that estrogen (E2) regulates gene

expression by binding to the endoplasmic reticulum, a process

validated in cell line models (50). This regulation is particularly

evident in brain regions such as the nucleus accumbens, where 5-

HT neurons are abundant (51). Furthermore, studies reveal that E2

enhances postsynaptic 5-HT transmission by downregulating 5-

HT1A autoreceptors and upregulating 5-HT2A receptors (52).

These findings form the foundation for understanding how E2

modulates 5-HT neurotransmission.

Inmammals, 5-HT is widely distributed, with approximately 90%

synthesized and concentrated in intestinal tissues (53, 54). Animal

models have been instrumental in examining the relationship

between serotonin, depression, and emotional regulation. For

example, estrogen deficiency induced by ovariectomy in monkeys

led to decreased 5-HT efficacy and reduced expression of 5-HT-

related genes compared to controls (55). Moreover, research shows

that E2 selectively increases serotonin receptor density in brain

regions containing estrogen receptors, including the hypothalamus,

preoptic area, and amygdala (56). These findings suggest that E2-

mediated regulation of 5-HT transmission may play a crucial role in

protecting against depression.

Clinical studies further highlight the association between 5-HT

concentration and psychiatric disorders such as depression, mania,
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and anxiety. Kandel et al. demonstrated that reduced 5-HT

concentration in the central nervous system significantly correlates

with the onset of these conditions (57). Specifically, patients with

depression and suicidal tendencies exhibit lower 5-HT1A mRNA

expression in the hippocampus compared to non-depressed

individuals (58). These observations underscore serotonin’s vital

role in emotional and behavioral regulation and provide a basis for

its therapeutic application in depression treatment.

Early antidepressant therapies, including Monoamine Oxidase

Inhibitors (MAOIs) and Tricyclic Antidepressants (TCAs), improved

neurotransmitter availability in synaptic gaps by targeting 5-HT,

dopamine (via DAT), and norepinephrine (via NET). Subsequent

research has refined these approaches, with serotonin-specific drugs

demonstrating greater efficacy. However, scholar Sameer Jauhar (59)

has argued that while these drugs modulate serotonin effectively, they

often fail to address underlying etiological factors of depression.

Research across various experimental platforms emphasizes

that serotonin’s role extends beyond emotional regulation, as it is
Frontiers in Psychiatry 04
influenced by numerous factors. Estrogen’s modulation of gene

expression and its regulation of 5-HT receptors, for example, likely

contribute to its protective effects against depression. Collectively,

these studies indicate that serotonin system dysfunction is linked to

multiple psychiatric disorders and provide an experimental basis for

developing future therapeutic strategies.

2.1.2 g-Aminobutyric acid
GABA (g-aminobutyric acid) is the primary inhibitory

neurotransmitter widely distributed throughout the mammalian

central nervous system (CNS) (60). Approximately 30% of central

nervous fibers utilize GABA as a neurotransmitter. Although

GABAergic neurons constitute only a small proportion of the

total neuronal population, their inhibitory functions and balance

with excitatory transmission are critical for maintaining normal

brain activity. GABA receptors are highly distributed throughout

the nervous system, particularly on postsynaptic membranes, as

well as in the cerebellum and hippocampus. GABA primarily exerts
TABLE 1 Mechanisms of estradiol concentration changes and metabolites in the pathogenesis of depression.

Mechanism Substance Impact Mechanisms or Research Findings on Depression References

Neurotransmitter
Regulation

5-HT - A decrease in E2 reduces 5-HT transmission efficiency and the expression of related genes,
increasing the risk of depression.
- An increase in E2 enhances postsynaptic 5-HT transmission by regulating 5-HT1A and 5-
HT2A receptors, thereby reducing depression risk.

(46, 52, 55, 58)

GABA - E2 fluctuations significantly affect the expression and function of GABA receptors, disrupting
emotional regulation.

(68, 69)

NE - A decrease in E2 reduces NE synthesis and increases its metabolic degradation, leading to
emotional instability.
- An increase in E2 significantly enhances NE metabolic turnover, improving cognitive and
emotional regulation.

(71–73, 75)

DA - A decrease in E2 impairs dopamine synthesis and receptor activity, reducing emotional
regulation capabilities.
- E2 therapy restores D1 and D2 receptor density, stabilizing mood and cognitive function.

(77, 78, 80)

Neuroplasticity
and Nutrition

Kisspeptin Neurons - A decrease in E2 suppresses Kiss1 gene expression, increasing the risk of emotional instability.
- An increase in E2 significantly enhances Kiss1 expression, reducing the risk of depression.

(88, 89, 91)

BDNF - A decrease in E2 reduces BDNF transcription and translation, significantly increasing the risk
of perinatal and postpartum depression.
- BDNF levels positively correlate with E2, peaking during ovulation and potentially restored
through hormone replacement therapy (HRT).

(96, 98–102)

Inflammation
and Neuroprotection

Neuroinflammation - E2 suppresses local inflammation, promotes glial cell production, and regulates the release of
neurotrophic factors, improving depressive-like behaviors.
- E2 synergizes with insulin-like growth factor 1 (IGF-1) to activate anti-inflammatory and
neuroprotective pathways, enhancing its antidepressant effects.

(107, 108, 113–115)

Estradiol Metabolites E1 - E1, a key component of hormone replacement therapy (HRT), alleviates perimenopausal
symptoms but exhibits weaker effects on neuronal survival.
- The highly active form of E2 shows greater protective effects against depression compared
to E1.

(166, 167, 170)

DHT - DHT improves cognitive and motor functions in neuroinflammatory models, although its
levels may correlate with the severity of depressive symptoms in certain individuals.

(172, 173)

4-OH-E1 - Although its estrogenic activity is relatively weak, 4-OH-E1 exhibits significant protective
effects against oxidative stress-induced neurotoxicity, even surpassing highly active E2 in
some cases.

(174)

4-OH-E2 - Increases NE levels, demonstrating significant antidepressant effects. (178)
5-HT, 5-Hydroxytryptamine; GABA, g-Aminobutyric acid; NE, Norepinephrine; DA, Dopamine; BDNF, Brain-Derived Neurotrophic Factor; E1, Estrone; DHT, Dihydrotestosterone; 4-OH-E1,
4-hydroxyestrone; 4-OH-E2, 4-hydroxyestradiol.
frontiersin.org

https://doi.org/10.3389/fpsyt.2025.1505991
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Zhang et al. 10.3389/fpsyt.2025.1505991
its physiological functions through three receptor types: the ion

channel receptors GABAA and GABAC, and the metabotropic

receptor GABAB (61).

In recent years, research has highlighted the critical role of

GABAergic system dysfunction in the neurobiological mechanisms

of depression (62–64). Fundamental studies have demonstrated that

as a metabotropic receptor, the GABAB receptor plays a pivotal role

in regulating postsynaptic signal transduction, and its dysfunction is

regarded as an important target in the pathological processes of

depression (61, 65). Additionally, Kelly et al.’s cell line studies

suggest that estrogen (E2) may exert antagonistic effects on GABAA

receptors, indicating that E2 might regulate emotional states and

brain functions associated with depression through GABA

signaling (66).

Animal model studies have provided significant experimental

evidence of E2’s regulatory effects on the GABA system (67). E2

inhibits presynaptic GABA release via a rapid nongenomic

mechanism, a phenomenon prominently observed in female mice

but not in male mice. This sex-specific difference may be closely

associated with variations in the production of inositol 1,4,5-

triphosphate (IP3) and the activation state of its corresponding

receptor (IP3R) (68). The regulatory effects of E2 significantly

influence GABAergic neurotransmission in key brain regions,

such as the prefrontal cortex and hippocampus, offering potential

explanations for the molecular mechanisms underlying the sex

differences in depression.

Clinical studies further indicate that during the critical periods

of steroid hormone-mediated brain sexual differentiation, the

GABA system is highly sensitive to E2 (69). For instance, during
Frontiers in Psychiatry 05
puberty and perimenopause, fluctuations in E2 levels significantly

impact the expression and function of GABA receptors, particularly

in brain regions associated with emotional regulation. These

findings suggest that E2 may play a vital role in the pathological

processes of depression by modulating GABAergic transmission

and synaptic plasticity.

