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Introduction: Autism Spectrum Disorder (ASD) identification poses significant

challenges due to its multifaceted and diverse nature, necessitating early

discovery for operative involvement. In a recent study, there has been a lot of

talk about how deep learning algorithms might improve the diagnosis of ASD by

analyzing neuroimaging data.

Method: To overrule the negatives of current techniques, this research proposed

a revolutionary strategic model called the Unified Transformer Block for Multi-

View Graph Attention Networks (MVUT_GAT). For the purpose of extracting

delicate outlines from physical and efficient functional MRI data, MVUT_GAT

combines the advantages of multi-view learning with attention processes.

Result: With the use of the ABIDE dataset, a thorough analysis shows that

MVUT_GAT performs better than Mutli-view Site Graph Convolution Network

(MVS_GCN), outperforming it in accuracy by +3.40%. This enhancement

reinforces our suggested model’s effectiveness in identifying ASD. The result

has implications over higher accuracy metrics. Through improving the accuracy

and consistency of ASD diagnosis, MVUT_GAT will help with early interference

and assistance for ASD patients.

Discussion: Moreover, the proposed MVUT_GAT’s which patches the distance

between the models of deep learning and medical visions by helping to identify

biomarkers linked to ASD. In the end, this effort advances the knowledge of

recognizing autism spectrum disorder along with the powerful ability to enhance

results and the value of people who are undergone.
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1 Introduction

Autism Spectrum Disorder (ASD) identification has emerged as a

crucial issue within the field of neurodevelopmental research, as the

prevalence of ASD grows worldwide. ASD is a complex and diverse

neurodevelopmental syndrome marked by difficulties in social

communication and repetitive activities. Identifying ASD early in a

child’s life is critical for appropriate intervention and support, yet it

remains a significant difficulty owing to the complex and frequently

subtle nature of the symptoms. Traditional diagnostic procedures

depend mainly on clinical observations, behavioral evaluations, and

interviews, which are subjective, time-consuming, and may lack the

sensitivity required for early diagnosis (1). In recent years, the use of

deep learning approaches into ASD detection has showed great

potential and drew major interest from researchers and clinicians.

Deep learning, a form of machine learning that uses artificial neural

networks modelled after the human brain, provides a unique technique

to identify the detailed patterns and traits linked with ASD in

neuroimaging data. Magnetic resonance imaging (MRI) and

functional MRI (fMRI) have emerged as critical methods for

understanding the brain’s anatomical and functional connections in

a non-invasive manner (2). Deep learning methods, particularly neural

networks with numerous layers, have shown the ability to

automatically learn and extract nuanced patterns from neuroimaging

data, allowing for the detection of minor anomalies linked with ASD.

Minor anomalies are minor differences in the structure and function of

the brain, undetectable using conventional methods and often too

minor to be easily visible. Such minor differences include slight

variations in the amygdala and cerebellum, abnormal connectivity

patterns between areas of the brain, alterations in cortical thickness or

volume, or microstructural changes in white matter. Advanced deep

learning algorithms identify such minor differences when processing

neuroimaging data. Thus, these minor differences are associated with

some cognitive and behavioral features of ASD, which allows for earlier

and more precise diagnosis. Deep learning has the ability to overcome

various issues that standard approaches confront while identifying

ASD. Deep learning algorithms can effectively handle large volumes of

data, identifying nuanced patterns that would be difficult to detect

manually. Furthermore, these models may incorporate multimodal

information by incorporating data from a variety of sources, including

structural and functional MRI, genetic markers, and behavioral

evaluations. The end result is a more thorough and nuanced

knowledge of ASD’s neurological roots, which might lead to more

accurate and early detection. Furthermore, the incorporation of

attention processes into deep learning models enables the prioritizing

of key variables, improving interpretability and enabling the discovery

of biomarkers linked with ASD. Understanding how deep learning

models make decisions is crucial for bridging the gap between their

complex, ‘black box’ nature and the clinical insights needed to make

informed decisions in practice As deep learning advances, new

architectures, optimization approaches, and hybrid models are being

developed to improve the accuracy, resilience, and generalizability of

ASD diagnosis models.
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2 Related work

2.1 Recognizing ASD via various deep
learning models

Functional Connectivity in ASD (3) is complex and shows

hypo- and hyper-connectivity within many brain networks.

Dimensional clustering can determine unique FC subtypes that

relate to specific behavioral characteristics, hence unearthing a wide

variety of connections between brain activity and behavior.

