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A stochastic model for affect
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Background: Affect dynamics, or variations in emotional experiences over time,

are linked to psychological health and well-being, with moderate emotional

variations indicating good psychophysical health. Given the impact of emotional

state on cardiac variability, our objective was to develop a quantitative method to

measure affect dynamics for better understanding emotion temporal

management in Anorexia Nervosa (AN).

Methods: The study proposed an experimental and methodological approach to

evaluate physiological affect dynamics in clinical settings. It tested affective

transitions and temporal changes using emotional images from the International

Affective Picture System (IAPS), examining physiological characteristics of a patient

with AN. The methodology involved calculating a heart rate variability index, e.g.,

RMSSD, and using it in a Discrete Time and Discrete Space Markov chain to define,

quantify, and predict emotional fluctuations over time.

Results: The patient with Anorexia Nervosa showed a high likelihood of

transitioning from positive to negative emotional states, particularly at lower

arousal levels. The steady state matrix indicated a tendency to remain in highly

activated pleasant states, reflecting difficulties in maintaining emotional balance.

Conclusions: Employing Markov chains provided a quantitative and insightful

approach for examining affect dynamics in a patient with AN. This methodology

accurately measures emotional transitions and provides a clear and interpretable

framework for clinicians and patients. By leveraging Markovian indexes, mental

health professionals may gain a comprehensive understanding of emotional
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fluctuations’ patterns. Moreover, graphical representations of emotional

transitions may enhance the clinician-patient dialogue, facilitating a clearer

emotional and physiological profile for the implementation of personalized

treatment procedures.
KEYWORDS

affect dynamics, heart rate variability, Markov chain, psychometrics, stochastic model,
neuroscience, Anorexia Nervosa
1 Introduction

Increasing empirical evidence supports the notion that affect

dynamics - as the temporal fluctuations of our emotional

experiences – which is intricately linked with well-being and

psychological health (1–3). This burgeoning field of research

indicates that not all emotional experiences are created equal, and

the way our emotions change and flow over time can provide

critical insights into our overall mental health (4–7). In general,

medium variability in affective dynamism is associated with good

psychophysical health; the opposite effect is observed for extreme

states of too high variability or extreme rigidity (e.g., inability to

switch from one affective state to another) (8–11). The extreme in

affective dynamism is opposite on a descriptive level but equal from

a psycho-physiological point of view and have been deeply

investigated in the realm of psychiatric or neurological disorders

(8, 12). Specifically, affect dynamics have been studied to gain a

better understanding of how individuals with conditions such as

bipolar disorder, depression, anxiety and eating disorders,

experience and feel emotion in time (13–16). In eating disorders,

most of all in AN, contemporary theories acknowledge the

importance of disordered emotional functioning in the disorder’s

development and maintenance [e.g., (17, 18)]. AN is characterized

by symptoms of extreme mental and emotional rigidity, making it a

compelling case for studying issues in emotion regulation and affect

dynamics. Individuals with AN often exhibit a pronounced inability

to adaptively manage and transition between emotional states,

reflecting significant challenges in emotional flexibility. This

rigidity is manifested in both cognitive and emotional domains,

leading to a limited range of emotional experiences and heightened

difficulty in coping with negative affect (10, 19, 20). Most recent

studies have focused on affective variability- pattern of frequent and

large mood shifts over time- or on its opposite affective inertia-

emotions that are resistant to change or shifts over time (18, 21, 22).

The study of Vansteelandt and colleagues (17) investigated affect

variability using Experience Sampling Method protocol in patient

with AN restricted and Bulimia Nervosa (BN). Results of this

exploratory study suggest that the diagnostic groups have the

same mean levels of affect, but the AN restricted group showed a

less variability in the quality of their affect. Recently, also Williams-

Kerver et al. (23) demonstrated, using Experience sampling

Method, that participants in the AN and BN groups experienced
02
significantly greater Negative Affect (NA) intensity and better

emotion differentiation- the ability to discriminate distinct

emotional states- than participants in the Binge Eating Disorders

(BED) group. Alternatively, the BN group demonstrated

significantly greater NA variability than the AN group and

greater NA inertia than the BED group.

