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Background: Electrical activity recorded with electroencephalography (EEG)

enables the development of predictive models for emotion recognition. These

models can be built using two approaches: subject-dependent and subject-

independent. Although subject-independent models offer greater practical utility

compared to subject-dependent models, they face challenges due to the

significant variability of EEG signals between individuals.

Objective: One potential solution to enhance subject-independent approaches

is to identify EEG channels that are consistently relevant across different

individuals for predicting emotion. With the growing use of deep learning in

emotion recognition, incorporating attention mechanisms can help uncover

these shared predictive patterns.

Methods: This study explores this method by applying attention mechanism

layers to identify EEG channels that are relevant for predicting emotions in three

independent datasets (SEED, SEED-IV, and SEED-V).

Results: The model achieved average accuracies of 79.3% (CI: 76.0-82.5%),

69.5% (95% CI: 64.2-74.8%) and 60.7% (95% CI: 52.3-69.2%) on these datasets,

revealing that EEG channels located along the head circumference, including

Fp1, Fp2, F7, F8, T7, T8, P7, P8, O1, and O2, are the most crucial for

emotion prediction.

Conclusion: These results emphasize the importance of capturing relevant

electrical activity from these EEG channels, thereby facilitating the prediction

of emotions evoked by audiovisual stimuli in subject-independent approaches.
KEYWORDS

emotion recognition, electroencephalogram, affective computing, deep learning,

attention mechanism, EEG signal processing
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1 Introduction

Detecting emotions via electroencephalography (EEG) offers an

objective method for quantifying emotional states, as individuals

cannot consciously control their EEG signals like they can their

facial expressions, body posture, or speech (1). This objectivity in

measuring emotions can be valuable in various fields as it provides

the opportunity to respond to someone’s emotional state, rather

than the subjective body language. For instance, measuring

emotional states can aid in diagnosing and treating mental

disorders in healthcare, evaluating student engagement in

education, and assessing customer reactions to advertisements in

market research (2, 3).

The emotion recognition process involves extracting features

from EEG signals to train artificial intelligence (AI) models to

associate these features with distinct emotions. There are two

different approaches to build models that recognize emotions

from EEGs: subject-dependent and subject-independent. The

subject-dependent approach trains and tests the emotion

recognition models using EEG signals from the same individuals.

In contrast, the subject-independent approach uses different

individuals for training and testing. Models trained using the

subject-independent approach are more practical, as new users

can use them without requiring retraining (4). However, subject-

independent models often yield lower performance than subject-

dependent models due to the high variability in EEG signals among

individuals (5–8). This problem is known as the domain shift

problem in the field of machine learning, which arises when the

assumption that training and test sets share the same distribution is

violated (9).

The domain shift problem in EEG signals arises from the

significant variability in brain signals among individuals.

Consequently, the patterns learned from the training set often fail

to generalize effectively to new individuals, resulting in reduced

predictive performance. Previous studies have addressed this issue

using the adversarial neural network approach, specifically the

Domain-Adversarial Neural Network (DANN) (10). DANN aims

to extract features that not only facilitate accurate task classification

but are also invariant between the training and test sets (i.e., the

source and target domains). Building on this idea, Özdenizci et al.

(11) demonstrated that an adversarial learning framework enhances

EEG-based emotion recognition in cross-subject and cross-session

classification tasks. Similarly, Barmpas et al. (12) showed that

incorporating DANN with convolutional neural networks

effectively addresses inter-subject variability in EEG signals,

resulting in more robust predictive models.

In addition to DANN, a potential way to enhance subject-

independent approaches is to identify EEG channels that are

consistently relevant across different individuals for predicting

emotion (4). However, as the current practice for emotion

recognition relies on deep learning models, identifying relevant

EEG channels is obscured by the low interpretability of deep

learning models (13). This challenge can be addressed by

incorporating layers within deep learning models that reveal the

features driving the predictions. One such layer is the attention
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network layer (or “attention mechanism”), which has been effective

in natural language processing (NLP) applications for identifying

key words in text classification (14). Using a similar approach for

subject-independent emotion recognition could help determine

which features receive more attention from the deep learning

model in predicting emotions across various individuals.

Previous studies have shown that attention layers in emotion

recognition can enhance performance by capturing essential

information from EEG signals. For instance, Arjun et al. (15)

demonstrated that attention layers can improve emotion

recognition performance by capturing essential information from

EEG signals. Li et al. (16) used an attention layer to identify the

most important EEG channels for feature extraction. Similarly,

Feng et al. (17) applied attention network layers to assign weights

to spatial-temporal features from EEG channels, extracting relevant

patterns for emotion prediction. Although these studies have shown

the benefits of attention mechanism layers, their focus has been

mainly on enhancing prediction performance on subject-dependent

approaches, thus relegating the interpretability aspect that the

attention mechanism layer can offer.

Other studies have attempted to identify relevant EEG channels

by analyzing energy distribution based on differential entropy (DE)

features across the cortex (18–22). According to these analyses,

happy stimuli produce more activation in the temporal lobe, fearful

emotions trigger lower activation in the occipital area, and neutral

stimuli activate the parietal and frontal lobes (18). Additionally,

happy stimuli tend to generate higher activation than other

emotions, particularly in the temporal lobes (19, 21). Regarding

relevant brain areas, the lateral temporal lobe and the prefrontal

lobe are more active than other areas for emotion regulation (20).

However, these studies conducted their analyses prior to training

deep learning models, thus overlooking the patterns that emerge

during the training process. Since these learned patterns are crucial

for emotion prediction, analyzing them post-training could provide

valuable insights into identifying the most relevant EEG features.

Before the advent of deep learning models, feature selection

techniques were employed to identify relevant EEG channels.

Apicella et al. (23) reviewed 115 studies and found that channels

Fp1 , Fp2 , F3, and F4 are most relevant for detecting the valence of an

emotion, while P3 and P4 are most informative for the arousal

dimension. However, many of these studies used subject-dependent

approaches, which limits the generalizability and reproducibility of

their findings.