Recognition of common patterns in FC would explain the

heterogeneity of ASD better, facilitate better diagnosis, and

develop tailored interventions that bridge neural changes to

observable symptoms. The use of neuroimaging methods to better

understand and diagnose neurodevelopmental disorders suggests a

possible option for enhancing clinical practice. A technique for

estimating effective connectivity in brain networks (BNs) (4) using

EEG data, with a focus on children with attention-deficit

hyperactivity disorder (ADHD). Their findings revealed

substantial differences in directed information transmission across

EEG electrodes in ADHD patients compared to healthy controls,

with discriminative power notably high in the theta-band, which is

associated with focus and motor activity. Similarly (5), used

functional MRI (fMRI) data from the Autism Brain Imaging Data

Exchange (ABIDE) dataset to solve the problem of multi-site data

aggregation in autism diagnosis. They used data harmonization

approaches to improve classification accuracy and discovered

insights into ASD pathogenesis through network analysis. With

machine learning techniques applied to fMRI functional

connectivity, promising detection of ASD can be automated. The

critical advances include integration of temporal dynamics,

multiscale data, and focused analysis of brain networks relevant

to ASD. Even though performance keeps improving, more work is

needed to create robust and interpretable models for clinical

application. Combining data modalities with larger datasets may

further propel this field toward reliable computer-aided diagnosis of

ASD (6). Their research produced encouraging results and revealed

changes in brain network structure related to ASD. Furthermore

(7), the significance of using sequential information from task-

based fMRI for synthetic data augmentation in ASD diagnosis is

demonstrated, demonstrating the potential for improving

diagnostic accuracy and comprehending the underlying illness.

Together, these studies highlight the value of neuroimaging

techniques and advanced machine learning approaches in

understanding the intricacies of neurodevelopmental disorders,

opening the path for more effective diagnostic tools and deeper

insights into the brain.

An Unsupervised Contrastive Graph Learning (UCGL)

framework for resting-state fMRI research (8) underlines the

difficulty of acquiring labelled training data in clinical practice

and suggests a pretext model trained on unlabeled data for

subsequent illness diagnosis tasks. The UCGL framework is tested

on three rs-fMRI datasets, and it outperforms current techniques in
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the automated diagnosis of major depressive illness, ASD, and

Alzheimer’s disease. ASD is diagnosed using structural (sMRI)

and functional (fMRI) MRI modalities (9). To solve the low data

availability, transfer learning is used in conjunction with four vision

transformers and a 3D-CNN model. The investigations use several

ways to generate data and extract slices from raw 3D sMRI and 4D

fMRI images, yielding ground breaking findings. The brain disease

categorization in resting-state functional magnetic resonance

imaging (rs-fMRI) data study (10). Using multi-omics data, the

team created eleven networks that depicted various facets of the

brain. Kullback-Leibler divergence is used in their methodology,

Graph convolution techniques are then applied to learn gene-

disease connections. Functional magnetic resonance imaging

(fMRI) data has been more important in neuroscience research

recently for the identification of neurological illnesses and for the

comprehension of cognitive processes. Many research has looked at

various approaches to deal with issues such noise, limited sample

numbers, and the requirement for interpretability that arise

while processing fMRI data. Applying fMRI data to categorize

neurological disorders or cognitive function has been the subject

of several research. Using fMRI-derived brain graphs, GroupINN

(11)—a grouping-based interpretable neural network—classifies

cognitive performance well. Node grouping is included into the

architecture of this model, which jointly learns these groups and

extracts graph properties. Using resting-state fMRI time-series data,

networks of long- and short-term memories (LSTMs) (12) can be

used to directly diagnose autism spectrum disorders (ASD). They

used the extensive, multi-site Autism Brain Imagery Data Exchange

(ABIDE) I database for testing and training, and as a result, their

classification accuracy was higher than that of earlier techniques. By

applying algorithms that use deep learning to the ABIDE dataset

(13), it was possible to identify ASD patients only by looking at

patterns of brain activation. This approach achieved a remarkable

degree of accuracy and revealed functional connectivity patterns

linked to ASD. ASD-DiagNet (14), a system for ASD identification

using fMRI data, was developed utilizing the 1,035 participants

from 17 imaging facilities in the Autism Brain Imaging Information

Exchange dataset. Techniques include a hybrid strategy for

feature extraction that uses a single layer the perceptron and an

autoencoder, as well as a linear interpolation-based data

augmentation technique. In order to overcome the shortcomings

of conventional behavioral observation-based diagnostic

techniques, the research emphasizes the importance of developing

machine learning infrastructures for qualitative diagnosis of varied

mental disorders like autism spectrum disorder.

