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Introduction: Attention deficit hyperactivity disorder (ADHD) is a prevalent

neurodevelopmental disorder that affects attention, impulse control, and

multitasking abilities in children and adults. Understanding electroencephalography

(EEG) characteristics of children with ADHD can provide new diagnostic tools and

personalized treatment plans. This study aims to explore potentially promising EEG

features using advanced machine learning techniques and feature selection

technique (i.e., SHapley Additive exPlanations (SHAP) algorithm) to reveal brain

function abnormalities between pediatric children with ADHD and healthy

controls (HC) in a data-driven manner.

Methods: Multidimensional EEG characteristics were extracted from multiple

domain (including power spectral density (PSD), fuzzy entropy (FuzEn), and

functional connectivity features of mutual information (MI)) using a publicly-

available dataset. Then, four widely-employed machine learning algorithms

(including random forest (RF), XGBoost, CatBoost, and LightGBM) were used for

classification calculations, and the SHAP algorithm was then used to assess the

importance of the contributing features to interpret the model’s decision process.

Results: The results showed that the highest classification accuracy of 99.58% for

pediatric ADHD detection was obtained with the CatBoost model based on the

optimal feature subset of 206 features (PSD/FuzEn/MI = 53/5/148). According to

the optimal feature subset statistics, there is an increase in the power of theta,

alpha, and beta rhythms, an elevated power ratio between theta and beta (theta/

beta ratio, TBR), and reorganization of whole-brain functional connectivity

across all frequency bands in children with ADHD, primarily characterized by

enhanced functional connectivity.
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Discussion: We showed that EEG features was effectively extracted by machine

learning methods, which could play a critical role in classification between

pediatric ADHD and HC. These findings provide strong evidence for revealing

the electrophysiological mechanisms through multidimensional EEG

characteristics and move a step forward towards future automatic diagnosis

of ADHD.
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1 Introduction

Attention Deficit Hyperactivity Disorder (ADHD) is a prevalent

neurodevelopmental disorder characterized by inattention,

hyperactivity, and impulsivity. It typically manifests in childhood

and often persists into adulthood, affecting learning, social

relationships, and daily functioning (1, 2). According to (3–5),

ADHD affects about 5 – 12% of children and adolescents globally

despite different diagnostic criteria and reporting practices across

regions (6). The severity of ADHD symptoms can differ greatly. In

severe cases, individuals might face academic struggles due to

attention deficits and hyperactive behavior. Socially, subjects with

ADHD present challenges as impulsivity and inattentiveness that

may lead to challenge to form as well as maintain friendships, often

resulting in social rejection (7). Additionally, ADHD is often

associated with other emotional and behavioral issues such as

anxiety, oppositional defiant disorder, and conduct disorder (8).

These co-occurring conditions can aggravate daily challenges,

including poor job performance, marital problems, and a higher

risk of traffic accidents due to impulsivity and inattention (9, 10).

Research indicates that individuals with ADHD are at a greater risk

of substance abuse and addiction, which increases health risks. Take

into account of these undesirable consequences, early identification

of ADHD could promote early intervention which may significantly

reduce the negative impacts of ADHD, improve academic

performance, social interactions, and ultimately overall quality

of life.

According to the Diagnostic and Statistical Manual of Mental

Disorders, 5th Edition (DSM-5) (11), the diagnosis of ADHD

should be based on observing behavior related to attention,

activity level, and impulsivity. However, behavioral assessment is

subjective and may not fully capture the complexity of ADHD.

Parents, teachers, and others known to the child are usually

involved in the treatment plan to provide additional information

that may contribute to accurate diagnosis. The symptoms of the

child are checked against standardized behavioral scales, but the

results again rely on the subjective evaluation of the examiner, and

variations cannot be completely eliminated. Therefore, there is a

need to develop objective markers for accurate and reliable

diagnosis of ADHD. In this regard, the widely-used subjective
02
questionnaires may not appreciate parts of the real condition of

the patient being assessed. Moreover, questionnaires may not be

applied universally among persons of different cultures and

languages, and this affects diagnosis or its uniformity (12). To this

end, behavioral assessment and neuroimaging are commonly used

to provide additional information (13). Nevertheless, behavioral

assessment relies on subjective reports that may not fully capture

the disorder’s complexity, whereas neuroimaging (such as

functional magnetic resonance imaging (fMRI), positron emission

tomography (PET), and near-infrared spectroscopy (NIRS)) are

typically costly and require specialized expertise. An objective and

reliable analysis framework that could provide reliable and accurate

diagnosis of ADHD through incorporating cost-effective

neuroimaging technique and advanced machine learning methods

is therefore of great importance.