2.1.3 Norepinephrine
Norepinephrine (NE), a critical neurotransmitter and hormone,

plays a vital role in the central nervous system through various

molecular mechanisms. Experimental studies demonstrate that NE

functions primarily via the a- and b-adrenergic receptor families,

which regulate essential neural activities, including alertness,

arousal, attention, and motivation-driven behaviors (70). Research

also indicates that estrogen modulates NE activity by influencing

the distribution and expression of these receptors (71).

Additionally, 17b-estradiol (E2) indirectly increases NE levels by

inhibiting monoamine oxidase expression, thereby reducing NE’s

metabolic degradation (72). E2 further enhances tyrosine

hydroxylase activity, a key enzyme in the catecholamine synthesis

pathway, promoting NE synthesis (73). These findings provide

critical insights into NE’s regulatory mechanisms at both the

molecular and receptor levels.

Animal studies offer additional evidence of how estrogen

regulates NE neurotransmission and its impact on emotional and

cognitive functions. In ovariectomized mouse models, estrogen

receptors are expressed in norepinephrine neurons, which project

to multiple brain regions, including the hypothalamus, a critical

area for emotional regulation (72, 74). E2 treatment significantly
FIGURE 1

Estradiol’s neurotransmitter and other molecular mechanisms in depression. 5-HT, 5-Hydroxytryptamine; GABA, g-Aminobutyric acid; NE,
Norepinephrine; DA, Dopamine; BDNF, Brain-Derived Neurotrophic Factor.
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increases the metabolic turnover rate of NE in the hypothalamus

and cerebral cortex (75). These results suggest that estrogen

influences NE levels through multiple mechanisms, profoundly

affecting emotional regulation and cognitive processes.

Clinical studies further support the interplay between NE and

estrogen in emotional regulation. Research shows that fluctuations

in estrogen levels are closely associated with the onset and

progression of depressive symptoms (72, 74). During

perimenopausal and postpartum periods, declining estrogen levels

may reduce NE utilization efficiency, contributing to emotional

instability. Clinical evidence also reveals that E2 enhances NE

synthesis and utilization while reducing its metabolic degradation,

alleviating depressive symptoms in patients. Additionally, estrogen

modulates adrenergic receptor function, significantly influencing

reward mechanisms and cognitive functions, including attention

(71). These findings provide a foundation for developing targeted

interventions to regulate NE in depressive disorders.

2.1.4 Dopamine
Dopamine (DA), a key neurotransmitter in the central nervous

system (CNS), belongs to the catecholamine family and is closely

linked to the pathophysiology of depression (76). Synthesized and

released by dopaminergic neurons, DA acts through five major

receptor subtypes: D1, D2, D3, D4, and D5. Among these, D1, D2,

and D3 receptors are regulated by E2 (17b-estradiol). These receptors
are unevenly distributed across brain regions and play critical roles in

motor control, emotional processing, cognitive function, motivation,

reward mechanisms, and endocrine regulation.

Basic research has demonstrated that E2 regulates the DA

system by upregulating the mRNA expression of the long isoform

of the D2 receptor, thereby enhancing DA neurotransmission. This

effect is primarily observed in the midbrain, where DA neurons are

highly concentrated, indicating that E2 directly modulates DA

synthesis and utilization at the molecular level (77).

Animal studies further emphasize E2’s extensive regulatory

effects on the DA system and its role in physiological processes.

In ovariectomized animal models, the density of D1 and D2

receptors in the striatum is significantly reduced, while D3

receptor density remains unchanged (77–79). E2 treatment

restores D1 and D2 receptor density, indicating its ability to

modulate postsynaptic receptor function and normalize DA

system activity (78). Furthermore, E2’s effects are not confined to

specific regions. One study shows that E2 affects not only the

hypothalamus but also extra-hypothalamic brain areas involved in

motor function and behavior regulation, highlighting its broad

regulatory role in the DA system (78).

Clinical studies show that DA activity declines with age,

potentially contributing to the onset of depression (80).

Additionally, multiple studies report that DA D1 and D2 receptor

activity in the striatum fluctuates cyclically during the menstrual

cycle (81–83). These fluctuations closely correspond to changes in

estrogen levels, further supporting E2’s regulatory influence on DA

receptors. Furthermore, E2 enhances DA utilization and

significantly affects emotional regulation. These findings provide

critical evidence for the potential application of E2 in treating mood

disorders such as depression.
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2.2 Additional molecular mechanisms of
estradiol in depression

2.2.1 Kisspeptin neurons
Kisspeptin (Kiss1) neurons play a central role in the sex steroid

feedback mechanism within the human hypothalamus. Current

research on Kisspeptin neurons predominantly focuses on animal

models and clinical studies, with limited investigation at the basic

molecular level. Studies of Kisspeptin receptor signaling pathways

suggest that estrogen regulates the activity of Kisspeptin neurons

through molecular mechanisms, shedding light on their integration

within neural networks.

Animal studies have demonstrated that Kisspeptin and its

receptors are essential for regulating sex hormones and related

behaviors. Kiss1 neurons are primarily located in the lateral

septum, the bed nucleus of the stria terminalis (BNST), and the

medial amygdala (84). These neurons stimulate the release of

gonadotropins by responding to sex steroid signals, increasing the

pulsatile activity of gonadotropin-releasing hormone (GnRH) and

luteinizing hormone (LH), a mechanism observed in both sexes (85,

86). Furthermore, Kisspeptin signaling is associated with behaviors

such as anxiety and depression (87). Estradiol (E2) significantly

increases Kiss1 expression in the preoptic area (POA) of both male

and female monkeys (88, 89). In ovariectomized young monkeys,

researchers observed hypertrophy in basal ganglia neurons of the

hypothalamus, a phenomenon also identified in postmenopausal

women (90). Conversely, E2 deficiency markedly suppresses Kiss1

expression, underscoring the detrimental effects of reduced estrogen

levels on Kisspeptin neurons (91).

Clinical studies further emphasize the critical role of Kisspeptin

neurons in the sex steroid feedback mechanism. A specific

population of Kiss1 neurons in the lateral hypothalamus

decreases after menopause, suggesting that estrogen positively

regulates neuronal activity and homeostasis in this brain region

(92). Additionally, basal nucleus neurons in the hypothalamus of

postmenopausal women exhibit enlargement alongside a significant

increase in Kisspeptin gene expression (85, 93). These findings

highlight the regulatory influence of estrogen on Kiss1 neurons,

their role in modulating GnRH secretion, maintaining reproductive

function, and promoting emotional stability.

In conclusion, Kiss1 neurons are key regulators of GnRH

secretion and demonstrate significant sensitivity to fluctuations in

estrogen levels, as shown in animal and clinical studies. These

findings underscore their central role in the sex steroid feedback

mechanism. However, further studies using cellular models and

primary culture systems are necessary to elucidate the molecular

regulatory mechanisms of Kisspeptin neurons, advancing our

understanding of their roles in neural and hormonal regulation.

2.2.2 Brain-derived neurotrophic factor
BDNF is a protein widely expressed in the brain and classified within

the neurotrophin family. It is secreted by various cell types in the central

nervous system (CNS), including neurons, astrocytes, andmicroglia (94).

BDNF plays a critical role in physiological processes such as cognition,

memory, and emotional regulation (94). Additionally, it is essential for

neuronal growth, differentiation, survival, and synaptic plasticity.
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Research using cell lines and primary cultures has elucidated the

molecular mechanisms of BDNF production. For instance, in vitro

studies reveal that activation of the MAPK signaling pathway

enhances BDNF gene transcription via CREB phosphorylation,

further supporting the regulatory influence of estrogen on BDNF

expression (95). These findings provide direct evidence of the

molecular and signaling pathways involved in BDNF regulation.

Animal model studies have shown that changes in BDNF levels

are linked to specific physiological and pathological states. For

example, research on ovariectomized mice demonstrates a

significant reduction in BDNF transcription and translation in the

brain, suggesting that BDNF is regulated by sex hormones (96).