In these studies, the ABIDE dataset has become a notable

resource offering a big, multi-site collection of fMRI data for

research on ASD. By using this dataset, researchers may test and

train their models on a variety of samples, which improves the

generalizability of their conclusions. This research uses a range of

methodologies, from deep learning architectures to conventional

machine learning approaches. While deep learning models

frequently give better performance but lack transparency, classical

models could offer interpretability. Thus, by putting forth models

which are both practical and understandable, recent initiatives have

sought to close this gap.
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2.2 GNN-based ASD recognition

Adversarial Graph Contrastive Learning (A-GCL) (15) is a

method for identifying neurodevelopmental problems using fMRI

data. The model employs a graph neural network (GNN) based on

graph contrastive learning, with graphs generated from fMRI data. A-

GCL outperforms three datasets, Autism Brain Imaging Data

Exchange (ABIDE) I, ABIDE II, and attention deficit hyperactivity

disorder (ADHD), over three atlases. While an A-GCL model may

provide a good theoretical fit, this may be underpinned with several

limitations including high-quality data in fMRI, inability to generalize

across very diverse populations, low interpretability, and computing

demands. Specifically, the atlases used need to be determined and

only the resting-state fMRI is adopted. AMulti-Scale Dynamic Graph

Learning (MDGL) (16) framework for detecting brain disorders

utilizing resting-state functional magnetic resonance imaging (rs-

fMRI) data. They use various brain atlases to build multi-scale

dynamic functional connectivity networks (FCNs) and graph

neural networks to extract spatiotemporal information from them.

ASD categorization based on brain functional activity and gene

expression using an attention-based graph neural network (GNN)

(17). Their findings highlighted the significance of customized

information in ASD diagnosis and biomarker identification. By

combining individual brain topology and graph data. Furthermore,

they identified brain regions important for ASD, such as the social-

brain circuit and default-mode network, and discovered ASD-related

genes using functional MRI data and gene expression analysis,

demonstrating the potential of their approach for effective ASD

diagnosis and biomarker identification. Present the Autism

Spectrum Disorder-based Attention GNN and Crossover Boosted

Meerkat Optimization (ASD-AttGCBMO) (18) algorithm. The

suggested technique uses structural Magnetic Resonance Imaging

(sMRI) data from the ABIDE 1 dataset for preprocessing to improve

picture quality. Surface-based analysis and voxel-based morphometry

(VBM) both extract significant information such surface area, cortical

thickness, shape descriptors, and brain volumes. To address issues

such as overfitting and class imbalance, the model utilizes attention

GNNs with crossover-boosted meerkat optimization. PLSNet (19) is

a position-aware graph-convolution-network-based model for ASD

diagnosis that uses functional MRI (fMRI) data. PLSNet includes a

time-series encoder for feature extraction and a connection generator

to represent long-term relationships. PLSNet includes a time-series

encoder for feature extraction and a connection generator to

represent long-term relationships. Position embedding and a

rarefying approach are used to solve challenges such as brain

region variation and dimensionality complexity. The work delivers

cutting-edge performance on the Autism Brain Imaging Data

Exchange dataset.

The neuroimagingmethods, namelymagnetic resonance imaging

(MRI) and functional MRI (fMRI), to diagnose Autism Spectrum

Disorder (ASD). Each research suggests a unique methodology, such

as machine learning techniques, generative adversarial networks

(GANs), unsupervised contrasting graph learning, and adversarial

self-supervised GNNs. A Conditional Generative Adversarial

Network (cGAN) for predicting ASD (20). The researchers

emphasize the limits of classic supervised machine learning
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techniques when dealing with tiny datasets, and they provide a cGAN

that surpasses normal GANs in terms of prediction accuracy. A graph

attention network (GAT) (21), based on spatially restricted sparse

functional brain networks (FBNs), was used to diagnose ASD. They

developed a unique approach, Pearson’s correlation-based Spatial

Constraints Representation (PSCR), for estimating FBN structures

and feeding them into a GAT for classification. Their trials using the

ABIDE I dataset demonstrated the superiority of the PSCR technique

as well as the influence of various FBNs on classification outcomes.

Their suggested system produced encouraging classification results,

surpassing rival approaches and offering insights for future illness

detection using FBN and GNN frameworks.

The focus is on ASD, and task-based functional magnetic

resonance imaging (fMRI) data is used. The authors focus on data-

driven learning algorithms for biomarker identification and outcome

prediction. Their deep learning methods use GNNs (GNNs) (22) for

spatial variables and Long Short-TermMemory (LSTM) networks for

temporal features. The chapter emphasizes the significance of

dynamic connectivity changes and provides a more comprehensive,

integrated model that includes spatiotemporal aspects as well as

neural ordinary differential equations. ASD (23), utilizing a

thorough examination of multi-modal imaging markers. Their

dual-branch GNN performs a major diagnosis by extracting and

combining data from structural and functional magnetic resonance

imaging. The study also uses a perturbation model to find brain

imaging signals and a neuro-transcriptomic joint analysis to reveal

putative genetic biomarkers related with ASD brain development.