Machine learning has apparent potentials for the diagnosis of

mental disorders (14). Indeed, early diagnosis of mental disorders

could be done by analyzing and integrating large amounts of clinical

characteristics, biomarkers, and neuroimaging data through

machine learning. In fact, data from neuroimaging reveal

abnormal patterns and features that may possibly explain the

underlying etiology of the disorder. In comparison with the

hypothesis-driven clinical studies, machine learning is good at

processing and analyzing high-dimensional multidimensional

data to discover possible patterns and complex relationships of

mental disorders (15–17). Such analyses give insights into the

deeper pathophysiological mechanisms of diseases from a data-

driven fashion, which may therefore provide a scientific rationale

for developing novel diagnostic methods. As such, the application

of machine learning has several benefits for ADHD detection. It

improves diagnostic accuracy by providing subtle differences in

brain structure and function that otherwise would be difficult to

obtain using conventional means. Further, machine learning

contributes to the overall understanding of ADHD by elaborating

differences in functional connectivity, frequency characteristics, and

other brain dynamics in the brain. This deeper understanding helps

in creating more focused and effective diagnosis methods of ADHD.

Heuristically, EEG offers millisecond temporal resolution,

enabling real-time acquisition of fast neural processes crucial for

studying dynamic brain activity (18). Its non-invasive nature,
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portability, and relative affordability have led to its widespread use

in clinical and laboratory settings. Of note, EEG has already been

far-reaching in research and diagnostics of ADHD (19, 20). For

instance, children with ADHD typically exhibit higher theta and

lower beta powers compared to healthy controls (HC) (21, 22). The

power ratio between theta and beta waves (theta/beta ratio, TBR) is

often higher in children with ADHD than those of normal controls,

making TBR a potential biomarker for ADHD. In addition to power

spectral density analysis, nonlinear dynamics of EEG signal offers

new insights. Fuzzy entropy (FuzEn) is a nonlinear metric of the

complexity and uncertainty of a time series (23, 24). By measuring

the EEG FuzEn, researchers can quantify the state of nervous

system functioning, making it a valuable supplementary

diagnostic tool (25). This ability to assess complexity is

particularly useful in estimating the complexity features of ADHD

EEG signals. Functional connectivity analysis, using mutual

information (MI), is another key approach. MI is a non-

parametric statistical method that measures the shared

information between two random variables, uncovering complex

nonlinear relationships (26, 27). In ADHD researches,

characteristic abnormalities in MI patterns across various EEG

rhythms can define the functional connectivity features that may

potentially facilitate clinical diagnosis. Analyzing functional

connectivity features provides more information about the

neurophysiological mechanisms of ADHD. In the context of

ADHD, both resting-state and task-state functional connectivity

offer valuable insights. Resting-state functional connectivity

measures the correlation of activity time series while subjects are

at rest (28), revealing intrinsic connectivity networks that are more

permanent and correlate well with anatomical connectivity. In

contrast, task-state functional connectivity assesses the

interactions between brain regions during specific cognitive tasks

(29). For children with ADHD, task-state connectivity often shows

hyper-connectivity in certain frequency bands (30), which may

reflect exaggerated interactions between brain regions during

cognitive processing. This hyper-connectivity can be more

effective for ADHD diagnosis. In summary, such findings from

EEG data analysis enable clinicians to better understand the

neurophysiological underpinnings of ADHD, allowing for more

effective treatment strategies tailored to individual patient needs,

ultimately enhancing outcomes in terms of attention and behavioral

control (31).

