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Autism spectrum disorder (ASD) is a neurodevelopmental condition that affects

the brain’s function. Electroencephalography (EEG) is a non-invasive technique

that measures the electrical activity of the brain and can reveal its dynamics and

information processing. This study explores an eyes-opened resting state

quantitative EEG analysis of 49 children with ASD and 39 typically developing

(TD or Control) children, using various features of entropy and complexity. Time

and frequency domain features were applied for all EEG channels, such as the

power spectra, brain rate, sample entropy, permutation entropy, spectral

entropy, Tsallis entropy, Rényi entropy, Lempel–Ziv complexity, and Higuchi

fractal dimension. The features were compared between the ASD and TD groups

and tested for statistical significance. The results showed that the ASD group had

a lower brain rate, higher Tsallis entropy and Rényi entropy, and lower Lempel–

Ziv complexity than the TD group. The entropy results show impaired neural

synchronization, increased randomness, and noise in ASD. The Lempel–Ziv

complexity results showed that it is a potential indicator of the existence of

focal spikes in the EEG signals of ASD. The brain-rate results show a low level of

arousal in ASD. The findings suggest that entropy and complexity measures can

be useful tools for characterizing the EEG features of ASD and provide insights

into the neurophysiological mechanisms of the disorder.
KEYWORDS

entropy, complexity, brain-rate, autism, quantitative EEG
Introduction

Autism Spectrum Disorder (ASD) represents a complex and heterogeneous

neurodevelopmental condition characterized by challenges in social interaction,

communication deficits, and repetitive behaviors. While behavioral and clinical

observations have traditionally guided our understanding of ASD, advancements in
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neuroimaging techniques, particularly electroencephalography

(EEG), have provided a window into the intricate neural

dynamics associated with this disorder.

EEG, as a non-invasive tool, enables the recording of electrical

activity generated by the brain’s neural networks. In recent years, a

growing body of research has sought to unravel the unique EEG

signatures associated with ASD (1–3), to enhance our

understanding of the underlying neurological mechanisms that

contribute to its diverse clinical manifestations. This scientific

inquiry into the findings of EEG in the context of ASD has

revealed a spectrum of aberrations in neural processing.

Researchers have investigated patterns of connectivity, alterations

in frequency bands, and event-related potentials (ERPs) to decipher

the complex interplay of neural circuits involved in the pathology

of ASD.

Analyses of frequency bands, such as delta, theta, alpha, and beta,

have provided information on the unique neural signatures

associated with ASD. Previous studies found that in resting-state

EEG analysis, children with typical development have high alpha

activity during rest (4), while children with autism showed mixed

results (5–12). Deviations from typical spectral patterns have been

observed, suggesting disruptions in fundamental neurophysiological

processes, including attention regulation, sensory integration, and

information processing.

Event-related potentials (ERPs), which capture the brain’s

response to specific stimuli, have also been scrutinized in the

context of ASD. Variations in the timing and magnitude of ERP

components, such as the P300 and N400, have been identified,

offering valuable clues about the neurocognitive processes involved

in social and cognitive functions affected by ASD (13–19).

A prevalent theme in the literature involves the investigation of

atypical brain connectivity in individuals with ASD. Studies have

reported both over-connectivity and under-connectivity in various

brain regions (20–24), shedding light on the intricate balance of

neural networks governing social cognition, communication, and

sensory processing in ASD individuals.

Furthermore, focal spikes are abnormal brain signals that occur

more often in ASD (25, 26). They can be measured by EEG, which is

the main method for studying epilepsy and other epileptic brain

signals. Some people with ASD have these spikes even when they

have no seizures (27, 28).

Despite significant strides in unraveling the neurobiological

underpinnings of ASD through EEG analysis, challenges remain. The

heterogeneity inherent in ASD presents a formidable obstacle that

requires researchers to navigate the complex landscape of individual

differences. In a recent review of EEG signal research related to mental

disorders (29), caution was advised in relying too heavily on spectral

analysis. The reason is that increases in band-specific power tend to

overlap significantly within and between different disorders.