Moreover, the BDNF gene contains a homologous sequence of

estrogen response elements (ERE), which mediates estrogen’s effects

on BDNF gene expression (97).

Clinical studies further confirm the connection between BDNF

levels and depression. Evidence shows that reduced BDNF levels

significantly increase the risk of depression during pregnancy and

the postpartum period (98–100). In non-pregnant women, serum

BDNF levels correlate positively with estradiol (E2) levels, with both

peaking during ovulation (101). Additionally, postmenopausal

women experience decreased BDNF levels, which can be restored

through hormone replacement therapy (102).

In conclusion, research across multiple models—including

animal studies, clinical investigations, cell line experiments, and

primary cultures—consistently underscores the vital role of BDNF

in cognitive regulation, depression, and hormone-mediated

modulation. These findings, based on multi-level experimental

approaches, offer valuable insights into the complex functions and

regulatory mechanisms of BDNF in the nervous system.

2.2.3 Neuroinflammation
Acute neuroinflammation initially functions as a temporary

physiological mechanism to defend and repair neural tissue

damage. However, in chronic neurodegenerative diseases and

aging, neuroinflammation transitions into a persistent pathological

state. This prolonged inflammatory response not only fails to protect

neural tissue but also exacerbates neuronal damage and disrupts the

overall neural structure (103–105).

Animal studies provide robust evidence linking neuroinflammation

to neurodegenerative diseases and depressive-like behaviors. For

example, experiments in animal models have demonstrated that

central nervous system (CNS) inflammation can induce depressive-

like behaviors (106). Additionally, chronic neuroinflammation has been

shown to impair neuronal survival and function, highlighting its central

role in these pathological conditions.

Basic research has clarified the mechanisms through which

estradiol (E2) modulates neuroinflammation and apoptosis. Studies

using primary cultures of astrocytes and microglia reveal that E2

suppresses local inflammation, promotes gliogenesis, and regulates

the release of neurotrophic factors to improve the neural

environment (107, 108). Moreover, cell-based studies indicate

that E2 enhances the expression of molecules critical for neuronal

survival via estrogen receptor subtypes, including ERa, ERb, and G-
protein-coupled receptors (GPCRs), while concurrently
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downregulating pro-apoptotic and pro-inflammatory molecules

(109–111).

Clinical research further supports the neuroprotective and

antidepressant properties of E2. Evidence suggests that E2

preserves neurological health by mitigating inflammation and

inhibiting apoptosis (112). Furthermore, clinical studies

demonstrate that E2 synergizes with insulin-like growth factor 1

(IGF-1) to activate neuroprotective and anti-inflammatory

signaling pathways, thereby amplifying its neuroprotective and

antidepressant effects (113–115).

In conclusion, E2 may significantly contribute to depression in

premenopausal women through various known pathways and

potentially unknown mechanisms. Thus, appropriate monitoring

and regulation of E2 levels are crucial when addressing and

managing the mental health of non-menopausal women.
3 Microbial degradation of estradiol in
natural environments

3.1 Microbial degradation of estradiol in
natural environments

Researchers have identified and characterized numerous microbial

strains capable of degrading E2 in various natural environments,

including activated sludge (116), compost (117), soil sediments

(118), and sandy groundwater layers (119). The following strains

and fungi are known for their ability to degrade E2: Denitratisoma

sp. strain DHT3, Denitratisoma oestradiolicum AcBE2-1T,

Microbacterium strain KC8, Steroidobacter denitrificans FST,

Aminobacter strains KC6 and KC7, Ralstonia pickettii, Sphingomonas

sp. ED8, Novosphingobium sp. ARI-1, Rhodococcus spp. strain KC4,

and White rot fungi Trametes versicolor. Additionally, microbial

degradation products of E2 include, but are not limited to, estrone

(E1), dihydrotestosterone (DHT), 4-hydroxyestrone(4-OH-E1), 4-

hydroxyestradiol(4-OH-E2), and others.

The biological effects of E2 rely on the integrity of its molecular

structure. Any chemical transformations or metabolic changes

undergone by E2 typically result in alterations to its biological

activity. Since the specific mechanism of E2 degradation by gut

microorganisms is not yet fully understood, information on

naturally occurring microorganisms capable of degrading E2 will

be gathered from the published literature. This includes details on

the reaction steps involved, the metabolites produced, and the key

enzymes catalyzing the process. These enzymes are classified as

dehydrogenases (e.g., cobalamin-dependent methyltransferase,

17b-hydroxysteroid dehydrogenase), monooxygenases (e.g.,

estrone 4-hydroxylase, nonspecific monooxygenase, ammonia

monooxygenase), dioxygenases (e.g., 4-hydroxyestrone 4,5-

dioxygenase), and other oxidases (e.g., laccase, cytochrome

oxidase). Such data will provide an important theoretical basis

and guide research efforts toward understanding how gut

microorganisms degrade E2. In Supplementary Table 1, we will

systematically list several strains capable of degrading E2, along

with their associated metabolites and enzymes. To delve deeper into
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the degradation mechanisms of these microorganisms, we will

classify them into three categories: aerobic pathways, anaerobic

pathways, and unknown pathways, based on documented

degradation pathways in the literature. This classification will

provide a comprehensive analysis and discussion of the

microorganisms. Refer to Figure 2 for visual representation.

3.1.1 Aerobic pathway
Forty years ago, Coombe et al. (120) documented the initial

degradation pathway of E1 by the soil bacterium Nocardia sp. E110.

Their study identified a dioxygenase that crucially catalyzes the

cleavage of the ‘a’ region within the ring structure of the E1

molecule. This pathway has been integrated into the aerobic E2

degradation pathway, which has been uncovered in recent years.
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The initial stages of E2 degradation entail four distinct processes: (I)

dehydrogenation of the D-ring at C-17; (II) hydroxylation of the A-

ring at C-4; (III) dehydration of the D-ring at C-17; and (IV)

hydroxylation of the saturated ring.

3.1.1.1 Dehydrogenation of the D-ring at C-17

Research has demonstrated that E2 can undergo conversion to

E1 during biodegradation (121). This conversion entails

dehydrogenation at the C-17 position of the D-ring in the E2

molecule, resulting in the formation of E1. Furthermore, E1 can

undergo hydroxylation at the C-4 position of the A-ring, leading to

the formation of its metabolite, 4-OH-E1, which is susceptible to

subsequent biodegradation through the metabolic cleavage

pathway (118).
FIGURE 2

Microbial pathways for E2 degradation in nature. The aerobic pathway is divided into 4 types. I: Dehydrogenation of ring D at C-17 to form E1. II:
Hydroxylation of ring A at C-4 to form 4-OH E2. III: Dehydration of ring D at C-17 to form E0. IV: Hydroxylation of saturated ring. The anaerobic
pathway is the generation of 1-Dihydrotestosterone.? for the unknown pathway of E2 degradation. Confirmed pathways: solid lines. Uncertain
pathways: dash lines.
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The following microorganisms, gathered from the literature, are

capable of converting E2 to E1.

Sphingomonas strain KC8 (122–124) rapidly degrades E2 and

E1 into estrogenic metabolites. E1 is the primary product of

estradiol degradation catalyzed by 17b-hydroxysteroid
dehydrogenase. Subsequently, flavin-dependent monooxygenase

(KCB_16650), encoded in cluster I of the Sphingomonas strain

KC8 gene, degrades E1. E1 is initially produced in estradiol

degradation. Subsequently, it undergoes conversion to 4-

hydroxyestrone by flavin-dependent monooxygenase (estrone4-

hydroxylase), encoded by oecB (KCB_16650) in cluster I of the

KC8 gene of Sphingomonas strain KC8. 4-hydroxyestrone

undergoes ring cleavage catalyzed by extradiol dioxygenase (4-

hydroxyestrone4,5-dioxygenase), encoded by cluster oecC

(KC8_05325) in the Sphingomonas strain KC8 gene II.