All these previous studies have contributed to identifying

relevant EEG channels for emotion recognition. They have

identified these EEG channels either by analyzing the feature

distribution or by applying feature selection techniques to

improve prediction performance. However, these studies also

exhibit some limitations. Some have focused on analyzing features

prior to training deep learning, thus ignoring the patterns learned

by the models. Others have focused more on prediction rather than

interpretation. Moreover, most of these studies have identified

relevant channels using subject-dependent approaches. Therefore,

there is still a need for more effort toward identifying relevant EEG

channels in subject-independent settings. In a previous work (24),
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we showed that attention layers have the potential to identify

relevant areas for emotion prediction. In this current study, we

extend upon that by using a deep learning architecture containing

attention network layers to dynamically weight spatial and temporal

features based on their relevance for emotion prediction across

individuals on three different datasets. The ultimate goal is to

leverage attention mechanisms to identify EEG channel locations

that contribute the most to emotion prediction.

The main contributions of this paper to EEG-based emotion

recognition are summarized as follows:
Fron
• The use of attention mechanism layers to classify emotions

across three independent datasets: SEED (25), SEED-IV

(26), and SEED-V (27).

• The analysis of the attention weights extracted by the

attention layers to identify relevant EEG channels for

emotion recognition.

• Highlighting the critical role of EEG channels along the

head circumference in predicting emotions elicited by

audiovisual stimuli.
2 Materials and methods

2.1 Datasets: SEED, SEED-IV and SEED-V

This study used EEG signals from three publicly available

datasets, namely SEED (25), SEED-IV (26) and SEED-V (27).

These datasets contain data collected from right-handed students

aged 20 to 24 from the Shanghai Jiao Tong University, all of whom

had normal hearing, vision, and a stable mental state.

In all the datasets, audiovisual stimuli were used to evoke

different emotions. The targeted emotions in SEED were negative,

neutral, and positive. For SEED-IV, the targeted emotions were

happiness, neutrality, sadness, and fear, while SEED-V included the

same four emotions plus disgust. While the subjects were watching

the video clips, their EEG signals were recorded using 62 channels,

positioned according to the 10/20 EEG system, with a sampling rate

of 1000 Hz.

The SEED dataset (25) consists of data collected from 15

participants, of whom 8 were female. Each participant underwent

three experimental sessions. During these sessions, EEG data was

recorded as subjects watched 15 movie clips designed to elicit

negative, neutral, and positive emotional responses. In total, 15

EEG signals were collected for each stimulus, resulting in 45 EEG

signals for each participant.

The SEED-IV (26) dataset comprises EEG recordings of 15

subjects (eight female). Each subject participated in three sessions,

in which they observed six video clips per emotion, resulting in 24

video clips per session. As a result, each subject watched 72 video

clips after finishing the three sessions.

The SEED-V (27), on the other hand, encompasses data

collected from 16 subjects. Each subject participated in three

sessions, watching 15 movie clips in each session (three videos for

each emotion). Thus, 45 were collected for each subject.
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2.2 EEG processing

To enhance computational efficiency, recorded EEG signals

were downsampled to 200 Hz using an anti-aliasing decimation

filter, ensuring a Nyquist frequency of 100 Hz. Then, to reduce noise

and artifacts caused by blinking or muscular movements, the EEG

signals were filtered using a Butterworth filter within the range of

0.5-50 Hz. The selection of this range was made to ensure the

inclusion of brain frequency bands: delta (d: 0.5 − 4 Hz), tetha (q: 4
− 8 Hz), alpha (a: 8 − 12 Hz), beta (b: 12 − 30 Hz), and gamma

(g: 30 − 50 Hz).
2.3 EEG segmentation

The EEG signals were segmented into non-overlapping 4-

second windows. This segmentation provided a frequency

resolution of 0.25 Hz ( 1
4,s ), enabling the capture of two full cycles

of the lowest frequency of interest in the delta band (0.5 Hz).

As the video clips in SEED, SEED-IV and SEED-V differed in

duration, the number of 4-second segments obtained for each

recording was different. Tables 1–3 show the number of segments

obtained for each recording in the datasets. In the SEED dataset, the

number of 4-second segments per recording was 55.6 for the

negative class, 54.8 for the neutral class, and 58 for the positive

class. In the SEED-IV dataset, the average number of 4-second

segments per recording was 38 for the neutral class, 38 for the sad

class, 34 for the fear class, and 29 for the happy class. In the SEED-V

dataset, the average number of 4-second segments per recording
TABLE 1 Number of 4-second segments extracted for each recording in
the SEED dataset.

Recording Negative Neutral Positive

1 51 58 58

2 59 46 48

3 59 54 66

4 58 58 59

5 51 58 59

6 51 58 58

7 59 46 48

8 59 54 66

9 58 58 59

10 51 58 59

11 51 58 58

12 59 46 48

13 59 54 66

14 58 58 59

15 51 58 59

Mean 55.6 54.8 58
Last row shows the average number of segments per emotion across all the recordings.
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was 41 for the neutral class, 53 for the sad class, 41 for the fear class,

33 for the happy class, and 34 for the disgust class. The overall

average number of 4-second segments per recording across all

emotion classes was 56 in SEED, 34 in SEED-IV and 40 in SEED-V.
2.4 Spectral features

For each 4-second window segment, the power spectrum

density (PSD) was computed using the Hilbert-Huang Transform

(HHT). The HHT was selected over other transformations, such as

the Fourier and Discrete Wavelet, because, as we previously showed,

HHT can better handle the non-linear and nonstationary

characteristics of EEG for emotion recognition (28).

The PSD was computed for each EEG channel, covering the

frequency range from 0 to 50 Hz. Consequently, each 4-second

window produced a 2D structure with dimensions 62×50. The first

dimension (rows) represented the 62 EEG channels, while the

second dimension (columns) represented the frequency values,

ranging from 0.5 Hz to 49.5 Hz with a 1 Hz step.

To facilitate the training of the deep learning model, the 2D

structures corresponding to the same video clips were stacked,

forming a three-dimensional structure. The first dimension of this

structure represented the number of concatenated matrices (i.e., the

number of 4-second segments per video clip), while the other two
Frontiers in Psychiatry 04
dimensions represented the EEG channels and frequency values.

Since the number of 4-second segments varied across recordings

(see Tables 1–3), zero-padding was applied to equalize the

dimensions of all 3D structures. As a result, structures of

dimensions 66 × 62 × 50 for SEED, 63 × 62 × 50 for SEED-IV

and 74 × 62 × 50 for SEED-V were obtained for each video clip.