Additionally, spectral analysis fails to account for the inherent non-

linearity in brain dynamics, resulting in a distorted understanding of

brain functioning. Since EEG signals are non-stationary in nature, non-

linear features should be used in their analysis (30).

One approach involves non-linear dynamics and chaos theory,

which examines the complex, seemingly random, and irregular

patterns exhibited by systems governed by deterministic rules and
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influenced by initial conditions. Researchers have used complexity-

based measures to explore brain dynamics, aiming to quantify

neural processes with intricate and irregular behavior. The

Lyapunov coefficient, a measure of the chaotic behavior of a

system, has been used in studies that discriminate between ASD

and TD (31–35). While the chaos-related methodology is valuable,

its implementation can be challenging, and the resulting outcomes

are often abstract.

An alternative, less abstract approach for investigating brain

signal structure involves using entropy measures inspired by

Shannon’s ideas. In this context, complexity is quantified through

entropy, a concept borrowed from thermodynamics and adapted to

describe probabilistic processes. The concept of entropy proved to

be one of the pillars and fundamental concepts of modern-day

physics. Furthermore, some researchers have even tied the concept

of entropy to consciousness (36). It is a measure that quantifies the

uncertainty, complexity, and information that a physical system

possesses and the human brain is a complex physical system that

generates and processes information. High entropy values indicate

greater uncertainty, resulting in increased complexity, irregularity,

and unpredictability. Studies have detected a higher EEG entropy in

autism and suggest that it is related to impaired social cognition,

communication, and behavior (37–39). Neural noise (40) may

explain this elevated entropy. That perfectly aligns with the very

definition of entropy. Researchers have linked the excess of neural

noise in the autistic brain with cognitive, social, and behavioral

difficulties (41, 42), and even further, there are authors who argue

that, due to stochastic resonance, it could be an asset in certain

occasions (43, 44) and should be pointed out loudly since autistic

people face ignorance, prejudice, and discrimination (45). Different

types of entropy measures, such as sample entropy, multiscale

entropy (46–49), and Rényi entropy (39) have been explored as

potential biomarkers for ASD, as has Lempel–Ziv complexity (LZC)

(50, 51), another interesting metric that gives different perspective

of complexity and is not based on entropy but originates from a

family of techniques that maps time series into sequences of

symbolic representations. Simply put, the regularity of the signal

is determined by scanning the symbolic sequences for new patterns,

increasing the complexity count every time a new sequence is

detected. A recent review stated that while the concept of entropy

has been investigated in the domain of ASD, studies that explore

Lempel–Ziv complexity in ASD EEG signals are scarce (52).

This paper provides an extensive quantitative analysis of different

EEG spectral characteristics and different entropy and complexity

features extracted from the time domain of the EEG signal, and an

interpretation of the results is given in the discussion section.
Methods

Data

Participants
EEG recordings and analyses were made on 88 children of

which 39 had typical development (TD or Control) and 49 had

autism (ASD). The mean age of the ASD group was 6.18 years with
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a standard deviation of 1.98 years, and the TD group had a mean

age of 5.35 years and a standard deviation of 2.31 years. Since the

TD children were all boys, gender was excluded in the further

analysis because of the lack of a significant gender ratio between the

two groups. The diagnosis of autism was made by a psychiatrist and

a psychologist and both had to agree on the diagnosis for the

participant to be included in the study. All participants met the

DSM-V criteria for autism disorder. To ensure diagnostic validity,

additional information was collected from the parents. All the

recordings were conducted in Skopje, North Macedonia and

written consent and approval for the research was obtained from

the parents of the children. This work was approved by the Ethics

Committee at the Faculty of Medicine, St’s Cyril and Methodius

University in Skopje under reference number 03-4953/2.

Procedure
Because of the nature of the disorder, the EEG signals were

obtained in the resting state condition, with opened eyes. The

placement of EEG electrodes was in accordance with the

international 10/20 system using an electro-cap produced by

Electro-cap International. Activity in 19 channels was recorded:

Fp1, Fp2, F3, F4, F7, F8, Fz, C3, C4, Cz, T3, T4, T5, T6, P3, P4, Pz,

O1, and O2, referenced to linked ears. The ground electrode was

placed between Fpz and Fz. To control for eye movement artifacts,

the electrooculogram (EOG) was recorded, using two 9 mm tin

electrodes, above and under the right eye, referenced to Fpz and Oz.