Subsequently, this compound undergoes nonenzymatic

transformation to produce pyridinestrone acid, a characteristic

marker of the 4,5-seco pathway. Acinetobacter sp. DSSKY-A-001

(125) is capable of degrading E2 to E1, and subsequently to R2 and

R3. Literature suggests that 4-OH-E2 and 4-OH-E1 are mutually

interconvertible. Additionally, E1 can be further transformed into

4-OH-E1, and then converted to R2 with the addition of one oxygen

molecule. Although 4-OH-E1 and 4-OH-E2 were not detected in

the literature, it is plausible that E1 can directly convert to R2 by

incorporating two oxygen molecules. The enzymes involved in

these processes may include catechol 1,2-dioxygenase,

dioxygenase, and 7-a-hydroxysteroid dehydrogenase. Rhodococcus

sp. DS201 (126) has been documented in the literature as capable of

degrading E2, with various E2 metabolites identified through high-

performance liquid chromatography (HPLC). These metabolites

include E1, 4-OH-E1, M1, M2, 5-(4-(2-carboxyethyl)-7a-methyl-1-

oxooctahydro-1H-inden-5-yl)pent-4-enoic acid, pent-4-enoic acid,

3-(7a-methyl-1,5-dioxooctahydro-1H-inden-4-yl)propanoic acid,

5-hydroxy-4-(3-hydroxypropyl)-7a-methyloctahydro-1H-inden-1-

one, and 2-ethyl-3-hydroxy-6-methylcyclohexane-1-carboxylic

acid. Additionally, a novel metabolic pathway has been proposed

for one of these metabolites. Sphingomonas sp. ED8 (118) oxidizes

E2 to E1 via an oxidase enzyme, followed by the conversion of E1 to

4-OH-E1. Aminobacter strains KC6 and KC7 (124), belonging to the

Aminobacteria class, are estradiol-degrading bacteria isolated from

activated sludge in wastewater treatment plants. Both exhibit non-

specific monooxygenase activity and can degrade both E2 and E1.

However, the literature (124) only documents E1 as one of the

products generated from the degradation of E2 by these strains,

leaving unclear the subsequent products of E1 degradation.

Sphingomonas sp. CYH (119), Ralstonia pickettii BP2 (117), and

Phyllobacterium (117) have also been reported to possess a

transformation process that converts E2 to E1. The E1 produced

in this process is capable of further degradation. However, the

literature lacks exhaustive information regarding the specific

products resulting from the subsequent degradation of E1. The

following strains have been identified for their ability to degrade E2:

Flavobacterium strain KC1, Nocardioides strain KC3, Rhodococcus

strain KC4, Microbacterium strain KC5, Sphingomonas strains KC9,

KC10, KC11, KC14, Brevundimonas strain KC12, Escherichia strain

KC13 (124), Brevundimonas diminuta I (127), Virgibacillus
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halotolerans LF1, Bacillus flexus LF3, Bacillus licheniformis LF5

(128), and Bacillus sp. E2Y1, E2Y2, E2Y3, E2Y4, E2Y5 (129).

However, the degradation products of E2 in all cases consist of

E1 and do not undergo further degradation. An alternative

degradation pathway for E2 was uncovered in a study by Lee

et al. (130). This pathway revealed a new metabolite, X1,

identified for its lactone structure on the D-ring, discovered while

investigating bacteria in mixed effluents. The hypothesis proposed

that metabolite X1 could undergo further degradation by

integration into the tricarboxylic acid cycle (TCA cycle).
3.1.1.2 Hydroxylation of the A-ring at C-4

Kurisu et al. (118) proposed a pathway for the conversion of E2

to E1 by Sphingomonas sp. ED8. However, this represents just one

degradation pathway for E2 by this bacterium. Additionally, they

identified another degradation pathway for E2 by Sphingomonas sp.

ED8. Furthermore, they discovered the intermediate metabolite 4-

OH-E2, demonstrating hydroxylation of E2 at the C-4 position of

the A-ring. They suggested that 4-OH-E2 could undergo further

degradation via meta-cleavage.
3.1.1.3 Dehydration of the D-ring at C-17

Shi, Nakai, and colleagues (131) reported in a 2004 study that

the ammonia-oxidizing bacterium Nitrosomonas europaea

significantly degraded E1, E2, E3, and Ethynyl Estradiol (EE2).

They found that the rate of E2 degradation was notably diminished

in the presence of ammonia-oxidizing inhibitors. This suggests that

ammonia monooxygenase (AMO) likely plays a role in estrogen

degradation. However, despite their efforts, the investigators were

unable to identify the specific metabolites of these strains after the

degradation of E2. It was evident, though, that they were unable to

directly convert E2 to E1. Until 2011 (132), Nakai and Shi

discovered a new intermediate metabolite, 1,3,5 (10),16-tetraen-3-

ol (estratetraenol or E0), formed by the dehydration of E2 at its D-

ring C-17. Although E0 retains some estrogenic activity, subsequent

research demonstrated that the ammonia-oxidizing bacterium

Nitrosomonas europaea can further degrade E0 into compounds

devoid of estrogenic activity.
3.1.1.4 Hydroxylation of the saturated ring

Kurisu and colleagues (118) not only observed the conversion of

E2 to E1 and 4-OH-E2 in the degradation pathway of

Sphingomonas sp. ED8 but also identified hydroxy-E2, keto-E2, 7-

keto-E1, and 3-(4-hydroxyphenyl)-2-hydroxyprop-2-enoic acid.

This confirms that E2 can undergo degradation through

hydroxylation reactions at various ring positions. Remarkably, the

detection of 3-(4-hydroxyphenyl)-2-hydroxyprop-2-enoic acid

indicates that the degradation of E2 initiates from the B, C, or D

rings of the saturated ring, rather than the A ring. However,

scholars did not provide insights into the activation and

occurrence of this crucial step. The chemical mechanism of how

this key step, involving the saturated ring, is activated and cleaved,

remains largely unexplored. Consequently, further scientific

research is necessary to elucidate the detailed molecular

mechanism of this pivotal aspect of the degradation pathway.
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3.1.2 Anaerobic pathway
Denitratisoma sp. strain DHT3, also referred to as the

denitrosomal strain DHT3 (133), is a denitrifying bacterium

known for its capability to degrade E2. Under anaerobic

conditions, it enzymatically converts E2 to the primary product

DHT through cobalamin-dependent methyltransferase-mediated

methylation. Subsequently, it further metabolizes the androgenic

intermediate via the established 2,3-seco pathway, yielding 17b-
hydroxy-1-oxo-2,3-seco-androstan-3-oic acid (2,3-SAOA) and

3aa-H-4a(3′-propanoate)-7ab-methylhexahydro-1,5-indanedione

(HIP). Additionally, the text mentions the 4,5-seco pathway of

estradiol degradation under anaerobic conditions, where the end

products are funneled to HIP.

3.1.3 Unknown degradation pathways
Denitratisoma oestradiolicum AcBE2-1T (134) is a Gram-negative

denitrifying bacterium. It was isolated from activated sludge of

municipal wastewater treatment plants and utilizes 17b-estradiol as
its sole carbon and energy source. This bacterium exhibits the ability to

thoroughly and completely biotransform E2 through the action of

cytochrome oxidase. Consequently, E2 compounds undergo complete

degradation and are ultimately converted into CO2 and H2O during

this anaerobic oxidation process. White rot fungi, a group of fungi

capable of effectively degrading lignin and various environmental

pollutants, were first reported by Suzuki et al. (135) to degrade E2

efficiently through ligninolytic enzymes and laccase, consequently

removing its estrogenic activity. However, the researchers observed

that no metabolites were detectable in the reaction mixture after one

hour of treatment. This phenomenon suggests that the loss of

estrogenic activity of E2 and EE2 may result from the destructive

cleavage of their aromatic ring structures. Therefore, future studies

could focus on testing the hypothesis that the loss of estrogenic activity

of the compounds is directly related to the breakage of the aromatic

ring in their molecular structure. The literature (136) reports that

Trametes versicolor can catalyze estrogen degradation using its

produced laccase. However, the initial or direct metabolites involved

in the degradation process are not explicitly described in this source.