After calculating the spectrum tensors for each video, the

tensors for the same subject were concatenated. This resulted in a

four-dimensional tensor for each subject, with dimensions of (45,

66, 62, 50) for SEED-IV, (72, 63, 62, 50) for SEED-IV and (45, 74,

62, 50) for SEED-V. The first dimension represented the number of

video clips for each dataset. Each of these tensors was assigned a

class label corresponding to the emotion associated with the video

clip. The datasets were balanced, with 15 tensors per emotion in

SEED, 18 tensors in SEED-IV and nine tensors per emotion in

SEED-V.
2.5 Emotion recognition model

Figure 1 shows the architecture of the deep learning models

used to predict the behavior emotions from the spectral features.

The input of this model had dimensions (B, w, 62, 50), where B is

the batch size, w is the number of windows, 62 is the number of

channels, and 50 is the number of frequencies. For SEED, w was 66,

for SEED-IV, w was 63, and for SEED-V, w was 74. The batch size,

B, was set to 64 for both datasets.

The deep learning model consisted of three modules. The first

module aimed to further process the initial spectral features using

self-attention layers to emphasize the frequencies and EEG channels

that contribute the most to emotion prediction. The second module

extracted spatial features using a graph neural layer (GNL), whereas

the third module focused on extracting temporal features using a

bidirectional long short-term memory (BI-LSTM) layer. To assess

the relevance of the spatial and temporal features extracted by the

GNL and BI-LSTM, these modules incorporated attention network

layers after feature extraction.
TABLE 2 Number of 4-second segments extracted for each recording in
the SEED-IV dataset.

Recording Neutral Sad Fear Happy

1 32 42 23 49

2 40 52 22 35

3 38 42 12 35

4 36 27 64 12

5 28 54 17 28

6 43 42 44 34

7 36 25 55 34

8 53 44 27 34

9 34 15 46 20

10 27 49 60 12

11 45 44 36 10

12 37 19 46 24

13 41 42 32 48

14 44 45 23 26

15 45 23 16 63

16 22 26 39 19

17 38 51 14 28

18 39 41 39 17

Mean 38 38 34 29
Last row shows the average number of segments per emotion across all the recordings.
TABLE 3 Number of 4-second segments extracted for each recording in
the SEED-V dataset.

Recording Neutral Sad Fear Happy Disgust

1 59 46 24 18 36

2 17 66 74 64 35

3 58 60 43 43 38

4 16 59 47 32 31

5 57 30 24 14 60

6 46 54 23 29 19

7 41 72 16 13 22

8 18 57 71 59 21

9 55 32 51 29 44

Mean 41 53 41 33 34
fro
Last row shows the average number of segments per emotion across all the recordings.
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To address the domain shift problem common in subject-

independent emotion recognition, the deep learning model was

trained using the domain adversarial neural network (DANN)

approach. The DANN label predictor used the extracted spatial-

temporal variables to predict the different emotions, while the

DANN domain classifier used those features to distinguish

between the training (source) and non-training (target) samples,

attempting to find domain-invariant features for emotion prediction.
Frontiers in Psychiatry 05
2.5.1 Spectral processing
In the first module, we focused on emphasizing the spectral and

spatial elements present in the power spectrum information of the

input features. As the temporal dimension was not necessary at this

point, we reshaped the input into a three-dimensional tensor of

shape (B × w, 62, 50) by stacking the samples along the batch

dimension, thereby preserving the EEG node and frequency

dimensions of each tensor.
FIGURE 1

Emotion recognition model diagram. The input features are 4-dimensional tensors of shape (B, w, 62, 50), where B is the batch size, w is the
number of windows (63 for SEED-IV and 74 for SEEDV), 62 is the number of EEG channels, and 50 is the frequency range. C denotes the number of
emotion classes: 4 for SEED-IV and 5 for SEED-V. The attention layers, marked ∗ and # are where spatial and temporal attention weights are
extracted, respectively. The model was trained using the DANN approach, where the extracted features were fed into both domain and emotion
prediction models.
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To further process the spectral information contained in the

input tensors, we used two self-attention mechanism layers to

compute the similarity between EEG channels based on their

frequency values. The first self-attention layer aimed to enhance

the frequency values by considering the correlation between EEG

channels as follows:

R = WchannelsX, (1)

where Wchannels was computed as softmax( XX
Tffiffiffiffi
50

p ), indicating the

correlation scores between each pair of EEG channels. R was an

enhanced matrix in which the j-th frequency of the i-th EEG

channel corresponded to the linear combination of the attention

weights of the i-th EEG channel and the initial values for the j-th

frequency across all EEG channels.

The second self-attention mechanism layer operated on the

transpose of the spectral information to enhance the information of

each EEG channel based on the correlation between frequencies.

This was computed as follows:

Q = WfrequencyX
T , (2)

where Wfrequency was computed as softmax( X
TXffiffiffiffi
62

p ), indicating the

correlation scores between each pair of frequencies. Q was an

enhanced matrix in which the new values of the j-th frequency

values of i-th EEG channel corresponded to the linear combination

of the frequency weight scores and the initial frequency values of the

i-th channel.

To promote stability during training, the inputs were first

processed through a normalization layer before being fed into the

self-attention layers. This normalization step helps keep the input

feature distribution consistent. Furthermore, the output from the

self-attention layers was combined with the original input, ensuring

that the model preserved crucial information while improving

feature representation and maintaining stability.

The outputs of the two self-attention mechanism layers were

fused using an addition layer, as:

Z = (R + X) + (Q + XT )T
� �

: (3)

This fusion allow us to autonomously learn and refine the

feature representations extracted by the HTT transform.

2.5.2 Spatial feature module
The second module used a GNL to correlate the spectral

features of the EEG channels based on their location, thus

generating spatial features. This was achieved as follows:

H = ELU(SZWgraph), (4)

where S was the adjacency matrix defined as S = ~D−1
2 ~A~D−1

2 ,

where ~A = A + I and ~D is the degree matrix defined as ~Di, i =oj
~Aij.

Here, I represents the identity matrix, and A is a 62-by-62 matrix,

with each row and column corresponding to an EEG channel. The

diagonal entries of A, Ai,i, are set to 0, while the off-diagonal entries,

Ai,j, are set to the inverse of the Euclidean distance between the i-th
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and j-th EEG channels. Wgraph is a dense layer consisting of 128

units, using the ELU (Exponential Linear Unit) activation function.