Contribute to psychiatric diagnosis (24) using brain-networks by

presenting a Granger causality-inspired GNN (CI-GNN). The

model strives for interpretability without resorting to post-hoc

interpretative paradigms.

A graph neural network architecture called BrainGNN (25) was

used to analyze fMRI datasets from the Human Connectome

Program (HCP) 900 Participant Release and Autism Spectrum

Disorder (ASD). Their solution leverages both functional and

topological knowledge gathered from fMRI data by using new

ROI-aware graph convolution layers (Ra-GConv). Furthermore,

BrainGNN uses ROI-selection layer pooling (R-pool) to emphasize

important brain areas, making it easier to read. Regularization terms

are suggested to promote flexible modeling of single or group-level

patterns and fair ROI selection, such as units loss, topK pooled

(TPK), which loss, and group-level constancy (GLC) loss.
2.3 GCN-based ASD recognition

In recent research, there has been an increasing emphasis on

using functional brain networks (FBN) to classify neurological

illnesses, particularly Autism Spectrum Disorder (ASD). MVS-

GCN (2), a multi-view graph convolution network guided by

previous brain structure learning, to overcome the issues

presented by subject heterogeneity and noise correlations in brain

networks. Their machine learning technique not only helps to

classify neurological illnesses, but also gives an interpretable

framework for deeper insights into the brain network. A joint

learning architecture of multi-level dynamic brain networks for
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the diagnosis of ASD (26). They overcome the constraints of

previous graph convolutional network (GCN)-based techniques

by allowing bidirectional information sharing across brain

networks and adding edge weight information via an edge self-

attention mechanism. It allows for information complementarity

across different layers of brain networks. The Autism Spectrum

Disorder-based Attention Graph Neural Network and Crossover

Boosted Meerkat Optimization (ASD-AttGCBMO) method (27)

detects ASD using structural MRI data. Their approach uses

attention graph neural networks and a crossover boosted

optimization strategy to improve feature categorization between

ASD and control participants. Graph Neural Network (GNN)

topologies and machine learning models for analyzing rs-fMRI

data to better understand schizophrenia (28). They train deep graph

convolutional neural networks (DGCNNs) and machine learning

models with graph-theoretical measurements based on functional

correlations between brain areas of interest CI-GNN finds

influential subgraphs associated with choices (e.g., major

depressive disorder), meeting the demand for interpretable graph

neural networks and highlighting the significance of causal linkages

in explainability. Moving on to neurodegenerative illnesses (29),

investigates early dementia prediction using fMRI data and a Graph

Convolutional Network (GCN) technique A multi-task learning

strategy using a knowledge graph attention network to identify both

mental and physical diseases (MPD) (30) simultaneously.

Investigating disparities in brain activity to differentiate

between individuals with Autism Spectrum Disorder (ASD) and

those without aids in understanding the root causes of ASD, leading

to enhanced diagnosis and treatment strategies. As a result,

functional connectivity (FC) analysis (31) derived from resting-

state functional magnetic resonance imaging (rs-fMRI) data has

emerged as a potent method for assessing and charting

brain activity.

Using a supervised the siamese graph convolution neural

network (s-GCN) (32) as a foundation, this approach learns a

graph similarity measure with a specific emphasis on comparing

brain connection networks. The model takes graph structure into

account by using spectral graph convolutions, which function in the

graph spectral domain. This improves results on the ABIDE

database. Graph neural networks, with applications in neurology

and other domains, have shown promise as a method for processing

graph-structured data. During the graph representation learning

process, local structural information is preserved by the use of

EigenPooling (33), a pooling operation based on the graph Fourier

transform. By fusing layers for pooling based on EigenPooling with

conventional graph convolutional layers, they create EigenGCN, a

graph neural network architecture for graph classification, and

demonstrate its efficacy on six widely used benchmarks. To

overcome the shortcomings of current approaches in the field of

resting-state functional magnetic resonance imaging (rs-fMRI) (34)

research, formulate functionally connected networks as

spatiotemporal graphs. To simulate the non-stationary character

of functional connectivity, they present a spatio-temporal graphing

convolutional network (ST-GCN) built on brief sub sequences of

BOLD time series. When it comes to predicting age and gender

from BOLD data, ST-GCN performs better than standard methods.
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It also finds key brain areas and functional linkages that are

involved in the predictions.