The EOG rejection was set at 50 µV. The bandwidth of the

amplifiers was set at 0.53 Hz low-frequency filter, 50 Hz high-

frequency filter, and 45-55 Hz notch filter. The impedance levels for

all electrodes were set to 5 kΩ. The EEG digitization frequency was

250 Hz. EEG was continuously recorded on the hard disc for offline

analysis. The processing was conducted using Mitsar WinEEG

software. We obtained a time series of 3 minutes for the TD and

variable lengths in the range of 7 to 30 minutes for the ASD group.

It is important to note that the length of the signal in the ASD group

was different because of the challenging environment during the

recording. The second author took notes in real-time during the

recording and also visually checked every signal and decided

whether to accept or reject it based on the absence or presence of

artifacts. Each of the EEG signal recordings was processed in an

identical manner. First, the signals were manually checked and

artifacts were corrected. For the time-domain analysis, a continuous

segment of the time-series signal without artifacts was needed. The

continuous segment without artifacts with the maximum length was

selected from the EEG recording for each participant when the child

was sitting quietly. We cut the segments to be the same length for

each participant, therefore choosing the minimum length of all the

maximum lengths. The minimum length was 43 seconds. Since our

sampling frequency was 250Hz, we had 10,750 time point

amplitude values for each of the 19 electrodes, totaling 204,250

amplitude values (43 ∗ 250 ∗ 19 = 204,250) for each participant. For

spectral analysis, fast Fourier transform was carried out for five

frequency bands, namely, Delta (0.5–4 Hz), Theta (4–8 Hz), Alpha

(8–12 Hz), SMR (12-15 Hz), and Beta (15–20 Hz), for

relative power.
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Features

A diverse set of features is derived from EEG signals to capture

different dimensions of brain dynamics and complexity. Power

spectral analysis was chosen to quantify the distribution of power

between the frequency bands, providing information on patterns

often associated with ASD. Brain rate, as a measure of dominant

brain activity and level of arousal, aids in identifying shifts in

cognitive and behavioral states. Measures of complexity, such as

Lempel–Ziv complexity and Higuchi fractal dimension, were

included to reflect the inherent irregularity and fractal nature of

EEG signals. Similarly, Rényi and Tsallis entropies were selected as

generalized entropy measures to assess signal diversity and

statistical order. Permutation entropy (PE), spectral entropy, and

sample entropy (SampEn) provide additional perspectives on signal

unpredictability and regularity, each tailored to capture specific

nuances in the time-series data. Collectively, these features were

chosen to offer a comprehensive view of the underlying neural

mechanisms, facilitating a quantitative differentiation between

children with ASD and typically developing children.
Relative power spectra
Relative power spectra are the proportion of the power in a

specific frequency band relative to the total power summed across

all frequency bands.
Brain rate
Brain rate is defined as the weighted mean frequency of the EEG

spectrum. This parameter is used as an indicator of the level of

consciousness, characterizing mental arousal irrespective of its

content. In other words, the brain rate expresses the mean

frequency of brain rhythms (53). It is a metric that we calculated

in the frequency domain of the signal with the following formula:

BR = o
n
i=1 fi � Pi
on

i=1Pi
(1)

where fi is the frequency of the i-th EEG band, and Pi is the

power of the i-th EEG band.

Permutation entropy
PE is a robust time series tool that provides a measure of the

complexity of a dynamic system. It captures the order relations

between values of a time series and extracts a probability

distribution of the ordinal patterns (54). The formula for the

calculation of PE is:

HPE(D, t) = � o
pϵSD

p(p) log  p(p) (2)

where D is the embedding dimension, t is the embedding delay,

SD is the set of all possible permutations of length D, and p(p) is the
probability of the permutation p in the partitioned time series. In

this study, the entropy was calculated with D = 3 and t = 1.