The final product of the complete degradation of E2 by Steroidobacter

denitrificans FST (137) is N2O. Novosphingobium sp. ARI-1 (116, 138)

has the ability to degrade E2 into compounds with significantly lower

molecular mass or simple organic acids. Pseudomonas aeruginosa TJ1

(139), Rhodococcus zopfii Y50158, along with Rhodococcus equi Y50155,

Y50156, and Y50157 (140), Stenotrophomonas tumulicola ASc2,

Serratia marcescens ASc5 (141), and Rhodococcus equi DSSKP-R-001

(142), are capable of degrading E2. However, the specific pathways for

E2 degradation in these microorganisms remain unclear, necessitating

further in-depth studies and revelations.
3.2 Regulation of enzymatic activity in
estradiol-degrading bacteria in
natural environments

In natural environments, the enzyme activity of estradiol-

degrading bacteria is regulated by various factors. An in-depth
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the activity of these enzymes is crucial for adjusting the metabolic

activities of gut microbiota to enable effective targeted interventions.

Table 2 summarizes the regulation of bacterial enzymatic activity

involved in estradiol degradation within natural environments.

Regulatory factors for estradiol-degrading enzymes include, but

are not limited to, the following:

3.2.1 Inhibitors of enzyme activity
Isoflavones are bioflavonoids abundant in soy and its

derivatives, commonly consumed in daily diets (143). Keung

(144) discovered that isoflavones can inhibit the g-isozymes of

ethanol dehydrogenase (ADH) in vitro in mammals. It is

noteworthy that these g-isozymes are responsible for catalyzing

the oxidation process of 3b-hydroxysteroids. Subsequent studies

have revealed that isoflavones not only exhibit inhibitory effects on

g-isozymes but also on b-hydroxysteroid dehydrogenase (b-HSD),

thus slowing down the metabolic catabolism rate of steroid

hormones (e .g . , E2) by inhib i t ing 3b -HSD act iv i ty .

Epidemiological evidence has indicated that high dietary intake of

isoflavones correlates with a reduced prevalence of depressive

symptoms (145). Therefore, dietary consumption of isoflavones

may potentially alleviate depression by inhibiting the activity of

estradiol-degrading enzymes in gut bacteria. Some researchers

(146) discovered that Fe2+, Fe3+, Zn2+, and Cu2+ all significantly

inhibit the activity of the estradiol-degrading enzyme 17b-HSD.

Among these, Zn2+ exhibited the most potent inhibitory effect,

reducing enzyme activity by 62%. Additionally, other studies (147)

suggested that zinc deficiency might be a potential risk factor for

depressive symptoms. Given this, a pertinent scientific question is

whether specific molecular tools such as Zn2+ and isoflavones can

be used as modulators of E2-degrading enzymes. Exploring their

potential in depression interventions involves precise modulation of

enzyme activity.

3.2.2 Temperature
Among environmental factors, temperature directly influences

the activity and stability of enzymes. Zeng et al. (139), in their

investigation of the isolation of the Pseudomonas aeruginosa TJ1

strain, proposed that the degradation of E2 occurred more rapidly

within the temperature range of 20 to 30 degrees Celsius. This

finding was corroborated by other researchers in their respective

studies (148, 149), emphasizing the importance of optimal

temperature as a key determinant for the efficient degradation of

E2 by bacteria. It was reported (146) that the Microbacterium sp.

strain MZT7, isolated from activated sludge in dairy farms,

exhibited the highest activity of the estradiol-degrading enzyme

17b-HSD at 40°C. However, as the temperature surpassed 50°C, the

enzyme activity displayed a notable decline, and it was entirely lost

at 70°C. Another investigation (150) demonstrated that the

degradat ion efficiency of the 17b-HSD enzyme from

Microbacterium sp. MZT7 exceeded 50% within the temperature

range of 20-40°C, reaching a peak degradation rate of 86.47%. In

various segments of the intestine, local temperatures can fluctuate

due to physiological functions and blood flow distribution. It has
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been observed (151) hat the stomach temperature is typically 0.2-

0.6°C higher than that of the esophagus, which, in turn, is 0.3-1.0°C

higher than the temperature in the axilla. Similarly, a canine study

(152) yielded comparable findings: the luminal temperature in the

duodenal region of dogs was approximately 6°C higher than the

aortic temperature. Conversely, temperatures in the ileum, stomach,

and large intestine regions, while relatively lower, remained around

0.5°C above the aortic temperature. This investigation underscores

the presence of distinct temperature gradients within the

mammalian digestive tract. Variances in gut temperature across

different regions may impact the activities of estradiol-metabolizing

enzymes within their resident microbial communities, suggesting a

potential therapeutic avenue for addressing certain mental health

disorders, such as depression in premenopausal women. However,

the hypothetical connection and the precise pathways and

mechanisms for clinical application require validation and further

elucidation through rigorous scientific inquiry.

3.2.3 Oxygen content
A study conducted by Deborah L. Carr (153)compared the

biodegradation efficiency of 17b-estradiol in soil under aerobic and

anaerobic conditions. It revealed that the half-life of 17b-estradiol
was 2.1 days under aerobic conditions, whereas it decreased to 1.6

days under anaerobic conditions. This finding indicates that
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estradiol-degrading bacteria exhibit a higher degradation rate in

anaerobic environments compared to aerobic ones in the soil

samples examined. However, in a study conducted by Ying (154)

on the biodegradation of E2 in marine sediments under both

aerobic and anaerobic conditions, the findings contradicted those

mentioned above. The experimental data revealed that the half-life

of E2 degradation was 4.4 days under aerobic conditions, whereas it

significantly extended to 70 days in anaerobic environments. This

phenomenon was consistently corroborated in subsequent related

studies by Ying (155). The reason for this difference may lie in the

presence of enzymes that catalyze the oxidation reaction of E2 in

aerobic bacteria, utilizing oxygen as the final electron acceptor.

These enzymes are more active in aerobic environments.

Conversely, anaerobic bacteria employ a different degradation

mechanism, such as degradation through the reductive pathway

or with the assistance of alternative electron acceptors like sulfate.

Consequently, anaerobic bacteria demonstrate greater efficiency in

degrading E2 under anoxic conditions. Notably, there are

significant variations in the oxygen content of the intestinal

lumen across different intestinal segments. One study (156)

revealed that the partial pressure of oxygen in the distal small

intestine (terminal ileum) of mice was extremely low, nearly zero

(10 mm Hg), significantly lower than in the proximal digestive tract

(60 mmHg). This finding was corroborated by another study (157),
TABLE 2 Regulation of estradiol-degrading bacterial enzyme activity in natural environments.

Sample Factor Condition Effect Reference

Estradiol Enzyme
activity inhibitor

High concentration
of isoflavones

Significantly inhibits 17b-HSD enzyme activity (Zn²+ inhibition rate: 62%),
slowing E2 metabolism and degradation

(144)

Estradiol Enzyme
activity inhibitor

Zn²+, Fe²+, Fe³+, and
other metal ions

Zn²+ shows the strongest inhibitory effect on E2 degradation enzyme 17b-
HSD, with an inhibition rate of up to 62%

(146)

Pseudomonas
aeruginosa TJ1 strain

Temperature 20-30°C E2 degradation rate is the fastest within the 20-30°C range (139,
148, 149)

Microbacterium sp.
strain MZT7

Temperature 40°C Enzyme activity is optimal between 20-40°C, with a degradation rate of up
to 86.47%; activity significantly declines above 50°C and is completely lost
at 70°C

(150)

Soil sample Oxygen content Aerobic and
anaerobic
environments

E2 half-life is 2.1 days in aerobic conditions, while it shortens to 1.6 days in
some anaerobic samples, indicating higher degradation efficiency

(153)

Marine sediment Oxygen content Aerobic and
anaerobic
environments

E2 half-life is 4.4 days in aerobic conditions but extends significantly to 70
days in anaerobic environments

(154)

Microbacterium
resistens MZT7

pH pH 5-11 Enzyme activity is highest under alkaline conditions (pH 9), with a
degradation efficiency of 86.55%; efficiency drops to 51.26% and 38.18% at
pH 5 and 11, respectively

(150)

Achromobacter
xylosoxidans and
Ralstonia sp. picketii

Substrate
concentration

Different initial
E2 concentrations

E2 concentration variations have no significant effect on degradation rate (146)