In this work, a machine learning analysis framework is

developed to extract salient EEG features for accurate diagnosis of

ADHD, which may lead to a deep understanding of important

abnormal neural mechanisms in children with ADHD. The

employed features include PSD, FuzEn, and MI, which are fed

into machine learning classifiers to obtain the highest classification

accuracy. Feature selection was done using SHapley Additive

exPlanations (SHAP) feature selection. Signal analysis for the

understanding and interpretation of physiological significance of

ADHD was then conducted based on the selected contributing

features. The suggested analysis framework will help to make

explicit the important neurobiological characteristics of ADHD

and may move a step forward towards future automatic diagnosis

of ADHD.
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2 Materials and methods

2.1 Dataset introduction

A publicly-available dataset was utilized in this study (32). The

dataset includes two groups of children. One group consists of 61

children diagnosed with ADHD (male/female = 48/13, age = 9.62 ±

1.75 years old), strictly diagnosed by psychiatrists. The healthy

group consists of 60 gender- and age-matched HC children (male/

female = 50/10, age = 9.85 ± 1.77 years old). No children in the HC

group had any mental disorders, a history of epilepsy, or reported

high-risk behaviors. All participants were school-aged and right-

handed. The data collection was approved by the Institutional

Review Board and Ethical Committee of Tehran University of

Medical Sciences. Written informed consent was obtained from

each participant and/or their parents. Further details pertaining to

the dataset could be referred to the original work (33).

Given the significant deficits in visual attention among children

with ADHD, a visual attention task was designed and EEG signals

were collected during the task. Briefly, the task involved showing

children a series of cartoon character images and requiring them to

accurately count the number of characters in each image. The

images were designed to be large enough for all children to easily

identify and count. To ensure the continuity of stimulation and the

effectiveness of the task, each image seamlessly transitioned to the

next immediately after the response. This formed a smooth

cognitive visual task flow. Therefore, the duration of the entire

EEG recording was not fixed but flexibly adapted to the response

speed of each child. This setup more accurately captured the

dynamics of their neural activity during the visual attention task.

EEG data were collected from 19 channels (including Fp1, Fp2, F3,

F4, F7, F8, Fz, C3, C4, Cz, P3, P4, Pz, T3, T4, T5, T6, O1 and O2)

according to the standardized international 10-20 system with a

sampling rate of 128 Hz. A1 and A2 electrodes were used as earlobe

reference points. During the recordings, the electrode impedances

were kept below 5 kΩ.
2.2 Feature extraction

In Figure 1, we showed the analysis flowchart of the current

work. Specifically, the 19-channel EEG signals were segmented into

4-second segments. A 4th order Butterworth filter was applied to

band-pass filter each segment within the 0.5 – 30 Hz range to

remove noise from low-frequency respiratory waves and high-

frequency electromyography waves. Independent component

analysis (ICA) was then used to identify and remove the noise

components. For the subsequent calculation, EEG data were filtered

into four conventional canonical frequency bands (including delta:

0.5 – 3 Hz, theta: 4 – 7 Hz, alpha: 8 – 13 Hz, beta: 14 – 30 Hz).

From these extracted rhythm bands, a total of 931 features were

derived: PSD (absolute power (AP), relative power (RP), TBR),

nonlinear dynamics (FuzEn), and functional connectivity (MI). The

number of features for RP, AP, and FuzEn were each 76 (19

channels × 4 frequency bands), the number of features for the

theta/beta power ratio was 19, and the number of functional
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connectivity features was 684 (19 channels × (19 channels – 1) × 4

frequency bands/2). Detailed formulas of PSD features and FuzEn

features can be found in the literature (34). MI was estimated

between each pair of EEG channels:

MI(X,Y) =oX,YP(X,Y) log
P(X,Y)
P(X)P(Y)

(1)

where X and Y represent the EEG signals from two channels,

P(X) denotes the probability that X = Xi occurs, P(Y) denotes the

probability that Y = Yi occurs, and P(X,Y) denotes the probability

that (X = Xi,  Y = Yi) occur at the same time, i.e., the joint

probability. By using a standardized 10-20 electrode placement

system, preprocessing the EEG signal, calculating functional

connectivity using MI, and applying the SHAP algorithm for

feature selection and model evaluation, this study mitigates the

impact of volume conductor effects on EEG functional connectivity

calculations to some extent.
2.3 Machine learning models

In the current work, 10-fold cross-validation was adopted.