All studies described relied most on the Russell’s circumplex

model (24), and the predominant experimental design methodology

was Ecological Momentary Assessment (EMA) (25). This method

allowed collecting real-time data in naturalistic settings, providing a

valuable window into individuals’ emotional lives (26–28). EMA

involves prompting patients to report on their feelings, behaviors,

and environmental context at random times throughout the day,

thereby offering a rich, detailed account of affect dynamics (29).

Although EMA is an ecological and longitudinally accurate

instrument, it necessitates high participant compliance, that is, the

person must be able (and willing) to respond to most of the

responses over time. Furthermore, EMA can only delimit and

describe the long-term time series of affective states reported by

the participant’s responses, assessing mostly the mood; it cannot

provide information about short time affective transitions that the

person can make during the day or week. Finally, to the best of our

knowledge, no one study assesses the physiological characteristic of

affect dynamics in eating disorders using EMA, may be due to the

compliance and the difficulty of the continuous physiological

signals (30–32). Incorporating Heart Rate Variability (HRV),

particularly RMSSD, as a physiological signal for affect dynamics

is supported by extensive research linking it to autonomic nervous

system function and emotional regulation (33). Studies by Thayer

et al. (34) and Schmalbach et al. (35) demonstrate that HRV is a

robust indicator of emotional regulation and stress resilience,

underscoring its relevance for psychological and neurological

assessments. Particularly, research by Appelhans and Luecken

(36) highlights RMSSD’s specificity in reflecting parasympathetic

activity, making it a common measure for estimating the variations

in heart rate that are mediated by the vagus nerve and therefore it

represents an ideal measure for studying affective dynamics. Recent

research underscores the validity of HRV, particularly RMSSD, as a

physiological index in psychiatric conditions, linking it to emotional

regulation and neurophysiological changes across disorders such as

depression and anxiety. HRV reflects the body’s capacity for

emotional and physiological regulation, with lower HRV
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associated with higher symptom severity in psychiatric disorders

(12, 35). These findings support the use of HRV in monitoring

emotional regulation, offering a rationale for its selection as a

physiological index in our study on affect dynamics. Adding

RMSSD as a key physiological measure in our study is further

justified by its mathematical significance in quantifying short-term

variations in heart rate. RMSSD stands for the Root Mean Square of

Successive Differences between normal heartbeats. It’s calculated

using the formula:

RMSSD =  

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N − 1 o
N−1

i=1
(RRi+1 − RRi)

2

s

where (RRi) represents the duration of one heartbeat to the next

(in milliseconds), and (N) is the total number of heartbeats

analyzed. This formula captures the variability in heart rate over

short periods, making it an excellent index for assessing autonomic

nervous system function, particularly the parasympathetic branch.

RMSSD’s focus on short-term variability provides a sensitive

measure of vagal tone, a key aspect of emotional and

physiological regulation.

For this, reason we developed and implemented a new

experimental and methodological technique to study AN’s affect

dynamics with physiological signals (e.g. RMSSD) in the clinical

setting. The goal is to create a simple and effective assessment of

affect dynamics, investigating all possible affective transitions and to

measure it with Discrete-Time and Discrete Space Markov

processes. While previous techniques have focused on group-level

data analysis using panel data methodologies, thus, losing sight of

the individuality and uniqueness of individual emotional

experiences, here, our methodology allows for a personalized,

patient-centered perspective. The experimental design involves

the emotive images’ visualization of the International Affective

Picture System (IAPS), (37) to stimulate all possible affective

transitions, based on Russell’s Circumplex model (4). HRV is

measured during all the experimental session, and the RMSSD is

used into this novel methodological approach of analysis based on

Discrete Time and Discrete Space Markovian stochastic processes.