PE is non-parametric and is free of restrictive parametric model

assumptions. It is robust with respect to noise, computationally
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efficient, flexible, and invariant with respect to non-linear

monotonic transformations of the data (55).
Sample entropy
SampEn is a modification of approximate entropy (ApEn), used

for assessing the complexity of physiological time-series signals. It

has two advantages over ApEn: data length independence and a

relatively trouble-free implementation (56). It is a measure of

complexity that does not include self-similar patterns as ApEn

does. For a given embedding dimension, tolerance, and number of

data points, SampEn is the negative natural logarithm of the

probability so that if two sets of simultaneous data points of

length m have distance r then two sets of simultaneous data

points of length m + 1 also have distance r (56). It is a measure

of the regularity or predictability of a time series. A smaller value

indicates more self-similarity in the data set or less noise (56). It can

be calculated using the following formula:

SampEn(m, r, n) = −ln 
A(m + 1, r)
B(m, r)

(3)

where m is the length of the template vector, r is the tolerance

for accepting matches, n is the number of data points, A(m + 1,r) is

the number of template vector pairs of length m + 1 that have

distance less than r, and B(m,r) is the number of template vector

pairs of length m that have distance less than r. In this study, this

feature is calculated with m = 2 and r = 20% of the signal

standard deviation.

Spectral entropy
Spectral entropy is defined as the Shannon entropy of the power

spectral density (PSD) of the data (57) with the following formula:

SE = −o
n

i=1
pi ln pi (4)

where n is the number of bins or frequency points, and pi is the

normalized PSD value at the i-th bin or frequency point. In the context

of time series analysis, spectral entropy measures the “forecast” of a

time series, where low values indicate a high signal-to-noise ratio and

large values occur when a series is difficult to forecast (58–61).

Rényi entropy
Rényi entropy is a quantity in information theory that

generalizes various notions of entropy. It depends on a parameter

a that can be varied to obtain different entropy measures. For

example, when a = 1, Rényi entropy reduces to Shannon entropy,

and when a =∞, Rényi entropy becomes the min-entropy, which is

the smallest entropy measure in the family of Rényi entropies (62).

Rényi entropy has been used in various EEG analyses (63–66) to

characterize the complexity and predictability of an EEG signal.

However, Rényi entropy is not a simple function of the length of the

EEG signal but rather depends on how the EEG signal is partitioned

into segments or symbols. Different partitioning methods can lead

to different values of Rényi entropy, even for the same EEG signal

and the same a. Therefore, Rényi entropy is not a universal measure
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of the information content of an EEG signal, but rather a relative

measure that depends on the choice of partitioning scheme.

We used kernel density estimation to estimate the probability

density function of the EEG signal. Then we applied the Rényi

entropy formula to the resulting distribution.

Ha (f ) =
1

1 − a
log 

Z ∞

−∞
f (x)adx (5)

where f(x) is the probability density function. In this study, a
= 2.

Higuchi fractal dimension
In fractal geometry, the Higuchi fractal dimension (HFD) is an

approximate value for the box-counting dimension of the graph of a

real-valued function or time series (67). This value is obtained via

an algorithmic approximation, so one also talks about the Higuchi

method. The feature is calculated with the formula

DHiguchi =
log(L=k)
log(k)

(6)

where L is the total length of the curve and k is the interval size.

We used k = 10. The HFD is based on the idea that the length of a

curve can be measured by dividing it into smaller segments of equal

size and summing their lengths. The smaller the segment size, the

longer the curve length. The HFD is the slope of the log-log plot of

curve length versus the segment size. The HFD can be calculated for

a time series by projecting it into different sub-series with different

starting points and averaging the lengths of these sub-series. The

Higuchi method has been used in many EEG analyses as a feature

for machine learning and to analyze the complexity and irregularity

of EEG signals and reflect different states of the brain, such as

wakefulness, sleep, or seizure (68–70).