Specifically, the dataset was randomly divided into 10 segments

where 9 segments were used as training sets, while the remaining 1

segment served as the test set. Four widely-used ensemble learning

models (i.e., random forest (RF), XGBoost, CatBoost, and

LightGBM) were employed for ADHD classification.
Fron
1. RF: RF is an ensemble learning approach designed to

enhance the accuracy and robustness of prediction by
tiers in Psychiatry 04
building multiple decision trees and afterward integrating

their outcome predictions to make the final decisions. RF

trains every decision tree independently based upon a

randomly selected subset of the dataset, known as

bootstrap sampling. Moreover, at each split node, it

selects a random set of features in order to choose the

best split. These dual randomness help in reducing

overfitting by making sure that the individual trees are

diverse and uncorrelated. RF finally makes a prediction by

aggregating the predictions from all the trees, often using

majority voting for classification tasks. RF has many

advantages, such as easy implementation, fast training,

and resistance to outliers and noisy data. It is suitable for

high-dimensional data because a subset of features can be

randomly selected for splitting, which helps to reduce the

correlation between individual trees and improves the

generalization of the model. For the above reasons or

advantages, it has wide applications in data science and

machine learning.

2. XGBoost: XGBoost is an integrated learning algorithm

based on the Gradient Boosting framework, which builds

powerful predictive models by combining multiple weak

learners (usually decision trees).The basic principles of

XGBoost include: using gradient boosting to minimize

the loss function by incrementally adding new models

(trees) to minimize the loss function, and adjusting the

new model according to the error of the previous model in

each step to improve the prediction performance; at the

same time, XGBoost introduces L1 and L2 regularization

terms to prevent overfitting, and accelerates the training
FIGURE 1

The analysis flow chart of this study.
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process through parallel computation, which performs

especially well on large datasets.

3. CatBoost: CatBoost mitigates overfitting during training

through Symmetric Trees and Ordered Boosting, which are

the components enhancing model generalization and accuracy.

One of the top characteristics is that it natively handles

categorical features and missing values, hence much reducing

the amount of preprocessing needed at the beginning of a

project. For real-world datasets, CatBoost often has such

complexities, providing robust performance and ease of use

for the practitioner. Its ability to automatically process missing

values and categorical features reduces the workload of data

preprocessing, while its efficient feature processing and

prediction speed enables faster and more accurate extraction

of diagnostic-value features in EEG signal classification tasks,

which provides a strong support for the realization and

development of EEG signal technology.

4. LightGBM: LightGBM is a fast and efficient gradient boosting

framework that enables rapid training and accurate predictions

on large-scale datasets. The histogram-based learning algorithm

is applied here along with a number of optimization techniques

like gradient-based one-side sampling and parallel leaf splitting.

LightGBM is particularly efficient when dealing with high-

dimensional data.
2.4 Evaluation metrics

In order to quantitatively assess the performance of the

classification models, the following evaluation metrics were

adopted in this study:

1. Accuracy is defined as the proportion of instances correctly

predicted (both positive and negative) compared to the total

number of instances.

ACC =
TP + TN

TP + FP + TN + FN
(2)

2. Precision is the ratio of true positive samples to the total

number of samples predicted as positive by the model.

PR =
TP

TP + FP
(3)

3. Recall is defined as the proportion of true positive samples

that the model successfully identifies as positive among all actual

positive samples.

RE =
TP

TP + FN
(4)

4. The F1 score, which is the harmonic mean of precision and

recall, is used to assess the accuracy of a binary classification model.

F1 =
2PR� RE
PR + RE

(5)
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5. AUC (Area Under the ROC Curve) refers to the area under the

Receiver Operating Characteristic (ROC) curve, which represents the

model’s ability to correctly classify positive samples with a higher

probability than negative samples. The value of AUC ranges from 0 to

1, with higher values indicating superior model performance.