Markov chains are mathematical systems that describe a sequence

of possible events, where the probability of each event depends only

on the state attained in the previous event (38). In the context of

affect dynamics, Markov chains can be employed to analyze and

predict emotional state transitions over time (39), utilizing

physiological measures like RMSSD to understand the

probabilistic nature of emotional fluctuations. This approach can

effectively capture the dynamic and stochastic nature of emotional

fluctuations over time, offering insights into how emotional states

evolve (4, 8, 40, 41).

This method stands out for its potential to provide

individualized and detailed insights into the emotional patterns of

individuals affected by Anorexia Nervosa, offering new perspectives

on the relationship between emotions and physiology in these

disorders. With this approach, we aspire to develop more effective

experimental and methodological tools for monitoring and

intervention, enhancing the understanding and treatment of these

complex conditions. Through the simple and quantitatively
Frontiers in Psychiatry 03
idiographic use of the grapho describing probability transitions, a

comprehensive profile can be drawn up that is easy for the patient

and the clinician to interpret.
2 Materials and methods

2.1 Participant

A female patient with Anorexia Nervosa with restricts behavior

was selected as study’s participant. She is hospitalized at the IRCCS

Istituto Auxologico Piancavallo for two weeks.

The patient affected by Anorexia Nervosa (AN) was a 35-year-

old woman. She was admitted at the Unit of Eating Disorders of

Istituo Auxologico Italiano in Piancavallo (Italy) in December 2023

because of severe malnutrition (Body mass index 9.7 kg/m2). She

has suffered from AN since she was 19 years old. The

neuropsychological evaluation showed a good mood stability with

the ongoing therapy: Aripiprazole 5 mg/day, Delorazepam 1 mg/ml

5gtt+10gtt+25gtt/day, Sertraline 50 mg/day, Trazodone 60mg/ml

15gtt/day. During the 4 weeks of hospitalization the patient

underwent a rehabilitation program based on refeeding in a

medical setting. The refeeding program is implemented by a

multidisciplinary team of doctors, dietitians, educators, and

psychologists, with daily individual meetings.

The patient also went through a standardized rehabilitation

program directed by a physiotherapist through exercises to improve

her walking ability and endurance, and balance control an hour a

day, from Monday through Saturday.

She was not given the planned pharmacological therapy close to

the administration of the emotional stimuli and detection of

physiological parameters.

The study was conducted in accordance with the Declaration of

Helsinki, having been approved by the Ethics Committee of IRCCS

Istituto Auxologico Italiano (Prot. 2022_10_25_05).
2.2 Inclusion criteria

The participant gave written informed consent before

participating in the study. In particular, to be included in the

study, participant criteria were:
- Normative performance on three neuropsychological tests,

respectively phonemic (Corrected Score = 33,16) and

semantic fluency (Corrected score = 50,97, (42), Trail

Making Test (Part A corrected score = 39; Part B corrected

score = 71; Part B-A corrected score = 32), (43) and Tower of

London Test (Time Score = 28; Accuracy score = 33), (44).

- Absence of additional concomitant pathological conditions,

thus, achieving results within the expected range on

neuropsychological tests investigating general cognitive

functioning (MMSE: score = 25 with a cut-off = 21, (45),

short-term and long-term mnestic abilities (Digit Span

Forward: corrected score = 5,50, (46); Rey Auditory Verbal
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Learning Test: Immediate recall corrected score = 32;