Functional brain networks (FBN) have attracted a lot of interest

as a means of diagnosing neurological disorders including autism

spectrum disorders (ASD). Accurate categorization is difficult due

to noisy correlations in brain networks and considerable subject

heterogeneity. MVS-GCN (2), which combines graph neural

networks to get efficient end-to-end representations for brain

networks. To improve classification performance and find

possible functional subnetworks, this approach combines multi-

view graph convolutional neural networks with previous knowledge

of brain anatomy. Using the Alzheimer’s Disease Neuroimaging

Initiative (ADNI) and Autism Brain Imaging Data Exchange

(ABIDE) datasets, the authors assess the MVS-GCN model and

show that it is more effective than current techniques. This concept

motivates to generate a integrating the views in a combined form

with the help of transformer and introduced a new Multi-View

United Transformer Block (MVUTB). The proposed model also

improves the performance of class discrimination using Graph

Attention Network.
3 Background

3.1 Graph attention layer on ASD

The Graph Attention Layer (GAT) is critical in identifying

essential patterns and characteristics in neuroimaging data for

recognizing Autism Spectrum Disorder (ASD). The application of

GAT is discussed here, with equations to show how it works in the

context of ASD recognition.

The GAT layer in the ASD identification task receives a

collection of node characteristics reflecting neuroimaging data

connected with brain areas (34). Let h = ĥ1, ĥ 2,…, ĥN

n o
N is the

number of brain regions, and F is the number of related

characteristics for each area. The goal is to create a new set of

node functionalities   h0 = ĥ 01, ĥ 02,…, ĥ 0N

n o
, with ĥ 01in  RFo

as Output.

The transformation starts with a common l inear

transformation, parameterized by a weight matrix. W in RFoX   F ,

applied to each node’s features:

ĥ 0
i = W ĥ i (1)

A self-attention mechanism is used to produce attention

coefficients (eij) that indicate the significance of characteristics

from node j to node i for ASD detection. The attention

coefficients are generated using a shared attentional mechanism

and masked attention, focusing solely on first-order neighbors.

eij = a(   ĥ
0
ii, ĥ

0
jj) (2)

To introduce the graph structure, masked attention is

conducted, only for the node j which is a neighbor of node i, that

is taking just the neighborhood Ni of node i. To make coefficients

comparable across nodes, a softmax function is applied:
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a
ij=Sof tmax

exp(eij )

ok∈Ni
exp(eik )

� �
(3)

Finally, the new node includes ĥ 0i is calculated as a weighted

sum of the original characteristics, using attention coefficients as

weights.

ĥ 0i = o
j∈Ni

aijĥ
0
j (4)

This method efficiently captures the significance of

characteristics from surrounding brain areas in the context of

ASD identification (35) by utilizing the self-attention mechanism

and graph structure information. The GAT layer’s capacity to

selectively aggregate information depending on attention

coefficients improves the overall efficacy of ASD detection in

neuroimaging data.
3.2 Transformer-based ASD recognition

Transformer-based models have gained popularity in recent

neuroimaging studies for detecting Autism Spectrum Disorder

(ASD) (36, 37). Transformers, which were first introduced for

natural language processing, have shown amazing ability to

capture subtle patterns and relationships within sequential data,

making them ideal for analyzing complex brain imaging data linked

with ASD.

3.2.1 Overview of transformer model
The Transformer design includes an encoder-decoder structure,

however in the context of ASD identification, we concentrate on the

encoder. The Transformer encoder’s main components include self-

attention mechanisms (38), multi-head self-attention (MHA), and

feedforward neural networks (FFN).

3.2.2 Self-attention mechanisms
The self-attention mechanism is a critical component of the

Transformer model, allowing it to weigh various elements of the

input sequence independently. Given an input sequence, the self-

attention mechanism calculates attention ratings for each element

in the sequence in comparison to all other items. The attention

scores are then utilized to calculate a weighted total of the input

sequence, which results in context-aware representations for each

piece. The mathematical expression for the self-attention process is

as follows:

Attention(Q,K ,V) = Sof tmax
QKTffiffiffiffiffi
dk

p
� �

V   (5)

The query, key, and value matrices are represented by Q, K, V,

respectively, and dk denotes the dimension of the key vectors.

3.2.3 Multiple-head self-attention
To increase model expressiveness, the Transformer utilizes

many attention heads in tandem. Each head gains a separate

understanding of the relationships within the input sequence.
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The outputs from the several heads are concatenated and linearly

processed to generate the final attention output. The formula for

multi-head self-attention is as follows:

MHA(Q,K ,V) = Concat(Head1,……,Headn)Wo (6)

Where Headi = Attention(QWQi,KWKi,VWVi) and Wo   is the

output projection matrix.