In Equations 2-5, TP (True Positive) indicates the count of

positive instances correctly predicted as positive by the model. FP

(False Positive) denotes the count of negative instances incorrectly

predicted as positive. TN (True Negative) signifies the number of

negative instances accurately identified as negative by the model,

indicating correct identification of actual negative instances. FN

(False Negative) represents the count of positive instances

incorrectly predicted as negative by the model.
2.5 Feature selection algorithms

Due to the inclusion of a total of 931 features, there was a

potential risk of feature redundancy. Consequently, this study

performed feature selection based on all features. Feature

selection method was chosen due to its ability to reduce data

dimensions, extract the most representative features, and improve

model performance and generalization from high-dimensional

data. SHAP is a high-level model interpretation method, based on

the theory of game values, for explanation of the prediction results

from any machine learning model (33). It provides an intuitive way

to interpret how the models make decisions and allows deep

attribution analysis in order to discover intricate mechanisms of

model predictions. SHAP gives a global perspective that is

important to develop an overall understanding of how a model is

behaving, particularly in the case of identifying which features are

most important to its predictions. Its global interpretation therefore

ranks input features by their importance for feature selection, model

optimization, and further scientific investigation. With this ranking,

we can determine which features contribute the most to the model’s

prediction and, therefore, focus on these key features for further

analysis or consider higher weights for them while making the

model. Conversely, features contributing minimally or negligibly

can be removed during training so as to ensure that it becomes more

efficient and interpretable. Because of the global explanation of

SHAP in this study, it will be able to determine which EEG features

are most strongly correlated with ADHD predictions. That way, it

will help researchers and clinicians further understand the complex

etiology of the disorder. Of note, we opted the data-driven feature

selection over traditional statistical comparisons for the following

reasons: 1) feature selection serves as an effective approach for

handling high-dimensional data whereas multiple independent

statistical comparisons would inevitably lead to the well-known

multiple comparison problems; 2) the SHAP algorithm could

provide interpretable explanations about the decision-making

process of the classification models that would facilitate the

revealing of the underlying neural mechanisms.
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3 Results

3.1 Classification performance and
feature selection

We first assess the classification performance. The results for

the four ensemble learning models about the classification task were

depicted in Table 1. In general, satisfactory classification

performance was achieved for four models. Further comparison

showed a superior overall performance of CatBoost model (ACC =

99.58 ± 0.29%, RP = 99.67 ± 0.46%, RE = 99.44 ± 0.79%, F1 = 99.55

± 0.34%, and AUC = 99.44 ± 0.39), followed by Light GBM,

XGBoost and RF.

Given that the superior classification performance was obtained

using the CatBoost model, the feature selection via SHAP algorithm

was conducted on the CatBoost model. Specifically, the SHAP

values for all features were obtained and ranked in descending

order of importance. Subsequently, features were iteratively added

as inputs to retrain the CatBoost model based on their importance.

In each iteration, one feature was added according to its ranked

importance until all features were included, resulting in a series of

accuracy evaluations. The best classification performance was

achieved when the number of input features of the CatBoost

model reached 206. In Table 2, we showed the distribution of the

contributing features according to their types. Specifically, most of

the contributing features were functional connectivity features (148

out of 206), where theta (N = 40), alpha (N = 34) and beta (N = 57)

frequency bands exhibited predilection. As for the power spectral

and Fuzzy features, we found 29 AP features, 14 RP features, 10

TBR features and 5 FuzEn features mainly resided in high

frequency bands.
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3.2 Spatial and spectral characteristics of
the contributing features

Figure 2 illustrated the distribution of averaged AP within the

optimal feature subset. The figure showed the AP distribution

across three frequency bands (theta, alpha, beta) for children with

ADHD and HC groups. In the theta band, the EEGs of the ADHD

group exhibited high power (red areas), particularly in the frontal

regions. HC group also displayed relatively higher theta band power

in the frontal regions but at a lower overall power level (shades of

red-yellow). In the alpha band, the ADHD group showed higher

power in the frontal and top regions, depicted by yellow and orange

areas. HC display power concentrated in the frontal regions with

lower overall power levels (shades of blue-green). In the beta band,

the ADHD group presented higher power in the top regions,

indicated by yellow areas. HC exhibited lower beta band power

levels overall, shown by blue and green areas. These scalp maps

indicated that brain activity in the theta and alpha bands is

increased in the ADHD group compared to the HC group, while

differences in beta band activity were smaller. Overall, children with

ADHD depicted more active brain activity in the low-frequency

bands, which may be related to their symptomatic characteristics.