Deferred recall corrected score = 5,40, (47) attentional

capacities (TMT Test: part A corrected score = 67; (43)

and executive functions (Clock Drawing Test corrected score

= 10,50, (48); Frontal Assessment Battery corrected score =

14,49, (49); Coloured Progressive Matrixes corrected score =

23,50, (50).
The psychometric tools were administered to confirm

normative cognitive functioning and exclude conditions that

could confound the study’s focus on affect dynamics. These

assessments ensured the observed patterns were specific to

Anorexia Nervosa.
2.3 Procedure

The study followed a within-subject design to examine affect

dynamics using affective induction through IAPS (37). In

accordance with Russel’s Circumplex model, a total of twelve

transitions were established between distinct blocks of arousal-

valence (51). These transitions encompass horizontal, vertical,

and oblique movements (see Figure 1). The visual stimuli were

presented via Desktop monitor on a 42-inch screen while sitting

comfortably in a chair with armrests and headrests to minimize

head and arm movements, which inject noise into the data captured

by the sensors. We positioned the chair about one meter from the

monitor. The participant was exposed to 156 images from the IAPS

dataset, arranged into 13 blocks of 2 minutes, mimic 12 transitions

between arousal and valence states, as outlined by Russel’s
tiers in Psychiatry 04
Circumplex model (26 total minutes equivalent to 1560 seconds).

Each block contains 12 images, displayed for 10 seconds, with

images selected based on high (>6) or low (<4) arousal/valence

Likert scores from the Self-Assessment Manikin (SAM) (52). The

participant had a unique random images sequence, to avoid

temporal or ceiling effect in emotional response. This design

ensured a comprehensive exploration of emotional transitions,

with the sequence of image presentation randomized to avoid

order effects.

During the entire experimental session, heart rate variability

was measured, with electrocardiogram (ECG). A baseline phase was

run before and after each experimental session, observing a fixed

crossing for 2 minutes (120 seconds), taking account intra-

variability measure of the participant.
2.4 Recording of
psychophysiological signals

The data on the autonomic nervous systems were collected by

measuring physiological responses, i.e., Electrocardiogram.

Embletta MPR acquired these responses. The responses were then

processed with custom software developed using MATLAB 9.13.0

(R2023a) (The Mathworks, Inc.; Natick, MA, USA). Every channel

was acquired synchronously at 1000 Hz. Visual inspection is used to

the artefact correction option, instead artefacts due to ectopic beats,

missed beat detections, etc. are corrected adapting an appropriate

window correction level (threshold for detecting artefact beats)

which removes the artefacts but does not distort normal

RR intervals.
FIGURE 1

Experimental Design: Cardiac activity is recorded using ECG while observing IAPS images. There are 12 possible transitions between affective states,
leading to affect dynamics. The transitions consist of horizontal movements (AB-CD-BA-DC) denoted by yellow arrows, vertical movements (AC-
BD-CA-DB) shown by green arrows and diagonal movements (AD-BC-DA-CB) denoted by orange arrows.
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2.5 Psychophysiological signal processing

For ECG analysis, cardiovascular analysis is focused on the RR

interval, representing the time between successive heartbeats, was

used to derive heart rate (HR) and assess autonomic function. This

conversion provided an HR mean (in beats per minute) and an

equivalent RR mean (calculated as 60,000/HR), offering insights

into heart rate variability and cardiovascular health.

RMSSD is a key time-domain measure used in heart rate

variability (HRV) analysis to quantify the short-term variability of

heart rate, reflecting the beat-to-beat variance in heart rate. It is

calculated by taking the square root of the average of the squared

differences between successive normal heartbeats over a specified

period. This measure is primarily used to estimate vagally mediated

changes reflected in HRV, making it a valuable index for assessing

autonomic nervous system function, especially parasympathetic

activity. RMSSD is considered a reliable indicator of the

autonomic nervous system’s resilience and adaptability to stress.

While typically a 5-minute recording period is conventional for

HRV analysis, recent research supports the validity of using ultra-

short-term periods, such as 10 seconds, for RMSSD calculation,

providing a practical approach for both clinical and research

settings. This adaptability in measurement duration facilitates the

efficient assessment of autonomic function in various contexts,

emphasizing RMSSD’s utility in capturing the dynamic nature of

autonomic nervous system activity related to emotional and

physiological states (53–55).
2.6 Data analysis with
Markovization process

To better understand the complex and ever-changing nature of

emotional transitions, we used Discrete Time and Discrete Space

Markov chains, a mathematical framework for modeling sequential

processes with intrinsic transitions (38, 56, 57). The changes are not

entirely deterministic, but instead are regulated by probability

distributions. A Discrete-time and Discrete space Markov chain is

characterized by a set of states and a transition matrix P. We call a

discrete-states stochastic processes a sequence of random variables

X0, X1, … Xn where each Xn is a discrete random variable taking

values in a set S, called the state space. The set S is finite or at most

countably infinite. Without losing generality, we assume that S is a

subset of the relative integers Z.
The transition matrix P for a Markov chain with Xn states is an