The features extracted by the GNL were fed into an attention

mechanism layer, aiming to identify the EEG channels whose

features contributed the most to the prediction. Specifically,

assuming that hk,s represents the feature vector of the k-th EEG

channel at the s-th sample, the attention layer Gb(·,wb) projected hk,s
into a hyperbolic space uk,s. Next, uk,s was fed into a softmax

activation function to determine the normalized importance weight

for each EEG channel, denoted as fk,s. These weights were then used
to compute the context vector of EEG channel vk,s as:

uk,s = tanh(Wbhk,s + cb);

fk,s =
exp(uTk,s ·ub)

ok
exp(uTk,s ·ub)

;

vk,s = fk,shk,s :

(5)

Each vector vk,s had dimension 128. All the vk,s vectors were

arranged into a tensor V of dimensions (B × w, 62, 128).

2.5.3 Temporal processing
To capture the variation of the extracted GNL features across

time, the last stage used a BI-LSTM. To that aim, first we reshaped

the dimensions of V from (B × w, 62, 128) to (B, w, 62 × 128), where

w was 63 for SEED-IV and 74 for SEED-V. This reshaping allowed

the features to be allocated in a temporally ascending order along

the second dimension.

The number of units of the BI-LSTM was set to 64 units. As a

result, the output of BI-LSTM had dimensions (B, w, 128), where

128 corresponds to the concatenation of 64 units from the forward

LSTM and 64 units from the backward LSTM. This output

encapsulates temporal information from both past and future

contexts, making it highly informative for subsequent

prediction tasks.

To identify the most relevant temporal features for emotion

prediction, the outputs of the BI-LSTM were also fed into an

attention layer (Ga(·,wa)), computing an attention weight yw and

the final vector t as:

uw = tanh(Wagw + ca);

yw = exp(uTwua)

ot
exp(uTwua)

;

t =o
w
fwgw,

(6)

where gw corresponds to the Bi-LSTM output at the wth

segment, yw was the attention weight for the wth segment. The

aggregated vectors t were arranged into a final tensor T, with

dimensions (B,128).

2.5.4 Domain adversarial neuronal network
Finally, the final feature vector, T, was fed into the label and

domain classifiers of the DANN architecture. The label classifier

consisted of a dropout layer with a rate of 0.7, followed by fully

connected and softmax layers. The dropout layer was employed to
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mitigate overfitting, which is a common issue in subject-

independent approaches. The softmax layer had four units for

SEED-IV and five for SEED-V, outputting the probability of each

sample belonging to a specific class.

The domain classifier included a reverse layer, followed by a

dense layer with a single unit and a sigmoid activation function.

This binary output indicated whether the sample was from the

source domain (training set; class ‘0’) or to the target domain (test

set; class ‘1’).

Following the DANN principles (10), the model was trained

using the loss function defined as:

L(pf , py , pd) =
1
ns
o
ns

i=1
Li
y(pf , py)

−l
1
ns
o
ns

i=1
Li
d(pf , pd) +

1
N − ns

o
N

i=ns+1
Li
d(pf , pd)

 !
,

(7)

where N was the total number of tensors, consisting of ns source

tensors (training set) and N − ns target tensors (test set). The

parameters pf , py , and pd represent the parameters of the feature

extractor, emotion predictor, and domain predictor modules,

respectively. Li
y and Li

d represent the loss functions for label and

domain predictions, respectively. The adaptation parameter l was

adjusted throughoutthe training epochs as:

l =
2

1 + exp   ( − 10� p)
− 1, (8)

where p was the training progress, which linearly varies from 0

to 1.

The parameters pf , py , and pd were optimized using the

following gradient updates:

pf = pf − h ∂Li
y

∂ pf
− l ∂Li

d
∂ pf

� �
;

py = py − h ∂Li
y

∂ py

� �
;

pd = pd − h ∂Li
d

∂ pd

� �
,

(9)

where h was the learning rate. For the Li
y , we used cross-

entropy, whereas for the Li
d , we used binary cross-entropy.
2.6 Experiment details

2.6.1 Excecution environment
The models were implemented in TensorFlow2.0 and Python

3.10.1. We used a Colab account with 8 Intel(R) Xeon(R) CPU cores

@ 2.30GHz, 12.7 GB of RAM, and 107.7 GB of hard drive space.

The DANN architecture was trained using stochastic gradient

descent (SGD) with a learning rate of 0.01 and a total of 100 epochs.
2.6.2 Emotion prediction performance
To ensure a subject-independent approach, the model was

evaluated using leave-one-out cross-validation (LOOCV). This

means that during each iteration, samples from one subject were

left out of the training process and used for testing instead.
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For each iteration of the LOOCV, we calculated the

performance for each emotion class using accuracy. Accuracy was

determined by dividing the number of correctly predicted samples

by the total number of samples in the class. The overall emotion

accuracy was then computed as the average across all

emotion classes.

2.6.3 Ablation study
To evaluate the impact of each component on emotion

prediction, we conducted an ablation study by training the model

while excluding individual components of the deep learning

architecture illustrated in Figure 1.

2.6.4 Average spatial and temporal attention
weights for emotion

After training the model for each subject, the spatial (fk,s) and
temporal (yk,s) attention weights were extracted (see Figure 1). To

visualize the spatial and temporal attention weights for each

emotion class, we averaged these weights across subjects. This

process aimed to identify EEG channels and 4-second segments

with consistently higher values among subjects, thereby

highlighting their relevance for emotion prediction. Specifically,

for spatial attention, the attention weights of the k-th EEG channel

at the s-th sample were averaged across all subjects (fk,s; Equation 5)
for each emotion class. Similarly, for temporal attention, the

attention weights at the w-th segment were averaged across all

subjects (yw; Equation 6) for each emotion class.

2.6.5 Identifying relevant EEG channels
To identify the relevant EEG channels to distinguish among

emotions, we conducted statistical hypothesis tests to find

significant differences in the attention weights extracted at the

same EEG channel between emotions. To that end, all the spatial

attention weight vectors (fk,s) and temporal (yw) corresponding to

the same emotion were extracted for each subject. This resulted in a

structure F of dimensions (Ne × w, 62) containing all the spatial

attention weights, and a structure (Y) of dimensions (Ne, w)

containing all the temporal attention weights, where (Ne) is the

total number of videos belonging to the emotion.