3.2.4 Feedforward neural network
After the attention process, the model uses feedforward neural

networks to perform further nonlinear transformations. The FFN is

made up of two linear layers separated by a non-linear activation

function (often a ReLU). The mathematical expression for the FFN

operation is as follows:

FFN(x) = ReLU(xW1 + b1)W2 + b2 (7)

The weight matrices and bias terms are represented by  W1,  

b1,  W2   and   b2.

In the context of ASD detection, the Transformer encoder

examines neuroimaging data, such as MRI scans, to identify

ASD-related characteristics and patterns. The self-attention

mechanism allows the model to focus on specific areas of interest,

whilst the multi-head mechanism improves the model’s capacity to

collect varied and complicated correlations in brain data. The

ensuing feed forward neural networks modify the representations

for downstream tasks, such as distinguishing between ASD and

control participants.
4 Proposed model of ASD multi-view
united transformer block

In this section, we introduce the ASD Multi-View United

Transformer Block (ASD-MVUTB), a new model for detecting

Autism Spectrum Disorder (ASD). Our suggested design uses

transformer blocks to combine multi-view information, taking use
Frontiers in Psychiatry 06
of varied views from neuroimaging data. The model effectively

captures subtle patterns from several perspectives, encouraging

complete feature extraction for accurate ASD detection.

Experimental validation shows that the proposed ASD-MVUTB

outperforms existing techniques.

The workflow for detecting Autism Spectrum Disorder (ASD)

in Figure 1, is structured around N distinct views (V1, V2, and VN),

each comprising both positive (+V) and negative (-V) perspectives.

In the V1-Positive View (+V), the process initiates with a Graph

Attention Network (GAT-1), wherein neuroimaging data

undergoes attention-based feature extraction. The output of GAT-

1 is then subject to a Residual Addition operation, combining the

GAT-1 output and the original positive view data. Subsequently,

another Graph Attention Network (GAT-2) is applied, repeating

the attention-based feature extraction process. The results of GAT-2

for both +V and -V are concatenated, and the concatenated output

undergoes two linear layers (linear (128,16) and linear (16,2)) to

determine the binary classification output, indicating whether the

patient exhibits ASD (39, 40).

Mathematically, the process can be expressed as follows:

1. GAT-1 Process:

GAT − 1( + V) = GAT − 1 Output (8)

2. Residual Addition:

GAT − 1 Output + +V = Residual Addition (9)

3. GAT-2 Process:

GAT − 2(Residual Addition Output) = GAT − 2 Output (10)

4. GAT-2 Layer Concatenation:

Concatenate(GAT − 2 Output ( + V),  GAT − 2 Output (

− V)) (11)

5. Linear Layer Application:

Linear (128,  16) → Lineary (16,  2) = View1 Output (12)
FIGURE 1

Workflow of detecting ASD.
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Next, after the GAT-2 process for each view, a Transformer

Encoder (TE) is applied. The TE operation is conducted separately

for both the +V and -V outcomes of each view. This multi-view

approach enhances the model’s ability to capture diverse features

and patterns related to ASD within the neuroimaging data.

The Transformer Encoder for all View (V’s) is expressed as:

TE(GAT − 2 Output( + V)) = +V TE Output (13)

TE(GAT − 2 Output( − V)) = −V TE Output (14)

This entire process is replicated for View2 (V2), View3 (V3) and

upto ViewN(VN). In this work three views are used to construct the

ASD model. The utilization of Graph Attention Networks and

Transformer Encoders facilitates capturing intricate patterns in

neuroimaging data, and the linear layers aid in synthesizing and

classifying the information for ASD detection. The concatenated

results from the GAT-2 process ensure a comprehensive

representation of both positive and negative perspectives in each

view, contributing to the overall diagnostic outcome.

The proposed ASD-MVUTB model architecture, as illustrated

in Figure 2, involves distinct processing of positive and negative TE

outputs from Views (+Vs and -Vs) separately. Specifically, the TE

outputs +ViTEout (X1) and +Vi+1TEout (X2) are processed

independently in the first MVUTB layer. The resulting outputs,

denoted as X1 and X2, are then combined with +Vi+2TEout in the

second MVUTB layer. These intermediate results are flattened to

create feature vectors. A parallel process is applied to the negative

TE outputs, resulting in three sets of flattened feature vectors.

Subsequently, the flattened results from both +Vs and -Vs are

concatenated, and the concatenated feature vector undergoes three

linear transformations: Linear(384, 32), Linear(32, 16), and

Linear(16, 2).
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The ASD-MVUTB working process is represented as follows:

1. MVUTB layers:

• Positive TE Outputs Processing.

X1 = MVUTB( + ViTEOUT ,   +Vi+1TEOUT) (15)

X2 = MVUTB(X1,   +Vi+2TEOUT ) (16)

• Negative TE Outputs Processing.