n×n matrix where each element P represents the probability of

transitioning from state i to state j in one discrete step (58). Inside

the transition matrix, the most important Markovian property is

conditional probability that the system transitions to state xn+1 at

time n+1, given that it was in state xn at time n. The term Pij denotes

how the system evolves over time based on its current state (59).

P(Xn+1 = xn+1j Xn = xn) = Pij

Essentially, the future of the system is determined by its current

state rather than the specific route it took to get that condition. Note
Frontiers in Psychiatry 05
that we define this probability as a function of just i and j, but of

course, it could depend on n as well. The time homogeneity

restriction mentioned in the previous footnote is just the

assumption that this probability does not depend on the time n,

but rather remains constant over time.

The use of Markov chains is inspired by their ability to express

probabilistic transitions between discrete states - in this case stress

(A), engagement (B), boredom (C), and relaxation (D), where the

probability of each event depends only on the state attained in the

previous event.

In the context of affect dynamics, Markov chains can be

employed to analyze and predict emotional state transitions over

time, utilizing physiological measures like RMSSD to understand

the probabilistic nature of emotional fluctuations (40). RMSSD is

one of the most suitable indexes for heart rate variability in short

term: it aligns perfectly with the properties of Markovian chains, a

stochastic model of transition, which considers pairs of transitions

one at a time, disregarding the path preceding that transition

(60, 61).

The Markov chain uses a transition matrix as its primary tool

for describing the probability of moving between those affective

states: It is quadratic matrix, in this case a 4*4 matrix, considering

the 4 affective states. Hence, 12 elements represent probability of

transition, and 4 self-transition indexes represent the inside

variability of four quadrants (e.g., AA-BB-CC-DD). The 12

transition values could be divided in vertical transition (e.g., AC-

CA-BD-DB), horizontal one (e.g., AB-BA-CD-DC), oblique one

(AD-DA-BC-CB) (Figure 2).

Hence, we are able to describe all possible affective transitions of

the participant, considering the outward and return of each, and

also the variability inside each affective state (Figure 2). To express

the variability between and within states, we considered the 30

seconds between two transitions (120 ± 15) and the 30 seconds

between the first blocks presented by each state (60 ± 15).

The Markov chain, due to its stochastic property, necessitates

that the sum of each row in the transition matrix is equal to 1:

o
n

j=1
Pij = 1 for all i

For this reason, each RMSSD for 12 transitions is relativized

and included into the Markov chain (D indexes). These transition

probabilities within each row denote the likelihoods of transitioning

from a given state to all feasible states within the system (Figure 3).

Furthermore, the Markov chain is also a predictive property,

calculating the steady states vector values. The steady state

distribution provides insights into the long-term behavior of the

system, offering insights into the equilibrium distribution of states

after a large number of transitions.

The steady states iterative calculation is not arbitrary but are

significantly influenced by two factors: the initial state vector (p0)

and the participant-specific transition matrix (P). The initial state

vector (p0) posits an a priori probability of the participant’s presence

in one of the four quadrants, serving as the starting point for the

Markov chain: i.e. the participant before being subjected to stimuli is

equally likely to be in one of the four affective states.
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FIGURE 3

Markovization process.
FIGURE 2

Example of transition between affective state (A, B) and the inside variability of each quadrant.
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For each state I ∈ S, we denote by p0(i) probability P{X0=i} that

the Markov chain starts out in state i. Formally, p0 is a function

taking S into the interval [0,1] such that:

p0(i)  ≥  0 for all i ∈ S, oi∈Sp0(i)   = 1

Equivalently, instead of thinking of p0 as a function from S to

[0,1], we could think of p0 as the vector whose i-th entry is p0 (i)=P
{X0=i}. This is the probability distribution of the Markov chain at

time 0.