Activated sludge sample Substrate
concentration

Lower initial
E2 concentration

Microbial degradation of E2 is more efficient under low
concentration conditions

(163, 164)

Bacillus sp. E2Y4 strain Substrate
concentration

Different initial
E2 concentrations

Degradation rate positively correlates with increased initial concentration (129)
5-HT, 5-Hydroxytryptamine; GABA, g-Aminobutyric acid; NE, Norepinephrine; DA, Dopamine; BDNF, Brain-Derived Neurotrophic Factor; E1, Estrone; DHT, Dihydrotestosterone; 4-OH-E1,
4-hydroxyestrone; 4-OH-E2, 4-hydroxyestradiol.
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which found that the partial pressure of oxygen in the mouse cecum

was less than 1 mm Hg. The anaerobic environment in the distal

intestinal lumen primarily arises from metabolic activities,

including those of gastrointestinal (GI) microorganisms, oxidative

reactions involving epithelial cells, and non-microbial sources such

as lipid oxidation. Oxygen is continually depleted through these

pathways, leading to a pronounced anaerobic environment in the

region (156). Simultaneously, oxygen concentration serves as a

pivotal factor influencing the structure of the gut microbial

community (156, 157). Consequently, alterations in intestinal

oxygen levels can affect both the composition of the gut microbial

community and the activity of estradiol-degrading bacterial

enzymes. Modulating oxygen levels in the gut could thus offer a

prospective treatment avenue for certain mental health conditions,

including depression in premenopausal women.

3.2.4 PH
On one hand, enterobacteria residing in various segments of the

intestinal tract may exhibit diverse E2 degradation activities due to

variations in pH values. On the other hand, the intestinal microbiota

can indirectly influence the functional activities of estradiol-

degrading enzymes by actively regulating the acidity (pH) of their

microenvironments (158). Estradiol-degrading enzymes from

various microorganisms demonstrate varying activity levels across

different pH environments. Hao et al. (146) observed that the

estradiol-degrading enzyme 17b-HSD exhibited superior

performance in alkaline conditions compared to acidic ones, with

optimal catalytic activity occurring at pH 9. Additionally, the 17b-
HSD enzyme derived from Microbacterium resistens MZT7 (150)

demonstrated the highest degradation efficiency of 86.55% at pH 7.

However, at pH 5 and 11, the degradation efficiency of E2 dropped

significantly to 51.26% and 38.18%, respectively. In the human

gastrointestinal tract, various regions exhibit distinct pH values.

The differences in pH across intestinal segments arise from a

multitude of physiological and microbiological factors. These

include the regulation of digestive fluid secretion and acid-base

balance, the metabolic activities of intestinal microbiota, and the

anatomical location with its associated physiological properties. In a

study involving wasps (159), researchers found that Lactobacillus

Firm-5, a member of the Lactobacillus genus, metabolizes lactic acid,

leading to a reduction in the intestinal pH of wasps. Previous studies

(160) have indicated that the human gastric pH is highly acidic,

ranging from 1.0 to 2.5, while the pH of the proximal small intestine,

terminal ileum, and cecum averages 6.6, 7.5, and 6.4, respectively.

Moreover, there is a gradual increase in pH from the right colon to

the left colon, averaging 7.0. Research (161) has demonstrated that

pH not only influences microbial community structure but also

modulates pH sensitivity through microbial and metabolic

interactions among fermenting species. Hence, precise modulation

of gut pH through dietary adjustments, probiotic supplementation,

pharmacotherapy, and lifestyle optimization presents a promising

therapeutic approach for managing mental health issues, including

depression in premenopausal women. These interventions target

micro-level modifications in the gut environment, potentially

affecting mental health and mood regulation in the host. Future

research should delve deeper into how these methods influence
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interactions between the gut microbiota and the host nervous

system, and their viability in treating mental disorders.

3.2.5 Substrate concentration
In terms of substrate concentration, while isolation studies of

Achromobacter xylosoxidans and Ralstonia sp. picketii (162)

suggested that changes in E2 concentration did not significantly

affect the rate of degradation, Ternes et al. (163, 164) found in 1999

that under lower concentration conditions, microorganisms in

activated sludge degraded E2 more efficiently. Additionally, Jiang

et al. (129) observed in their study that the Bacillus sp. E2Y4 strain

exhibited a positive correlation between the rate of E2 degradation

and progressively higher initial steroid concentrations. The variation

in the degradation rate of E2 by microorganisms in response to

substrate concentration may be attributed to differences in enzyme

properties, metabolic mechanisms, and ecological niche competition

among different strains. In conclusion, varying substrate

concentrations may regulate the enzyme activity of estradiol-

degrading bacteria, thereby influencing their degradation

rate performance.

In summary, the degradation rate of estradiol (E2) by

microorganisms in nature depends significantly on the enzymatic

activities within their bodies, which are influenced by various factors

such as enzyme inhibitors, temperature, oxygen availability, pH, and

substrate concentrations. By thoroughly investigating and modeling

the biodegradation mechanisms and enzyme activities existing in

nature, we may uncover innovative strategies to precisely regulate the

enzymes involved in E2 metabolism within the gut microbial

community. This approach aims to intervene in gut microecological

processes that could potentially lower E2 levels associated with

depression development, offering new perspectives on addressing

this complex physiopathological condition.
4 The impact of microbial degradation
products of estradiol on depression in
natural environments

In nature, microbial metabolism of E2 primarily yields E1,

alongside DHT, 4-OH-E1, 4-OH-E2, pyridinestrone acid, 2,3-

SAOA, HIP, and other ring-cleavage products. Currently,

potential associations between additional metabolites (e.g.,

pyridinestrone acid) beyond E1, DHT, 4-OH-E1, and 4-OH-E2

and depression remain unexplored. Table 1 summarizes the

mechanistic impact of estradiol metabolites on the pathogenesis

of depression.
4.1 Estrone

E1, an endogenous estrogen, is synthesized in humans and

animals through the metabolic conversion of E2. Unlike its

precursor E2, E1 exhibits relatively low biological activity (165). It

constitutes a significant portion of Premarin, a hormone

replacement therapy (HRT) (166) drug widely employed to
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mitigate menopausal symptoms affecting both physical and

cognitive functioning in peri- and postmenopausal women.

Thomson et al. (167) noted in a controlled trial involving

perimenopausal women that E1 positively impacted sleep quality

within this demographic, indicated by a decrease in nocturnal

awakenings. However, regarding the alleviation of psychological

symptoms like depression and anxiety, the trial results did not

demonstrate a significant difference in the efficacy of E1 compared

to placebo. It has been demonstrated that E1 exhibits a

neuroprotective effect under certain conditions (168, 169).

However, a study comparing the impact of 17b-estradiol and E1

on newly generated neurons revealed that 17b-estradiol notably
enhances the survival of these neurons and improves their response

to spatial memory tasks (170). Conversely, E1 was found to

significantly decrease the survival of newly generated neurons

within the dentate gyrus region. Thus, the highly active form of

E2 demonstrates protective effects against depression. However,

when E2 undergoes microbial or metabolic processes in the body

and is converted to the weaker or even harmful neuroprotective E1,

it may adversely affect the human nervous system, potentially

contributing to the development of depression.
4.2 Dihydrotestosterone

DHT is a naturally occurring androgen in the human body,

resulting from the 5a-reductase-catalyzed conversion of

testosterone (T) in target organs like the prostate, skin, and liver.