To aggregate the attention weights of the EEG channels across

time, we computed the weighted average of the spatial weights

based on the temporal weights. First, (F) was reshaped to

dimensions (Ne, w, 62) to separate the spatial weights for each 4-

second segment. The aggregated weight for the k-th EEG channel at

the i-th video for emotion e was calculated as:

we
i,k =o

�W

w
Fi,w,k ·Yi,w, (10)

where Fi,w,k and (Yi,w) represent the spatial and temporal

weights, respectively, of the i-th video and the k-th EEG channel

for the w-th segment and emotion e. �W was the number of average

4-second windows for the dataset (56 for SEED, 34 for SEED-IV

and 40 for SEED-IV). The reason for using the average number of

segments is to ensure a consistent and fair comparison across the

different emotions, as not all the videos have the same 4-second
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segments (Tables 1–3). All aggregated vectors were arranged into a

matrix Ω
e of dimensions (Ne, 62).

The aggregated vectors of the videos and subjects were arranged

into a structure Ωe of dimensions (subjects × Ne, 62), where subjects

were 15, 15, and 16 for SEED, SEED-IV, and SEED-V, respectively.

To compare the activation patterns corresponding to each emotion,

the overall weights of the EEG channels were analyzed using a two-

sample Wilcoxon signed-rank test. This test assessed the null

hypothesis that the distribution of the differences between the

emotion pair e1 and e2 (e.g., sad vs. fear) was symmetric about

zero, namely We1
k −We2

k = 0.

Given that three, six and ten possible emotion pairs were valid

for SEED, SEED-IV and SEED-V, respectively, multiple hypothesis

test were conducted. In detail, a total of 186, 372 and 620

comparisons were carried out for SEED, SEED-IV and SEED-V.

To reduce false positive cases (Type I error), the p-values were

adjusted using the Benjamini-Hochberg correction (29), setting the

false-positive rate at 0.05.
3 Results

3.1 Emotion prediction

Tables 4–6 show the performance achieved by each subject for

different emotions in the SEED, SEED-IV, and SEED-V datasets,

respectively. For all the datasets, the model surpassed the chance

level accuracy, which is 33% for SEED, 25% for SEED-IV, and 20%

for SEED-V. Specifically, for SEED, the average performance across

all the subjects was 79.3%. In SEED-IV, the average performance

across all subjects exceeded 60% for all emotions, achieving an

overall accuracy of 69.5%. In contrast, for the SEED-V dataset, the
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average emotion accuracy was above 50% for all emotions, with an

overall accuracy of 60.7%.

In SEED, the neutral class achieved the highest performance,

while the negative class achieved the lowest. For SEED-IV and

SEED-V, the neutral and happy emotions achieved the highest

accuracy, while the sad class had the lowest performance. Regarding

variability among subjects, SEED-IV showed more consistent

performance, with an overall standard deviation of 9.6%,

compared to 15.3% for SEED-V. The highest variability in SEED-

V was observed for subject 10, who achieved an overall accuracy of

only 24.4%.
TABLE 5 LOOCV performance for emotion classification in the SEED-IV
datataset for each subject and emotion class.

Subject Neutral
(%)

Sad
(%)

Fear
(%)

Happy
(%)

Overall
(%)

1 94.4 77.8 83.3 66.7 80.6

2 88.9 61.1 83.3 88.9 80.6

3 61.1 77.8 77.8 83.3 75.0

4 72.2 66.7 61.1 77.8 69.4

5 88.9 83.3 83.3 72.2 81.9

6 44.4 33.3 55.6 83.3 54.2

7 100.0 50.0 94.4 83.3 81.9

8 61.1 55.6 72.2 83.3 68.1

9 94.4 50.0 38.9 61.1 61.1

10 88.9 55.6 61.1 66.7 68.1

11 44.4 55.6 77.8 61.1 59.7

12 88.9 61.1 66.7 50.0 66.7

13 66.7 44.4 61.1 66.7 59.7

14 83.3 88.9 61.1 77.8 77.8

15 77.8 44.4 44.4 66.7 58.3

Mean
(SD)

77.0 (17.9) 60.37
(15.8)

68.1
(15.5)

72.6 (11.0) 69.5 (9.6)

95% CI 67.1-87.0 51.6-
69.1

50.6-
76.7

66.5-78.7 64.2-74.8
fr
The last column shows the overall performance across emotions. The final two rows display
the mean and standard deviation (Mean ± SD) and the 95% Confidence Interval (CI) of
performance for each emotion across the 15 subjects.
TABLE 4 LOOCV performance for emotion classification in the SEED
datataset for each subject and emotion class.

Subject Negative
(%)

Neutral
(%)

Positive
(%)

Overall
(%)

1 73.3 73.3 93.3 80.0

2 40.0 100.0 80.0 73.3

3 80.0 100.0 40.0 73.3

4 73.3 100.0 60.0 77.8

5 46.7 86.7 73.3 68.9

6 80.0 93.3 73.3 82.2

7 60.0 93.3 80.0 77.8

8 46.7 100.0 80.0 75.6

9 86.7 93.3 60.0 80.0

10 66.7 100.0 80.0 82.2

11 86.7 86.7 93.3 88.9

12 93.3 86.7 86.7 88.9

13 73.3 86.7 93.3 84.4

(Continued)
TABLE 4 Continued

Subject Negative
(%)

Neutral
(%)

Positive
(%)

Overall
(%)

14 73.3 100.0 73.3 82.2

15 66.7 73.3 80.0 73.3

Mean
(SD)

69.8 (15.7) 91.6 (9.2) 76.4 (14.4) 79.3 (5.8)

95% CI 61.1-78.5 86.4-96.7 68.4-84.4 76.0-82.5
The last column shows the overall performance across emotions. The final two rows display
the mean and standard deviation (Mean ± SD) and the 95% Confidence Interval (CI) of
performance for each emotion across the 15 subjects.
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3.1.1 Comparison with previous studies
Table 7 presents a comparison of our model with previous

emotion recognition models on the SEED, SEED-IV and SEED-V

datasets using a subject-independent approach. Our proposed

model achieved accuracy rates comparable to those of previous

studies, attaining the second-best performance for SEED-IV and the

sixth-best for SEED-V.