Our initial vector considered equiprobability between initial

affective states (PA=0.25, PB=0.25, PC=0.25, PD=0.25). Through

iterative multiplication (10 steps) of the initial states vector (p0)
and the transition matrix (P), we found the steady states. To see this

numerically, we compute p0 * P
n for increasing n to check for

convergence to steady states (p).
Thus, the steady states serve as an updated version of the

original matrix, modifying the initial equilibrium based on the

empirical affective transitions experienced by the participant: They

describe the likelihood of discovering one of the four states after

attempting ten different hypothetical transitions. The iterative

process between the initial states vector of probability and the

transition matrix, culminating in the steady states, underscores the

dynamic interplay between predisposition and experience in

shaping the affective journey of individuals. This calculation of

steady states is not the only method available (e.g., eigenvalue

method, also used in “process data” in the Supplementary

Materials’ section), but we believe it is the most accessible and

readily applicable. All methods used have the same results. Finally,

In the Supplementary Material, we provide a detailed explanation of

all algorithms and the methodology used to calculate Discrete Time

and Discrete Space Markov Chains.

A comprehensive Word file is available, guiding users on how to

implement the experimental design and compute transitions for
Frontiers in Psychiatry 07
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Markov Chain approach.
3 Results

The results are based on the Markovization process, which

translates the variability measured by RMSSD into probabilistic

terms. The RMSSD is calculated in milliseconds, for each 30’’

transition and for each singular 30’’ self-transition. This approach

assesses the participant’s likelihood of variation during transitions

between different affective states and the variability within the self-

transition (e.g., AA-BB-CC-DD). The Figure 4 presented the

value of RMSSD of each transition, before and after the

Markovization process.

After a Markovization process, we computed twelve RMSSD

transitional indexes (vertical, horizontal, oblique), four static self-

transition indexes, and four predictive indexes of steady state.

Vertical probability indexes (AC-CA-BD-DB) represent the

percentage of transitions between affective states with the same

valence levels but opposing arousal levels (high-to-low and vice

versa). The horizontal probability indexes (AB-BA-CD-DC) show

changes between emotional states that have the same level of

arousal but differ in valence (from positive to negative and vice

versa). The oblique indexes (AD-DA-BC-CB) indicate the

likelihood of transitions between emotional states that involve

changes in both arousal and valence. The self-transition indexes

(AA-BB-CC-DD) suggest that the participant’s affective state is

consistent and unchanging. Steady states represent the likelihood of

a person being in a specific emotional state after n step,

hypothetically moving between the four quadrants ten steps.

Upon analyzing Figure 5, discrepancies in the probability of

moving from one emotional state to another were noticeable.
FIGURE 4

RMSSD values and Markovization processes (expressed in both decimal form and as a percentage) of the AN patient, with also its mathematical
grapho representation.
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Self-transition indexes indicate that the individual with

anorexia is more likely to maintain an activated (both positive

and negative) emotional state compared to other states (P AA = 0.23;

P BB = 0.24; P CC = 0.13; P DD = 0.19).

Vertical transitions from high to low activation exhibited a

higher probability (for both degrees of valence) than the opposite

ones (P AC = 0.26; P CA = 0.13; P BD = 0.32; P DB = 0.24).

When transitioning horizontally, there was a clear difference in

the probability of moving from positive to negative states compared

to the reverse. Particularly, during periods of low arousal, shifts

from positive emotions to negative states were more probable (P AB

= 0.22; P BA = 0.23; P CD = 0.15; P DC = 0.42).