It exhibits higher biological activity than T. Neuroinflammation has

been implicated (171) as a central factor in the development and

progression of various neurodegenerative diseases, including

Alzheimer’s disease (AD), Parkinson’s disease (PD), and others. A

study by Yang (172) demonstrated that DHT has protective effects

in a mouse model of neuroinflammation induced by

lipopolysaccharide (LPS). Subsequent investigations showed that

DHT could enhance spatial learning and memory in LPS-treated

mice while also restoring motor coordination and partially

reversing impaired motor activity. These findings suggest that

DHT possesses substantial anti-neuroinflammatory and

neuroprotective properties. It has also been suggested (173) that

serum or tissue levels of 5a-dihydrotestosterone (5a-DHT) may

correlate with the severity of depressive symptoms in certain

individuals. The question arises whether the potential ‘loss’

resulting from E2 metabolism can be offset by the biological ‘gain’

from newly generated DHT during their conversion. This inquiry

necessitates rigorous experimental design and quantitative analysis

to evaluate the metabolic balance during the conversion of E2 to

DHT and its comprehensive impact on physiological functions.
4.3 4-hydroxyestrone (4-OH-E1)

4-OH-E1, a metabolite of the natural estrogen E1, demonstrates

significant bioactivity in tissues such as the mammary gland and

uterus. Within endocrinology, 4-OH-E1 serves as a crucial indicator
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of estrogen metabolic activity and its impact on health. In a study

utilizing mouse hippocampal neuronal cells as an in vitro model

(174), researchers evaluated 25 different endogenous estrogen

metabolites and made a surprising discovery: despite its relatively

weak estrogenic activity compared to E1, 4-OH-E1 displayed the

most remarkable protective effect against oxidative stress-induced

neurotoxicity. This protective effect surpassed even that of the

highly estrogenic 17b-estradiol. Notably, this conclusion extends

beyond in vitro models, as 4-OH-E1 also demonstrated superior

protection to 17b-estradiol in rat hippocampal tissues subjected

to kanamycin-induced oxidative damage. 4-OH-E1 plays a

distinctive role in neuroprotective functions (174) by mediating the

process of p53 deacetylation through the SIRT1 protein. This

biochemical process leads to an enhanced spatial transfer of

p53 protein from the nucleus to the cytoplasm, suggesting that 4-

OH-E1 could positively influence the nervous system by

regulating the subcellular localization and activity of the key

transcription factor p53. Based on the above information, 4-OH-E1

may exert more significant positive effects on neurological function

compared to E2 of the same molecular weight. This difference could

partially explain why some non-menopausal women maintain good

mental health without depressive symptoms despite lower E2 levels.

However, this hypothesis requires validation through further

scientific studies, including in-depth exploration of the mechanisms

through which 4-OH-E1 and E2 contribute to neuroprotection and

mood regulation.
4.4 4-hydroxyestradiol (4-OH-E2)

4-OH-E2 is an endogenous metabolite of E2, catalyzed by the

cytochrome P450 enzyme system in the human body. It exhibits

potent estrogenic activity and has a high binding affinity to the

estrogen receptor (175, 176). In a study (177), 4-OH-E2 was found to

induce cell proliferation in the subventricular zone (SVZ) brain

region of female rats, but this stimulatory effect was not observed in

pituitary cells. This suggests a tissue- or organ-selective mechanism

of action for 4-OH-E2. In another neonatal mouse experiment (178),

4-OH-E2 was shown to up-regulate NE levels in the hypothalamus

of neonatal female rats. Previous studies have suggested that E2 can

exert antidepressant effects by increasing NE concentrations, thus

prompting speculation that 4-OH-E2 may possess similar

antidepressant properties. However, other research indicates that

4-OH-E2 exhibits chemical reactivity and may cause genotoxicity

and mutagenicity (179, 180). In conclusion, further scientific

validation is needed to determine whether 4-OH-E2 can serve as

an antidepressant and elucidate its specific mechanism of action.

Taken together, it is reasonable to hypothesize that there may be

an, as yet, undefined link between microbial-mediated degradation

products of E2 in nature and depression. This hypothesis provides a

crucial theoretical framework and research direction for exploring

how gut microbes influence the development of depression by

modulating E2 metabolism. It also underscores the need for

caution when evaluating the effects of E2 degradation on

depression, as the dynamic balance between decreasing E2 levels
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and accumulating degradation products could result in diverse

biological effects.
5 The effect of gut microorganisms
on estradiol

The human body harbors a vast array of microorganisms, with

nearly 90% of them (approximately 10 to 100 trillion) residing in

the gastrointestinal tract (181). Within the gastrointestinal tract,

there are over 500 different species of bacteria, comprising

approximately 1 kilogram of the body’s weight, and the human

intestine harbors approximately 1011 bacteria per gram (182–185).

Bacteroidetes and Firmicutes typically dominate, with

Proteobacteria, Verrucomicrobia, Actinobacteria, Clostridia, and

Cyanobacteria following suit (186–188). The intestinal microbiota

exerts regulatory effects on steroid hormones like E2, which can

indirectly or directly influence the in vivo concentration of E2.
5.1 The gut microbiota regulates
mechanisms of estradiol metabolism
through synthetic enzymes

Recent studies have shown that gut microbes can modify the

activity of steroid hormones through metabolism, thereby affecting
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serum steroid levels (189). This indicates that gut microbes not only

influence the gut’s internal environment but also potentially impact

systemic physiological functions via hormonal signaling pathways,

including hormones associated with mood and mental health, such

as E2. In the body, E2 undergoes hepatic metabolism, wherein it

combines with sulfate and glucuronic acid to form water-soluble

compounds. These conjugates are primarily excreted as waste

products via the kidneys, although a portion is also eliminated

through the biliary tract into the intestines (190). Enzymes

produced by certain intestinal microbiota further modify the

serum steroid hormone levels by altering the ratio of active to

inactive compounds (191), a point supported by other researchers

(192). This process, illustrated in Figure 3, is known as the liver-gut

cycle, suggesting the involvement of intestinal microbiota’s

glucuronidase activity in estrogen metabolism. Specific gut

microbiota species possess enzyme systems capable of

metabolizing and converting steroid hormones, including E2. For

instance, the intestinal microorganism Eggerthella lenta strain C592

contains 17b-hydroxysteroid dehydrogenases (17b-HSD), which

catalyzes the oxidative conversion of biologically active E2 to less

active E1 (193). Recent studies have revealed that the gut

microbiota, specifically Klebsiella aerogenes, degrades E2 through

the expression of 3b-hydroxysteroid dehydrogenases (3b-HSD)

(39). Conversely, b-Glucuronidase (gmGUS), present in

Clostridium perfringens, has the capability to reactivate estrone-

3-glucuronide and estradiol-17-glucuronide into E1 and E2 (194).
FIGURE 3

Enterohepatic circulation of estradiol. This diagram explains the cycling of estradiol between the gut and the liver. (A) The production of estradiol by
the ovaries, corpus luteum, placenta, and other nonsexual organs such as the liver, heart, skin, and brain regulates circulating estradiol flow. (B) A
portion of bound estradiol is excreted as waste through the kidneys. (C) A portion of bound estradiol is excreted through the biliary tract into the
intestine. (D) Deglucuronidated bacteria are excreted via fecal excretion when their numbers and activity are low. (E) Free estradiol is reabsorbed
into the liver when the number and activity of de-glucuronidating bacteria are high.
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This process increases the proportion of E2 activity in the gut,

facilitating the reabsorption of E2 into the bloodstream.
5.2 The intestinal microbiota influences the
function of the hypothalamic-pituitary axis,
thereby impacting estradiol levels

In the hypothalamic-pituitary-gonadal (HPG) axis, which

regulates reproductive hormone levels and cyclic physiological

processes, the hypothalamus secretes gonadotropin-releasing

hormone (GnRH) to stimulate the anterior pituitary to release

follicle-stimulating hormone (FSH) and luteinizing hormone

(LH). FSH promotes the growth and development of ovarian

follicles and stimulates granulosa cells to secrete estrogen, such as

estradiol (E2); meanwhile, LH facilitates corpus luteum formation

during follicular maturation, further enhancing E2 secretion.

Recent studies have shown that endotoxins, such as

lipopolysaccharides (LPS), can inhibit GnRH secretion and reduce

LH secretion by the pituitary, leading to a significant decrease in E2

levels (195–197). Additionally, germ-free mice exhibit significant

impairments in working memory, and antibiotic-treated mice show

a notable decline in object recognition ability (198, 199). These

findings suggest that gut microbiota may regulate E2 levels through

the HPG axis, although the specific molecular mechanisms

remain unclear.