3.1.2 Ablation study
Table 8 shows the ablation study conducted by removing

different components of the deep learning model shown in

Figure 1. For all datasets, the component that resulted in the

highest performance reduction was spatial processing, performed

by the graph neural layer. Temporal processing and the temporal

attention layer were also significant, leading to performance drops

ranging from 0.5% to 9.5% and from 2.7% to 17.6%, respectively.
3.2 Average spatial and temporal attention
weights for emotion

3.2.1 Average spatial attention weights
for emotion

Figures 2–4 show the average spatial weights (�fk,s) extracted from
the attention layer following the graph neural layer (GNL) for the

average number of segments per dataset (56 for SEED, 34 for SEED-

IV and 40 for SEED-V). In all the datasets, across all emotions, the
TABLE 6 LOOCV performance for emotion classification in the SEED-V datataset for each subject and emotion class.

Subject Neutral (%) Sad (%) Fear (%) Happy (%) Disgust (%) Overall (%)

1 88.9 66.7 55.6 77.8 77.8 73.3

2 88.9 33.3 22.2 77.8 55.6 55.6

3 88.9 44.4 77.8 88.9 55.6 71.1

4 88.9 33.3 88.9 77.8 55.6 68.9

5 77.8 55.6 66.7 55.6 33.3 57.8

6 77.8 33.3 11.1 44.4 66.7 46.7

7 44.4 66.7 22.2 66.7 66.7 53.3

8 100.0 66.7 77.8 100.0 77.8 84.4

9 55.6 22.2 66.7 100.0 77.8 64.4

10 33.3 33.3 11.1 11.1 33.3 24.4

11 11.1 55.6 66.7 100.0 55.6 57.8

12 44.4 77.8 33.3 44.4 44.4 48.9

13 100.0 44.4 66.7 66.7 44.4 64.4

14 44.4 55.6 33.3 44.4 44.4 44.4

15 100.0 55.6 77.8 55.6 100.0 77.8

16 88.9 88.9 77.8 88.9 44.4 77.8

Mean (SD) 70.8 (27.8) 52.1 (18.5) 53.5 (26.7) 68.8 (25.1) 58.3 (18.4) 60.7 (15.3)

95% CI 55.5-86.2 41.9-62.3 38.8-68.2 48.2-68.5 48.2-68.5 52.3-69.2
F
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The last column shows the overall performance across emotions. The final two rows display the mean and standard deviation (Mean ± SD) and the 95% Confidence Interval (CI) of performance
for each emotion across the 16 subjects.
TABLE 7 Models comparison between previous emotion recognition methods
and our approach (last row) of Models on SEED-IV and SEED-V Datasets.

Models SEED SEED-IV SEED-V

SVM Suykens and Vandewalle (30) 56.7/16.2 37.9/12.5 23.71/8.2

DANN Kendall et al. (31) – 47.6/10.0 –

BiDANN Li et al. (32) 83.2/9.6 65.6/10.4 –

BDGLS Wang et al. (33) – – 59.6/4.8

DGCNN Song et al. (34) 79.9/9.0 52.8/9.2 41.9/6.7

A-LSTM Song et al. (35) 72.1/10.8 55.0/9.3 40.3/08.7

P-GCNN Wang et al. (36) – – 64.8/9.8

IAG Song et al. (37) 86.3/6.9 – 59.7/9.4

RGNN Zhong et al. (38) 85.3/6.7 73.8/8.0 66.3/16.7

BiHDM Li et al. (39) 85.4/7.5 69.0/8.7 –

ECLGCNN Yin et al. (40) – – 61.6/10.4

GECNN Song et al. (41) 82.4/- – 66.8/8.2

BiHDM w/o DA Li et al. (42) 81.5/9.7 67.4/8.2 –

PGCN Zhou et al. (43) – 76.9/7.1 71.4/9.4

GMSS Li et al. (42) 86.52/6.22 73.48/7.41 –

Ours 79.3/5.8 69.5/9.6 60.7/15.3
Performance is reported as accuracy (mean average/standard deviation).
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spatial attention weights were higher around the frontal regions (FP1,

FP2, FPZ, F1, F2, FZ). Spatial attention weights higher than the

uniform weight (1/62) were also observed for EEG channels along

the head circumference, particularly in the temporal and occipital

regions. In comparison to the EEG channels located on the lateral

sides of the temporal, frontal, and occipital areas, the EEG channels

located in the central areas had weights lower than the uniform

weight for most segments. The only classes that achieved higher

weights for the central EEG channels were the sad and neutral classes.
Frontiers in Psychiatry 10
Supplementary Figures 1–3 show the average spatial attention

weight distribution over all the 4-second segments (66 for SEED, 63

for SEED-IV and 74 for SEED-V). For SEED-I and SEED-V, the

weights, after the average number of windows for the recordings (34

for SEED-IV and 40 for SEED-V), converged to a fixed pattern. For

SEED-IV, this pattern consisted of higher weights along the left

lateral frontal, temporal, and parietal regions. In contrast, for SEED-

V, the pattern was the opposite, with high attention weights in the

right lateral frontal, temporal, and parietal regions.
TABLE 8 Ablation study evaluating the removal of different components of the deep learning model shown in Figure 1.

Experiments SEED SEED-IV SEED-V

Mean/
SD (%)

Reduction
(%)

Mean/
SD (%)

Reduction
(%)

Mean/
SD (%)

Reduction
(%)

Full model 79.3/5.8 69.5/9.6 60.7/15.3

- spectral processing - EEG
channel attention

75.7/07.2 4.5 69.2/7.9 0.5 59.4/10.6 2.2

- spectral processing - frequency
bands attention

77.5/5.8 2.2 68.6/8.0 1.3 59.6/9.5 1.8

- spectral processing 76.3/7.4 3.7 69.2/12.3 0.5 56.8/9.1 6.4

- spatial processing - graph neural network 57.0/8.2 28.0 53.7/11.4 22.7 37.0/9.7 39.1

- attention layer spatial 78.1/5.0 1.5 69.4/10.7 0.1 58.1/7.6 4.2

- temporal processing 71.7/9.0 9.5 69.8/13.2 0.5 55.0/6.9 9.5

- attention layer temporal 65.3/5.2 17.6 67.6/13.5 2.7 50.5/8.3 16.7
FIGURE 2

Average spatial attention weights (�fk,s) for each of the 62 EEG channels and each emotion across the 15 subjects over the initial 56 4-second
segments of the SEED-IV dataset.
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3.2.2 Average temporal attention weights
for emotion