Y1 = MVUTB( − ViTEOUT ,   −Vi+1TEOUT)   (17)

Y2 = MVUTB(Y1,  −Vi+2TEOUT ) (18)

2. +Vs and –Vs Flatteninng.

FX = Flatten(X1,  X2) (19)

FY = Flatten(Y1,  Y2) (20)

3. Concatenation:

FConcat = Concat(FX ,   FY ) (21)

4. Linear Transformations:

Z1 = Linear   (FConcat ,   384, 32) (22)

Z2 = Linear   (Z1, 32, 16) (23)

Z3 = Linear   (Z2,   16,   2) (24)

The motivation behind this architecture lies in the enhanced

feature extraction from both positive and negate+ve TE outputs

independently, and the subsequent concatenation allows the model

to capture and leverage information from both perspectives.
FIGURE 2

ASD-MVUTB proposed model architecture.
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The linear layers at the end serve to further distill and map the

concatenated features into a final prediction space for ASD

classification. This layered approach enhances the model’s ability

to discern intricate patterns and relationships within the TE

outputs, contributing to its effectiveness in ASD recognition.

In the proposed framework depicted in Figure 3, the Multi-View

Transformer Block operates through a meticulous process involving

two views of features, denoted as X1 and X2. These views undergo

Layer Normalization simultaneously. Subsequently, a linear mapping is

applied to the query (q) and key (k) from X1, and the value (v) from

X2, which are then fed into the Multi-Head Attention (MHA)

mechanism. The output of MHA, along with the original features

from X1, undergoes an element-wise addition (A1) to yield a

preliminary result (R1). Following this, another Layer Normalization

is applied, succeeded by a Multi-Layer Perceptron (MLP). The output

of the MLP, combined with the result from the previous addition (R1),

undergoes a second addition (A2), culminating in the generation of the

final outcome. This iterative and additive process allows for the effective

integration of information from multiple views.

1. Layer Normalization:

LayerNorm(X) =
(X − m)ffiffiffiffiffiffiffiffiffiffiffiffiffi
s 2 + e

p �   g + b (25)

Where m and s represent the mean and standard deviation, e is
a small constant, and g and b are learnable parameters.
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2. Multi-Head Attention (MHA):

MHA = (qx1, kx1,Vx2) = Sof tmax  
qx1,   k

T
x1  ffiffiffiffiffi

dk
p

� �
Vx2 (26)

3. Addition (A1):

R1 = X1 +MHA(qx1, kx1,Vx2) (27)

4. Multi-Layer Perceptron (MLP):

MLP(X) = ReLU(XW1 +   b1)W2 + b2 (28)

5. Addition (A2):

R2 = R1 +MLP(R1) (29)

The adoption of Multi-Head Attention allows the model to

capture intricate relationships within and between X1 and X2,

enhancing representational capacity. The subsequent addition of

the MHA output and the original X1 features promotes the fusion

of learned contextual information with the original content. The

Layer Normalization following each operation ensures stability and

normalization of the intermediate results. The introduction of the

MLP introduces non-linear transformations, further enhancing the

model’s ability to capture complex patterns. The final addition

consolidates the MLP’s output with the result from the initial MHA

addition, producing a comprehensive and refined representation

that incorporates information from both views. This iterative
FIGURE 3

Framework of multi-views in transformer block.
frontiersin.org

https://doi.org/10.3389/fpsyt.2025.1485286
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Jemima et al. 10.3389/fpsyt.2025.1485286
process aligns with the principles of transformer-based

architectures, facilitating multi-view feature integration for

improved learning and representation.
5 Experimental results

The experimental findings in this section show how well the

Multi-View United Transformer Block of the Graph Attention

Network detects ASD. Using a variety of neuroimaging

modalities, including as MRI and fMRI data, the model performs

exceptionally well in identifying subtle patterns linked to ASD. In

addition, the inclusion of attention processes improves

interpretability and makes it possible to find significant

biomarkers. These findings highlight the potential of deep

learning techniques to transform the knowledge and early

identification of ASD.

In Table 1, a comprehensive comparison between the proposed

Multi-View United Transformer Block of Graph Attention

Network (MVUT_GAT) and several existing methods reveals

notable advancements in accuracy. Compared to the MVS-GCN

(1) approach the MVUT_GAT exhibits a superior performance,

surpassing MVS-GCN by +3.4%, ASD-DiagNet by +4.98%, and

DAE by +5.68%. These substantial accuracy improvements

underscore the efficacy of the proposed method in outperforming

various state-of-the-art approaches in Autism Spectrum

Disorder identification.