Tsallis entropy
Tsallis entropy is a generalization of the standard Boltzmann–

Gibbs entropy. It was introduced in 1988 by Constantino Tsallis as a

basis for generalizing the standard statistical mechanics (71) as the

following equation:

Sq =
1

q − 1
1 −o

n

i=1
pqi

 !
(7)

where n is the number of possible outcomes, pi is the probability

of the i-th outcome, and q is the entropic index. In this study, q =

1.5. Tsallis entropy depends on a parameter q, which determines the

degree of non-extensivity or non-additivity of the entropy. When

q = 1, Tsallis entropy reduces to Boltzmann–Gibbs entropy. When

q > 1, Tsallis entropy is sub-extensive, meaning that the entropy of

the whole system is less than the sum of the entropies of its parts.

When q < 1, Tsallis entropy is super-extensive, meaning that the

entropy of the whole system is greater than the sum of the entropies

of its parts. Tsallis entropy can be applied to quantify the changes in

the EEG signals that correspond to different states, and can also be

used for machine learning and classification purposes (72). Some of

the advantages of Tsallis entropy over other entropy measures are
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that it can capture the non-Gaussianity, non-stationarity, and

multi-scale nature of the EEG signals, and it can be computed

efficiently and robustly (73–75).

Lempel–Ziv complexity
LZC is a measure that was first introduced by two Israeli

computer scientists, Abraham Lempel and Jacob Ziv (76). LZC can

be used to measure the repetitiveness of binary sequences and text. It

is based on an elementary principle of copying words. This

complexity measure is not too restrictive in the sense that it

satisfies the main qualities expected by such a measure: sequences

with a certain regularity do not have a too large complexity, and the

complexity grows as the sequence grows in length and irregularity.
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LZC corresponds to the number of different substrings (or sub-

words) encountered as the binary sequence is viewed as a stream

(from left to right) (76). For example, the binary string 010101010101

has low LZC because it only has two sub-sequences: 01 and 10. The

binary string 011001011110 has a higher LZC because it has six sub-

sequences: 0, 1, 01, 10, 100, and 111. In our study, we first binarized

the signal using a threshold value. The threshold value was the mean

amplitude of the signal. The segments with an amplitude value above

the threshold were given a value of 1 and the segments below the

threshold were given a value of 0. The advantage of using LZC is that

it does not require any prior knowledge or assumptions about the

structure or dynamics of the EEG signals and is robust to noise

and artifacts.
FIGURE 1

Analysis flowchart.
FIGURE 2

Error bar plots for brain rate in all EEG channels. Brain rate results depict increased spectral activity for the control children in most of the EEG
channels compared to the children with autism. Since brain rate is an average metric, the increased values are mostly due to the increased alpha
activity found in the control children.
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Analysis

We calculated the relative power spectra for both groups and

the previously mentioned features in all the EEG channels for each

participant and made a comparative statistical analysis between the

groups. The flowchart diagram of the analysis can be seen in

Figure 1. For every metric, we calculated 19 values for 88

participants, representing 39 TD and 49 ASD children. First, we

ran both the one-sample Kolmogorov–Smirnov and Shapiro–Wilk

tests, together with Normal Q-Q plots and detrended Normal Q-Q

plots to check whether the normality condition of the sample was

satisfied. This was an important step that told us what statistical test

we should choose. Since our data was not normally distributed
Frontiers in Psychiatry 06
(Appendix), we cannot run parametric tests of significance such as

t-tests. Instead, we ran two non-parametric tests to check for

statistical significance: two-sample Kolmogorov–Smirnov and

Mann–Whitney U tests. We also plotted error bars with 95%

confidence intervals for every metric so we could visually confirm

and interpret the tests. The bars (Figures 2–6) show us with a

probability of 95%, that if we obtain a new data point, its measures

will fall somewhere across the blue line if it is a control data point, or

across the red line if it is an autism data point. We also performed a

Bonferroni correction to address the multiple comparison problem.