The oblique shifts showed more imbalances in transitioning

between the four quadrants, with a greater likelihood of moving

from highly activated negative states to low-activated positive states

and from low-activated negative states to highly activated positive

states (P AD = 0.28; P DA = 0.15; P BC = 0.21; P CB = 0.58).

Observing Figure 5, it is also possible to state that the

participant is predicted to experience a significant activation state

with positive valence following repeated shifts between emotional

states, as indicated by the steady state prediction vector (P A = 0.18;

P B = 0.31; P C = 0.24; P D = 0.23).
4 Discussion

Although the impact of affective dynamics in well-being and

health has been studied (62), addressing the physiological layer of

this process, also involving an AN patient, poses technical and

methodological issues. Our experimental and methodological aim

was to develop a patient-centered assessment of dynamism of

affective states. First, we assessed the physiological correlate of

affect dynamics during the viewing of emotional pictures from

the IAPS database, using a laboratory experimental design. Then,

using RMSSD indexes into a Discrete-Time and Discrete Space
Frontiers in Psychiatry 08
Markov Chain, we were able to compute the probability of

transitioning between various emotional states or remaining in a

specific state.

Utilizing the Markov chain grapho, a quantitative idiographic

approach, we noticed that the patient with anorexia nervosa

exhibited particular patterns of behavior. When experiencing

lower levels of arousal, the patient was 41% more likely to switch

from positive emotional states (such as relaxation) to negative ones

(such as boredom), showing strong physiological reactivity. This

finding corresponds to other research that emphasizes the

difficulties that persons with AN have in regulating their

emotions and often encountering heightened negative affect (NA)

when exposed to stimuli (18, 63). In conditions of heightened

arousal, more balance was observed. This could be attributed to

the body’s efforts to maintain homeostasis during stress or

engagement, resulting in more regulated emotional responses.

Functional MRI studies show that during high arousal, there is

increased regulation in brain regions responsible for emotional

control, supporting the observation of more balanced emotional

states in these conditions (64).

Vertical axis showed increased variability during the shift from

high to low activation in conditions with positive valence. Some

transitions showed extremely reduced probabilities, particularly

when transitioning from low to high activation levels.

As oblique transitions were considered, there was a strong

likelihood that the patient would shift from negative to positive

emotional states. Observations differed from the outcomes in

horizontal transitions, which showed a higher likelihood of moving

from positive to negative affective states. To transition from a negative

to a positive affective state, the patient needed to regulate their level of

activation by switching between low and high arousal. This trend

aligns with prior research, which demonstrates the maladaptive

techniques for regulating emotions in individuals with AN, such as

suppression and avoidance. The need for extreme changes in emotion

regulation may suggest the presence of maladaptive methods (18).
FIGURE 5

On the left side: Descriptive Markov chain containing transition values: Green arrows represent vertical transitions, yellow arrows depict horizontal
transitions, and orange arrows signify oblique transitions. The percentage probability of RMSSD transitioning between states is indicated on each
arrow. On the right side: Predictive Markov chain with initial state vector (p0) and steady state after 10 steps.
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The self-transition indexes revealed a greater probability of the

patient staying in quadrant B, which represented highly engaged

positive emotional states. The likelihood of staying in the other

quadrants diminished, resulting in lower variability and reduced

sensitivity to these conditions. This observation is consistent with

research findings that suggest individuals with anorexia nervosa

demonstrate increased functional connectivity in certain brain

regions linked to emotional regulation, such as the dorsolateral

prefrontal cortex (DLPFC), while simultaneously displaying

decreased connectivity in other regions. This disparity adds to their

emotional inflexibility and the inclination to persist in certain

emotional states for extended durations, thereby reducing the range

and responsiveness to shifting emotional circumstances (64, 65).

The steady state matrix displayed a reduced balance among the

four quadrants. After ten repetitions of emotional transitions, the

patient with AN was more likely to migrate to a highly activated

pleasant emotional state, followed by the possibility of experiencing

low activating negative emotional states. Once more, our

observations align with the findings of Wayda-Zalewska et al.