A comparative examination of the Area Under the Curve

(AUC) values for several approaches on the ABIDE dataset is

shown in Figure 4. An extensive summary of each technique’s

efficacy in diagnosing Autism Spectrum Disorder (ASD) is given by

the AUC, a statistic used to evaluate the performance of

classification models. The graph provides information about the

relative advantages and disadvantages of the models by graphically

representing the discriminative capacity of different methodologies.

The most promising techniques for precise ASD diagnosis are

chosen by academics and clinicians with the help of this
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quantitative assessment based on the ABIDE dataset. When

evaluating how well various algorithms handle neuroimaging data

for ASD identification, the figure is a useful point of comparison.

Figure 5 displays the values of the super node number for the

graph structure learning and the corresponding outcomes. Findings

indicate that the number of nodes in the coarsened graph

significantly affects classification performance, indicating the

importance of the brain network’s coarsening level for graph

structure learning. More specifically, the coarsened graph’s

topology information is condensed if there are fewer super nodes

than there are, and richer if there are more super nodes than

there are.

V ∈ {1, 2, 3, 4, 5, 6} was changed, and the performance variation

with different values was examined in order to examine the impact

of variability throughout the number of views. As seen in Figure 6,

the performance gets better the more views there are, up to a

maximum of three. This indicates that distinct views have built-in

correlations that help capture topological details. Further evidence

that more views will unavoidably contribute duplicate data to the

model and lower its classification performance comes from the

observation that the model’s performance tends to stabilize as the

number of views rises.
6 Conclusion and discussion

Identification of Autism Spectrum Disorder (ASD) may

advance with the incorporation of deep learning models, such as

the Multi-View United Transformer Block of Graph Attention

Network. These algorithms’ capacity to automatically identify

subtle abnormalities in multimodal neuroimaging data improves

diagnostic precision and makes it easier to identify ASD early on. By

including attention processes, interpretability is further enhanced

and the gap between clinically applicable discoveries and

complicated models is closed. The proposed model Multi-View

United Transformer Block of Graph Attention Network

(MVUT_GAT) outperforms the existing model by +3.4% which

improves the robustness and generalizability of ASD diagnostic

models. In order to improve the robustness and generalizability of

ASD diagnostic models, continued research efforts should

concentrate on honing architectures, optimizing models, and

investigating hybrid techniques as deep learning continues to

develop. To further enhance our knowledge of the neurological

foundations of ASD, future research may investigate the integration

of other data sources, including as genetic markers and behavioral

assessments. These developments might transform early diagnosis

and intervention approaches, ultimately leading to better outcomes

for people with ASD worldwide.
7 Future work

Future studies on MVUT_GAT for ASD diagnosis will focus on

some key issues to improve the robustness and generalizability of

the model. Among these, the main focuses should be on optimizing

the model, hyperparameters refinement, an increase in efficiency
TABLE 1 Comparison of existing methods for sensitivity, specificity,
accuracy, and AUC.

Accuracy Sensitivity Specificity

DAE (12) 67.61 78.7 53.2

ASD-DiagNet (13) 68.31 60.31 67.76

GroupINN (10) 63.6 61.52 57.36

ST-GCN (33) 57.29 54.78 48.91

Eigenpooling GCN (32) 57.5 58.81 59.94

LSTM-ASD (11) 68.5 - -

BrainGNN (24) 61.84 61.65 60.79

sGCN (31) 67.54 64.73 60.12

MVS-GCN (1) 69.89 70.18 63.05

MVUT_GAT 73.29 73.86 69.67
- means sensitivity and specificity are not applicable.
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levels along with transfer learning, and other advanced techniques

that can help it handle such datasets. Additionally, MVUT_GAT

could be combined with other deep learning models, like CNNs or

RNNs, to enhance performance. Multimodal data integration, such

as genetic markers, behavioral assessments, and neuroimaging,

would give a better understanding of ASD and could also

enhance diagnostic accuracy. Improving interpretability is yet
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another important area. Mechanisms of attention and

explainability techniques, such as the saliency maps used by the

model, will clarify the decision-making process for clinicians, so

they can better trust and implement deep learning models in

practice while filling a gap between advanced algorithms and

clinical use. Longitudinal studies should be pursued to track the

changes in ASD over time with neuroimaging data. This will ensure
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earlier detection of ASD and real-time tracking of interventions. A

greater population from more diverse demographics would increase

the number of datasets, which would be more generalizable for the

model and its applications in different settings of healthcare. Finally,

collaboration among deep learning researchers, clinicians, and

neuroscientists will be very critical to align the models with

clinical needs and ensure that these advances are translated into

better ASD diagnosis and intervention, hence improving outcomes

for individuals around the world.
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