Since we analyzed 19 hypotheses corresponding to 19 EEG

channels, the corrected significance level a can be calculated by

dividing 0.05 by 19, giving a value of 0.0026.
FIGURE 3

Error bar plots for spectral entropy in all EEG channels. The results depict increased spectral activity for the control children in most of the EEG
channels compared to the children with autism. Spectral entropy, similar to the brain rate, is obtained in the spectral domain and the increased
values are due to increased alpha activity in the control children.
FIGURE 4

Error bar plots for Rényi entropy in all EEG channels. The results show significantly elevated entropy values for the children with autism compared to
the control children. This indicates a more “noisy” signal due to increased neural noise in the ASD group and a more “smooth” signal in the Control
group. This noise is captured by the metric as more amplitude variations in the signal.
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Results

The results from the relative power spectra are shown in

Figures 7, 8 for the TD and ASD children respectively. The

spectrum is depicted hertz by hertz to avoid over-averaging of the

results across different frequency bands. The results show that in the

alpha band (10-11Hz), which is characteristic of a resting state, we

found increased brain activity in the typical development group

compared to the autism group. Elevated alpha activity is associated

with a state of cortical idling, where the brain is not engaged in

active processing but is still ready to respond to stimuli. This shows
Frontiers in Psychiatry 07
that the TD children were in a state of wakefulness while resting,

having thoughts or fantasizing about something, completely aware

of the surroundings around them. Children with ASD on the other

hand, showed very little or no brain activity at all. This indicates an

absence of awareness of their surroundings.

The results from both statistical tests for significance are shown

in Tables 1, 2 for the features in each of the EEG channels. We can

see that there is a significant difference between the TD and ASD

groups in many features and channels.

For example, as seen in Figure 2, the brain rate results overall

show larger values for the control group compared to the autism
FIGURE 5

Lempel–Ziv complexity (LZC) results in all EEG channels. The ASD group shows lower complexity than the control group. After the binarization of
the signal, many of the amplitude variations above or below the binarization threshold value are discarded. The lower LZC values indicate frequent
and repetitive sharp oscillations in the signal between the two sides of the threshold value, which can be an indicator of more focal spikes found in
ASD EEG signals.
FIGURE 6

Error bar plots for Tsallis entropy in all EEG channels. The results show significantly elevated entropy values for the children with autism compared to
the control children. The explanation is the same as for Rényi entropy. However, we found that there was no in-between variation of entropy values
in the ASD group since the entropy for all the children with autism reaches the asymptotic maximum value for Tsallis entropy.
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group. This is shown in Table 1, as we found significant statistical

differences in 14 channels confirmed by both tests. This confirms

the higher level of arousal and consciousness during a resting state

in the TD group because of the wakefulness in this group thanks to

elevated alpha activity during rest.

Similar results can be noticed from spectral entropy (Figure 3),

where in 13 channels there were significant differences confirmed

by both tests (Table 1). This entropy, the same as the brain rate, is a

metric computed in the frequency domain, and the results from

both of these features were correlated, therefore they can be

interpreted in the same way.
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While permutation entropy, HFD, and sample entropy did not

show significant results overall, showing significant differences in a

small number of EEG channels, other features such as LZC, Rényi

entropy, and Tsallis entropy had very significant results (Tables 1,

2). These results were visualized by the error-bar plots shown in

Figures 4–6. There were higher values in the ASD group across all of

the EEG channels for both entropy measures, meaning there was a

high degree of disorder in the EEG signals of the children with

autism. LZC, however, had lower values in the ASD group, meaning

the EEG signals in ASD were more predictable and followed

a pattern.
FIGURE 7

Relative power spectra for the control group. Increased alpha activity can be found in the alpha band, specifically in the 10-11 Hz range, indicating
arousal and awareness in the children with typical development.
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FIGURE 8

Relative power spectra for the autism group. Decreased or no activity can be found in the alpha band, specifically in the 10-11 Hz range, indicating a
low level of arousal in the children with autism.
TABLE 1 P-values for brain rate, permutation entropy, sample entropy, and spectral entropy.