Further studies revealed that gut microbiota-derived short-

chain fatty acids (SCFAs), such as acetate, propionate, and

butyrate, can regulate hypothalamic-pituitary-adrenal (HPA) axis

activity by reducing GnRH secretion, thereby inhibiting LH and

FSH secretion, delaying gonadal development, and decreasing

estradiol levels (200). Furthermore, gut microbial metabolites

(e.g., SCFAs and bile acids) and inflammatory signals play

important roles in the regulation of HPA axis activity (201, 202).

Dysbiosis of the gut microbiota may trigger chronic inflammation,

activating the HPA axis, resulting in abnormal cortisol secretion,

which further suppresses estradiol production.

In summary, gut microbiota regulate estradiol levels by

influencing the activity of the HPA and HPG axes through

metabolites (e.g., SCFAs) and inflammatory signals. This

regulatory mechanism may provide potential therapeutic targets

for diseases such as depression. However, further research is

required to elucidate the specific molecular mechanisms and

assess their clinical application value.
6 Gut microbiota affects depression
through estradiol metabolism

Metchnikoff proposed a theory over 100 years ago suggesting

that abnormalities in gut microbiota could underlie depression,

anxiety, and other mental health issues. He advocated for

addressing these disorders through probiotic supplementation.

However, due to the limitations in science, technology, and

research methods of that era, this theory was not thoroughly
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investigated or emphasized (203). Advances in science and

technology, particularly in microbiome research, have prompted

a reevaluation and validation of Metchnikoff’s theory. Since 2009,

scientists have focused on investigating the role of the brain-gut

axis in depression (204). Recent clinical studies have highlighted

differences in gut microbiota between depressed patients and

healthy individuals (205). Research indicates that depressed

patients exhibit decreased a-diversity and b-diversity in their

intestinal microbiota compared to controls (206, 207). Moreover,

further analysis identified elevated levels of Actinobacteria and

Fusobacteria at the phylum level (208). Additionally, multiple

studies have observed reduced E2 levels in depressed

premenopausal women (21). Studies using rodent models have

convincingly shown that E2 plays a crucial role in maintaining

emotional balance and psychological well-being; decreased serum

E2 levels in experimental animals lead to depressive-like behaviors

(209). Furthermore, recent research (189) has uncovered the ability

of gut microbes to influence steroid hormone activity through

synthetic or metabolic pathways, indicating a novel role in

hormone regulation beyond the gut environment. This suggests

that gut microbes not only impact gut health but also influence

broader physiological functions via hormone signaling pathways.

These findings shed light on the connection between gut microbes

and various health conditions, including psychiatric disorders like

depression. Despite advancements, the precise mechanisms by

which gut microbiota metabolize E2 and contribute to depression

remain unclear. In recent years, Di Li (39) and colleagues

conducted a study on women with perimenopausal depression

and identified a specific bacterium, Clostridium perfringens, in

the gut microbiota of these patients. Furthermore, the researchers

isolated a specific estradiol-degrading enzyme, 3b-HSD, from this

bacterium (39). The study successfully transfected the 3b-HSD gene

into Escherichia coli. Subsequently, these transgenic bacteria were

used to administer treatment to de-ovulated rats via gavage.

Experimental results demonstrated a notable reduction in serum

and brain tissue E2 concentrations in treated rats, concomitant with

the emergence of depression-like behavioral traits. These

observations suggest that Clostridium perfringens might have the

capability to degrade E2 through the expression of 3b-HSD,

potentially contributing to depression development. Furthermore,

it is essential to investigate the presence of other estradiol-

degrading bacteria akin to Clostridium perfringens in the

intestinal microecosystem, as well as explore alternative estradiol-

degrading enzymes resembling 3b-HSD. Understanding their

impact on depression represents a crucial avenue for

future research.
7 Conclusions

This paper systematically reviews the molecular mechanisms of

E2 action in the pathophysiology of depression and provides

insights into recent research advances concerning the regulation

of E2 metabolism by gut microbial communities. Additionally, it

synthesizes and analyzes the mechanisms of E2 degradation by
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various microorganisms in natural environments and evaluates the

scientific evidence available for a potential link between these

metabolites and depression. Despite the progress in existing

studies, several critical questions remain that require thorough

exploration in future research endeavors.
Fron
1. In recent years, preliminary results have emerged in

exploring the role of gut microbiota in E2 metabolism

and its implications in depression pathogenesis. However,

extensive research remains to fully elucidate this area.

Drawing from case studies on microbial degradation of

E2 and its products in natural environments may offer

crucial insights into how gut microbes modulate E2 levels

via estradiol-degrading enzymes, thereby influencing the

onset and progression of depression.

2. Numerous scientific studies have investigated the degradation

of E2 by microorganisms in natural environments, offering

valuable insights and a robust theoretical framework for

understanding the intricate process of E2 metabolism by

intestinal microbiota. Nonetheless, a significant research gap

persists in this area concerning the identification of initial

degradation products and key enzymes. Consequently,

further screening and identification efforts are imperative to

delve deeper into the degradation mechanism of microbial

strains, elucidate the detailed metabolic pathways, and

elucidate the functions of pivotal enzymes involved.

3. Gut bacteria can degrade E2, leading to three scenarios of

degradation product formation. First, metabolites such as E1

and 4-OH-E2 may arise, which are less neuroprotective or

potentially harmful compared to E2 itself, thus negatively

impacting depression. Second, the production of metabolites

like 4-OH-E1, which are more neuroprotective than E2, might

explain why some premenopausal women with reduced

estradiol levels do not experience depression symptoms,

although further research is needed to validate this hypothesis.

Third, metabolites such as DHT may possess similar or

unspecified neuroprotective effects as E2. However, a “balance”

issue emerges: for every molecule of E2 degraded, a

corresponding molecule of degradation products is generated.

Whether the benefit from these products compensates for the

loss of E2’s protective effect on depressionwarrants investigation.

Understanding how gut microbial transformation products

influence body functions through specific mechanisms and

their role in both normal physiology and disease pathology

constitutes a crucial area for future research.

4. Gut microbiota capable of degrading estradiol via 3b-HSD
may exist in women with depression, potentially contributing

to the development of the condition. However, whether

similar gut microbiota and their degrading enzymes exist in

men with depression, influencing the disease progression

through the endocrine pathway, remains an under-explored

area that requires further investigation.
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Glossary
AD Alzheimer’s disease
Frontiers in Psychiatr
AMO Ammonia monooxygenase
BDNF Brain-Derived Neurotrophic Factor
BNST Bed nucleus of the stria terminalis
CNS Central nervous system
CREB Cyclic AMP Response Element Binding Protein
DA Dopamine
DAT Dopamine Transporter
DHT Dihydrotestosterone
ERE Estrogen Response Element
E0 Estratetraenol
E1 Estrone
E2 Estradiol
FSH Follicle-Stimulating Hormone
GABA g-aminobutyric
GM Gut Microbiota
nRH Gonadotropin-releasing hormone
GPCRs G-protein-coupled receptors
GuGUS b-Glucuronidase
HPA Hypothalamic-pituitary-adrenal
HPLC High-performance liquid chromatography
HRT Hormone replacement therapy
Kiss1 Kisspeptin
LH luteinizing hormone
LPS lipopolysaccharide
IGF-1 Insulin-like Growth Factor 1
IP3 Inositol 1,4,5-Trisphosphate
IP3R Inositol 1,4,5-Trisphosphate Receptor
MAOIs Monoamine Oxidase Inhibitors
MAPK Mitogen-activated protein kinase
NE Norepinephrine
NET Norepinephrine Transporter
PD Parkinson’s disease
POA Preoptic area
SVZ Subventricular zone
T Testosterone
TCAs Tricyclic Antidepressants
TCA cycle Tricarboxylic acid cycle
WHO The World Health Organization
3b-HSD 3b-hydroxysteroid dehydrogenase
4-OH-E1 4-hydroxyestrone
4-OH-E2 4-hydroxyestradiol
5a-DHT 5a-dihydrotestosterone
5-HT 5-hydroxytryptamine
17b-HSD 17b-hydroxysteroid dehydrogenase
b-HSD b-hydroxysteroid dehydrogenase
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