(18), indicating that individuals with AN struggle to maintain

psychological balance.

The AN patient exhibited a higher likelihood to engage in

oblique transitions, involving changes in arousal and valence. This

suggested the requirement of more opposing emotional inputs to

facilitate a shift from one emotional state to another. The variability

indexes of the patient with anorexia nervosa were diversified: her

indexes exhibited substantial variation in some cases and were

nearly absent in others, revealing various physiological response

patterns based on the emotional transition’s characteristics.
5 Conclusion

Emotional difficulties in AN include inappropriate emotion

regulation (ER) and expression (66), increased negative affect

(NA) in response to unpleasant stimuli (63), and alexithymia

(67). Among various emotional experience patterns, NA is critical

for the development and maintenance of AN. Studies show that

higher daily levels of NA increase the likelihood of food restrictions.

NA can also increase following specific AN behaviors such as loss of

control (LOC) eating, purging, a combination of LOC and purging,

or weight checks. Conversely, NA levels tend to fall after drinking

fluids or engaging in physical exercise. Research has focused on the

states of NA and their specific manifestations (e.g., anxiety or

tension) in AN, along with behaviors such as dietary restriction,

LOC, or purging, as well as frequent weighing (18).

To contribute to the advancement of affect dynamics’

assessment research, we introduced a novel experimental and

methodological approach that examines cardiac variability,

specifically RMSSD, in a clinical and laboratory setting. (68, 69).

Using standardized IAPS emotional imagery, researchers can
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effectively investigate affective transitions in a controlled manner,

allowing the detection of cardiac variability parameters.

Using an index like RMSSD, one of the most important

indicators for cardiac variability, we could evaluate the short-term

variability of the various affective transitions. Furthermore,

employing Discrete Time and Discrete Space Markov chains

enables us to statistically translate the variability associated with

transitions into indexes that show the likelihood of variation

between states. The Markov matrix measures descriptive indexes

—those calculated on the transition matrix, such as verticals,

obliques, horizontals, and trait states—as well as predictive

indexes—such as steady states—resulting from the matrix product

of the transition matrix and the initial state vector (39). Descriptive

indexes provide a snapshot of the patient’s current affective state,

while predictive indexes forecast the likelihood of being in one of

four affective states after multiple transitions. Empirically, we’re

curious about how the participant reacts to an emotional storm

caused by the encountered emotional shifts. Will the patient feel

stressed, relaxed, or engaged?

The combination of an experimental design with analytical

techniques like Markov matrixes creates a patient-centric approach,

providing detailed insights into a patient ’s affectivity,

complementing for a holistic understanding of a patient’s

emotional health. Our findings suggest that understanding affect

dynamics through a combination of Markov Chains and HRV

might improve current therapeutic approaches for treating AN.

This would enable the implementation of an emotional assessment

that is experimentally simple to measure and clinically simple to

interpret for both the clinician and the patient. Indeed, the graph of

transitions and steady states are quantitative idiographic methods

that provide an instant comprehension of the patient’s

emotional dynamism.

The current study has limitations by its nature as a case study,

which restricts the generalizability of the observed results. Further

studies should employ larger and more varied samples to improve

generalizability. Extending this methodology to people with

differing severities of AN, comorbidities, or other disorders—such

as mood or anxiety disorders—necessitates consideration of

condition-specific variations in autonomic and emotional control.

Additionally, the absence of assessments on conscious emotional

processing, such as explicit questions, hinders our understanding of

the specific emotions acknowledged by patients. It would be

intriguing to use this component in future research to detect any

alignment or disparity between the implicit and explicit regulation

aspects. Furthermore, self-report surveys assessing the individual’s

emotional regulation styles could be implemented.

Future directions also involve incorporating virtual reality (VR)

(70–72) to create dynamic stimuli that can better replicate the

transitions and emotional dynamics experienced by individuals in

the real world. Future research will also explore the idea of creating

tools for the generation and examination of Markov matrixes.
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