Figures 5–7 show the average temporal attention weights (�yw) for

each 4-second segment in both datasets. The weights for segments
Frontiers in Psychiatry 11
beyond the average number of segments were lower than the uniform

weight (i.e., 1/66 for SEED, 1/63 for SEED-IV and 1/74 for SEED-V),

indicating that the predictive models relied little on the features

extracted during the last time segments. For SEED-IV and SEED-V,
FIGURE 3

Average spatial attention weights (�fk,s) for each of the 62 EEG channels and each emotion across the 15 subjects over the initial 34 4-second
segments of the SEED-IV dataset.
FIGURE 4

Average spatial attention weights (�fk,s) for each of the 62 EEG channels and each emotion across the 16 subjects over the initial 40 4-second
segments of the SEED-V dataset.
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the attention weights exhibited a concave parabolic trend: initially

increasing steadily, reaching a maximum between the tenth and

fifteenth segments, and then decreasing.
3.3 Identifying relevant EEG channels

The diagonal panels of Figures 8–10 display the aggregated

attention weights for each emotion. For all emotions, the aggregated

attention weights were more pronounced along the circumference

of the head, particularly over the prefrontal, frontal, fronto-

temporal, temporal, temporal-parietal, parietal, and parietal-

occipital EEG regions.
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The off-diagonal panels of Figures 8–10 show the differences in

attention weights between each pair of emotions. The attention

weights varied significantly among the emotion pairs, mainly in the

frontal, temporal, parietal, and occipital regions (2-sided Wilcoxon

rank-sum hypothesis tests, adjusted via Benjamini-Hochberg

correction with a false discovery rate set at 0.05). Although there

was not complete agreement between the differences found for the

emotion pairs in the SEED, SEED-IV and SEED-V datasets, the

observed differences suggest common trends for some emotions. For

example, the sad emotion exhibited higher attention weights around

the middle parietal and occipital regions of the cortex compared to

other emotions. Similarly, the neutral class showed dominance over

other emotions in the right frontal, temporal, and parietal regions.
FIGURE 5

Average temporal attention weights ( �yw ) for each of 4-second segment and each emotion across the 15 subjects of the SEED dataset. The dotted
line indicated the uniform weight (1/66 = 0.015).
FIGURE 6

Average temporal attention weights ( �yw ) for each of 4-second segment and each emotion across the 15 subjects of the SEED-IV dataset. The dotted
line indicated the uniform weight (1/63 = 0.015).
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In SEED-IV and SEED-V, the fear, disgust, and happy classes

tended to have higher attention weights in the frontal and temporal

areas than the neutral and sad classes. However, when comparing

the attention weights for fear and happy between SEED-IV and
Frontiers in Psychiatry 13
SEED-V, an opposite pattern emerged. In SEED-IV, the fear class

had higher weights than happy in the left temporal-parietal area,

whereas happy had higher values in the right frontal-temporal area

than fear. In contrast, in SEED-V, the fear class exhibited higher
FIGURE 7

Average temporal attention weights ( �yw ) for each of 4-second segment and each emotion across the 16 subjects of the SEED-V dataset. The dotted
line indicated the uniform weight (1/74 = 0.013).
FIGURE 8

The diagonal panels shows aggregated attention weights obtained by the EEG channels for SEED dataset. The off-diagonal panels are the difference
between aggregated attention weights obtained by the EEG channels. A darker color indicates a greater difference between the aggregated weights
obtained for the EEG channel for the vertical and horizontal emotion pairs. Each symbol indicates that the weight difference between the emotion
pair was significant (2-sided Wilcoxon rank-sum hypothesis tests adjusted via Benjamini-Hochberg correction with a false-positive rate set at 0.05) in
favor of the class ‘negative’ (cyan ∧), ‘neutral’ (yellow ‡), or ‘positive’ (orange ∗).
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weights in the right frontal-temporal area than happy, while happy

showed higher weights in the left temporal-parietal area.
4 Discussion

4.1 Main findings

Our findings indicate that the EEG channels that provide the

most relevant features for emotion prediction across individuals are

those located along the head circumference. Specifically, features

extracted from channels Fp1, Fp2, F7, F8, FT7, FT8, T7, T8, TP7, TP8,

P7, P8, PO7, PO8, O1, and O2 contribute the most to emotion

prediction throughout stimuli exposure. The attention weights

from the channels show significant variations across different

emotional states, demonstrating their ability to distinguish

between different emotional responses. Thus, capturing electrical

activity from this region is essential for enhancing the prediction of

emotions el ic i ted by audiovisual s t imul i in subject-

independent methodologies.

Regarding the emotion recognition performance, the attention

network-based model achieved an average accuracy of 79.3%, 69.5%
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and 60.7 for SEED, SEED-IV and SEED-V, respectively.

These accuracy rates are comparable to those of previous studies

using SEED-IV and SEED-IV (see Table 7), thus showing that the

proposed deep learning architecture was able to extract common

patterns shared between different subjects. The low performance for

some subjects is also consistent with Li et al. (19), who reported that

subjects 5 and 10 in SEED-V resulted in the lowest accuracy

performance compared to the remaining subjects.

The ablation study (refer to Table 8) highlighted the significance

of spatial and temporal processing components in emotion

recognition. This relevance arises from the use of video clips to

elicit emotions. Given that the EEG signal responds dynamically to

the varying scenes within the video, it is crucial to incorporate

components that effectively capture this information from the EEG

channels, along with its progression over time.

The importance of EEG channels located in the frontal, parietal,

temporal, and occipital regions, as indicated by the attention

mechanism weights, aligns with existing psychological literature

on brain function (44). Specifically, since the stimuli were

audiovisual, features extracted from EEG channels in sensory

brain areas (temporal and parietal for audio and occipital for

visual) played a relevant role in emotion prediction (44–46).
FIGURE 9

The diagonal panels shows aggregated attention weights obtained by the EEG channels for SEED-IV. The off-diagonal panels are the difference
between aggregated attention weights obtained by the EEG channels. A darker color indicates a greater difference between the aggregated weights
obtained for the EEG channel for the vertical and horizontal emotion pairs. Each symbol indicates that the weight difference between the emotion
pair was significant (2-sided Wilcoxon rank-sum hypothesis tests adjusted via Benjamini-Hochberg correction with a false-positive rate set at 0.05) in
favor of the class ‘fear’ (cyan ∧), ‘sad’ (green †), ‘neutral’ (yellow ‡), or ‘happy’ (orange ∗).
frontiersin.org

https://doi.org/10.3389/fpsyt.2025.1494369
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Valderrama and Sheoran 10.3389/fpsyt.2025.1494369
When viewing videos, the temporal, parietal, and occipital regions

are activated to process audiovisual content, including facial

expressions, body language, speech, and sounds that convey

emotions (47). Moreover, the shift of activation weights from

temporal and occipital regions to frontal regions (see Figures 2–4)

suggests that once relevant audiovisual information is captured by

sensory areas, it is subsequently processed in the frontal and

prefrontal regions (48).