EEG channel
Brain rate Permutation entropy Sample entropy Spectral entropy

K–S Mann–Whitney K–S Mann–Whitney K–S Mann–Whitney K–S Mann–Whitney

Fp1-Av 0.013 0.001* 0.001* <0.001* 0.138 0.288 0.053 0.021

Fp2-Av 0.007 0.001* 0.011 0.003 0.135 0.076 0.009 0.001*

F7-Av 0.096 0.034 0.087 0.014 0.914 0.943 0.068 0.083

F3-Av 0.007 0.002* 0.026 0.016 0.024 0.162 <0.001* 0.002*

Fz-Av 0.188 0.292 0.275 0.798 0.536 0.817 0.060 0.086

(Continued)
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TABLE 2 P-values for Higuchi fractal dimension (HFD), Lempel–Ziv complexity (LZC), Rényi entropy, and Tsallis entropy.

EEG channel
HFD LZC Rényi entropy Tsallis entropy

K–S Mann–Whitney K-S Mann–Whitney K–S Mann–Whitney K–S Mann–Whitney

Fp1-Av 0.001* 0.002* <0.001* <0.001* <0.001* <0.001* <0.001* <0.001*

Fp2-Av 0.194 0.068 <0.001* <0.001* <0.001* <0.001* <0.001* <0.001*

F7-Av 0.938 0.494 <0.001* <0.001* <0.001* <0.001* <0.001* 0.009

F3-Av 0.084 0.125 <0.001* <0.001* <0.001* <0.001* <0.001* <0.001*

Fz-Av 0.120 0.647 <0.001* <0.001* <0.001* <0.001* <0.001* <0.001*

F4-Av 0.407 0.097 <0.001* <0.001* <0.001* <0.001* <0.001* 0.113

F8-Av 0.650 0.635 <0.001* <0.001* <0.001* <0.001* 0.004 0.950

T3-Av 0.027 0.003 <0.001* <0.001* <0.001* <0.001* <0.001* 0.143

C3-Av 0.498 0.427 <0.001* <0.001* <0.001* <0.001* <0.001* <0.001*

Cz-Av 0.066 0.594 <0.001* <0.001* <0.001* <0.001* <0.001* 0.172

C4-Av 0.204 0.432 <0.001* <0.001* <0.001* <0.001* <0.001* 0.005

T4-Av 0.063 0.035 <0.001* <0.001* <0.001* <0.001* <0.001* <0.001*

T5-Av 0.617 0.371 <0.001* <0.001* <0.001* <0.001* <0.001* <0.001*

P3-Av 0.805 0.936 <0.001* <0.001* <0.001* <0.001* <0.001* <0.001*

Pz-Av 0.390 0.684 <0.001* <0.001* <0.001* <0.001* <0.001* <0.001*

P4-Av 0.460 0.520 <0.001* <0.001* <0.001* <0.001* <0.001* <0.001*

T6-Av 0.987 0.923 <0.001* <0.001* <0.001* <0.001* <0.001* 0.016

O1-Av 0.629 0.721 <0.001* <0.001* <0.001* <0.001* <0.001* <0.001*

O2-Av 0.403 0.582 <0.001* <0.001* <0.001* <0.001* <0.001* 0.296
F
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The p-values marked with * are statistically significant after the Bonferroni correction to address the multiple comparison problem.
TABLE 1 Continued

EEG channel
Brain rate Permutation entropy Sample entropy Spectral entropy

K–S Mann–Whitney K–S Mann–Whitney K–S Mann–Whitney K–S Mann–Whitney

F4-Av 0.012 0.001* 0.190 0.115 0.317 0.183 0.018 0.001*

F8-Av 0.736 0.373 0.068 0.031 0.410 0.571 0.790 0.702

T3-Av <0.001* <0.001* 0.004 0.001* 0.008 0.002* <0.001* <0.001*

C3-Av 0.004 <0.001* 0.982 0.916 0.052 0.215 0.002* <0.001*

Cz-Av 0.076 0.095 0.184 0.367 0.396 0.753 0.028 0.009

C4-Av 0.007 <0.001* 0.329 0.520 0.396 0.684 0.002* 0.001*

T4-Av 0.001* <0.001* <0.001* 0.003 0.102 0.170 0.002* 0.001*

T5-Av 0.002* 0.002* 0.980 0.936 0.621 0.422 0.001* <0.001*

P3-Av 0.007 0.001* 0.650 0.571 0.431 0.394 0.007 0.001*

Pz-Av 0.067 0.015 0.149 0.494 0.363 0.576 0.053 0.022

P4-Av 0.002* <0.001* 0.275 0.641 0.400 0.857 0.016 0.003

T6-Av <0.001* <0.001* 0.572 0.582 0.167 0.418 <0.001* <0.001*

O1-Av 0.003 <0.001* 0.929 0.997 0.149 0.078 <0.001* <0.001*

O2-Av 0.111 0.015 0.370 0.778 0.877 0.883 0.089 0.021
The p-values marked with * are statistically significant after the Bonferroni correction to address the multiple comparison problem.
frontiersin.org

https://doi.org/10.3389/fpsyt.2025.1505297
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Tenev et al. 10.3389/fpsyt.2025.1505297
Discussion

The results of this paper for the spectral features and entropy

confirmed the previous results obtained by other authors

mentioned in the Introduction.

The spectral features analysis showed that the resting-state EEG

of TD children had high alpha activity during rest because of the

wakefulness and higher level of arousal, while children with autism

showed low or no activity at all. This elevated alpha activity

influenced the higher values of brain rate and spectral entropy.

Higher values for Rényi entropy and Tsallis entropy were due to

the increased neural noise captured by the EEG signals in the

children with autism, which was also mentioned in the

Introduction. Since entropy is a measure of the degree of disorder

in a system, and the noise itself elevates this disorder, these results

were expected and showed impaired neural synchronization,

increased randomness, uncertainty, and complexity in ASD.

Furthermore, Tsallis entropy showed interesting results since

there was no variability among the children with autism across all

the channels. This was because it reached an asymptotic maximum

value of entropy (77) and the properties of sub-extensive Tsallis

entropy (entropic index q = 1.5) (78). For the TD children, the in-

between variability could be because of the different states of

awareness, wakefulness, and thoughtfulness during rest in each

child with typical development. Future research should be

conducted to optimize the entropic index q and achieve better

false positive rates in all channels (Figure 6). In general, entropy

features capture the amplitude variations and distribution across

the signal. The higher entropy values in the ASD group indicated a

more “noisy” signal with more variations in the amplitude, while

lower entropy in TD children indicated a more “smooth” signal for

this group.

LZC, however, showed lower values in the ASD children than

in the TD children. However, it is a complexity measure that

differs from entropy complexity and should not be confused with

it. Entropy is a measure of complexity that considers the

probability distribution of the signal amplitude values, capturing

the noise and randomness in the brain dynamics that manifest as

cognitive and behavioral dysfunction in autism. LZC is calculated

after binarizing the signal, and binarizing a time series can affect

its complexity by reducing the amount of information and

diversity in the signal. By using a threshold to assign binary

values to the data points, one is essentially discarding some of

the amplitude variations on both sides of the threshold value. This

can make the signal more regular and predictable, and therefore

less complex. However, the binarization affects the signals from

both groups, hence the lower LZC in the autism group could be

because of the repetitive sharp oscillations around the threshold

value and alternating between 0 and 1 more regularly and

periodically. That could explain the increased focal spikes and

epileptic discharges found in ASD (25–28, 79), and should be

investigated further as a potential biomarker. The higher LZC in

the TD children was because of more random oscillations around

the threshold value and could indicate the state of wakefulness and

thoughtfulness during rest.
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Conclusion

In conclusion, we want to mention that all non-linear features

are relative and depend on the input parameters such as embedding

dimensions, window lengths, a values, and q values, meaning that

further research should be conducted to optimize the results based

on different parameter values. Nevertheless, our results showed that

the ASD group had a lower brain rate, higher Tsallis entropy and

Rényi entropy, and lower Lempel–Ziv complexity than the TD

group, capturing a low level of arousal in the ASD children,

increased randomness and noise, and the existence of focal spikes

in the EEG signals of children with autism. The results from this

study can be used as a feature selection to build future machine

learning models on the topic.
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