By comparing the identified EEG channels with those from

commercial EEG systems designed for emotion monitoring, such as

the EMOTIV EPOC X 14-channel wireless headset (49), we observe

a notable overlap among the channels. Specifically, the 14 EEG

channels included in the EPOC X system are primarily located

along the head circumference (AF3, AF4, F3, F4, F7, F8, FC5, FC6, P7,

P8, T7, T8, O1, and O2). Thus, our study offers evidence supporting

the reliability of these lower-density EEG channel systems for

recognizing emotions evoked by audiovisual stimuli.

Identifying relevant EEG channels enables the development of

EEG-based emotion recognition systems with fewer channels. Such

systems can be more usable, such as a headset with fewer EEG

channels, which is more convenient and comfortable to wear. This

could be beneficial for individuals with neurological diseases or
Frontiers in Psychiatry 15
older adults, which require frequent neural monitoring for early

diagnosis, intervention, and treatment.
4.2 Comparison with previous studies

Similar to Apicella et al. (23), our study also indicates that

prefrontal and frontal EEG channels are relevant for predicting

emotions. Additionally, consistent with previous research that

analyzed entropy distribution differences by emotion, our results

highlight the lateral temporal lobe and prefrontal lobe as critical

regions for extracting features for emotion prediction. However,

unlike these earlier studies, we are, to the best of our knowledge, the

first to analyze learned patterns of a deep learning model to provide

evidence on the specific EEG channels that contribute most

significantly to emotion prediction. Furthermore, we conduct our

analysis using a subject-independent approach across two different

datasets, supporting the reproducibility and generalizability of our

findings. These results underscore the importance of incorporating

features from EEG channels located along the head circumference

to enhance emotion prediction in subject-independent scenarios for

emotions evoked by audiovisual stimuli.
FIGURE 10

The diagonal panels shows aggregated attention weights obtained by the EEG channels for SEED-V. The off-diagonal panels are the difference
between aggregated attention weights obtained by the EEG channels. A darker color indicates a greater difference between the aggregated weights
obtained for the EEG channel for the vertical and horizontal emotion pairs. Each symbol indicates that the weight difference between the emotion
pair was significant (2-sided Wilcoxon rank-sum hypothesis tests adjusted via Benjamini-Hochberg correction with a false-positive rate set at 0.05) in
favor of the class ‘disgust’ (magenta ∨), ‘fear’ (cyan ∧), ‘sad’ (green †), ‘neutral’ (yellow ‡), or ‘happy’ (orange ∗).
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Regardless of the emotion type, the attention weights reveal that

features extracted from both brain hemispheres are relevant for

predicting emotions (see Figures 8–10). This is in contrast to

previous studies (50, 51) that suggested brain lateralization in

emotion processing, where negative emotions are primarily

processed in the right hemisphere and positive emotions in the

left. In our findings, we did not observe distinct roles for each

hemisphere in emotion prediction. Instead, the predictive model

relied on features extracted from EEG channels located in the

frontal, parietal, temporal, and occipital regions along the head

circumference from both hemispheres, underscoring the

importance of both the left and right hemispheres in predicting

any emotion type.

Although the predictive model did not rely too much on

features extracted from the central EEG channels, the central and

central-parietal channels (CZ, CPZ) were found to be relevant for the

sad emotion in both datasets. Given that the sad class is the only

emotion categorized as low arousal according to the valence-arousal

model of emotions (52), this finding suggests that the temporal-

spatial features extracted from central EEG channels may be

particularly important for predicting emotions with low arousal.
4.3 Limitations and future work

We note that our experiments were conducted using datasets

(SEED, SEED-IV and SEED-V) that encompass subjects from a

similar population (20-to 24-year-old undergraduate students at

Shanghai Jiao Tong University). Given that EEG data vary among

individuals due to factors such as culture, language, and genetics (4,

53), our findings may not be universally applicable to individuals

from different backgrounds. For instance, studies have shown that

cultural differences between Western and Asian populations can

affect the performance of emotion recognition methods (54).

However, despite the fact that the SEED, SEED-IV and SEED-V

datasets were collected at the same location, the 46 subjects in each

dataset were mutually exclusive, ensuring fair validation of our

study results. Moreover, the 95% confidence interval for the average

accuracy suggests potential generalizability to other datasets. Future

research should validate these results across diverse datasets

encompassing broader emotional states and subjects.

We also recognize that the current study focused on emotion

datasets featuring discrete emotions (e.g., happy, sad), and our

model has not yet been evaluated on datasets utilizing the arousal-

valence model. Therefore, future research should consider

extending our work to classify emotions based on their arousal

and valence levels, which may offer valuable insights into the

neuronal patterns associated with these emotional dimensions.
5 Conclusion

This study presents a deep learning model with attention

mechanism layers to identify the EEG channels most relevant to

emotion prediction. The attention weights revealed that the model

predominantly relied on features extracted from EEG channels
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located along the head circumference, which cover sensorimotor

areas (temporal, parietal, and occipital) as well as the frontal

regions. Additionally, the attention weights of these channels

varied significantly across emotions, demonstrating their potential

for distinguishing emotional states. Thus, EEG channels along the

head circumference are crucial for capturing the relevant electrical

activity that aids in predicting emotions evoked by audiovisual

stimuli in subject-independent approaches.
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SUPPLEMENTARY FIGURE 1

Average spatial attention weights (�fk,s) for the 62 EEG channels across the 15
subjects of the SEED for each emotion and each of the 66 four-secondwindows.

SUPPLEMENTARY FIGURE 2

Average spatial attention weights (�fk,s) for the 62 EEG channels across the 15

subjects of the SEED-IV for each emotion and each of the 63 four-
second windows.

SUPPLEMENTARY FIGURE 3

Average spatial attention weights (�fk,s) for the 62 EEG channels across the 16

subjects of the SEED-V for each emotion and each of the 74 four-
second windows.
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