Figure 3A presented the RP in the beta band for children with

ADHD and HC. In the beta band, the ADHD group’s RP was

mainly concentrated in the peripheral areas of the scalp, especially

in the top and posterior brain regions, indicating a little higher beta

power in these areas. Figure 3B displayed the TBR results. ADHD

group showed higher TBR in the frontal regions, depicted by red

areas. This indicated that in these regions, theta band power was

much higher than beta band power. HC illustrated lower overall

ratios on the same scale, mainly concentrated in the middle areas,
TABLE 2 Distribution of features in the optimal feature subset.

Feature Types Delta Theta Alpha Beta

AP 0 7 8 14

RP 0 0 1 13

TBR 10

FuzEn 0 0 2 3

MI 17 40 34 57
TABLE 1 Model Performances for ADHD classification.

Models ACC (%) PR (%) RE (%) F1 (%) AUC

CatBoost 99.58 ± 0.29 99.67 ± 0.46 99.44 ± 0.79 99.55 ± 0.34 99.44 ± 0.39

LightGBM 99.52 ± 0.20 99.61 ± 0.43 99.37 ± 0.75 99.49 ± 0.26 99.37 ± 0.29

XGBoost 99.22 ± 0.32 99.37 ± 0.65 98.97 ± 1.14 99.16 ± 0.42 98.97 ± 0.42

RF 97.64 ± 0.36 98.17 ± 1.78 96.84 ± 3.17 97.44 ± 0.82 96.84 ± 0.45
Bold value indicates best performance.
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appearing in yellow and orange areas, indicating a relatively

balanced power ratio between theta and beta bands. In summary,

the ADHD group showed a little higher RP in the beta band and

higher TBR, especially in the frontal regions. These differences may

reflect the neurophysiological characteristics of children with

ADHD in different frequency bands, aiding in the further

understanding of the neural mechanisms of ADHD.
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Figure 4 showed the differences in brain functional connectivity

between children with ADHD and HC across delta, theta, alpha,

and beta rhythms. Red edges indicate increased MI values in ADHD

compared to HC, while blue edges signify reduced MI values. It is

noteworthy mentioning that here the increased and reduced MI

values were not determined via traditional statistical comparisons.

Instead, these edges were identified as increased or reduced via
FIGURE 3

Results of power ratio. (A) Relative power (RP) of beta, and (B) theta/beta power ratio (TBR). In the figure, the red and yellow regions indicate high RP
and TBR, and the blue and green regions indicate low RP and TBR. The red dots refer to the selected EEG channels based on SHAP method. For the
power ratio comparisons between ADHD and HC, both RP and TBR were 0-1 normalized across all EEG channels between the two groups, resulting
in the color bar that was between 0 and 1.
FIGURE 2

Topographic map of absolute power (AP) for theta, alpha, beta rhythms between ADHD and HC. Specifically, the red areas represent high power,
and the blue areas represent low power. The red dots refer to the selected EEG channels based on SHAP method. All EEG channels of each rhythm
were normalized to between 0 and 1 among ADHD and HC, resulting in the color bar that was between 0 and 1.
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comparing the mean value of those selected individual feature. In

the delta band, ADHD shows increased MI in frontal and top

regions, with minimal decrease compared to HC. Increased

connectivity in ADHD, particularly in frontal and central regions,

with some reduced connectivity areas were observed in the theta

band. Alpha rhythms display evenly distributed increased MI in

multiple ADHD regions. Beta rhythms show markedly enhanced

connectivity in posterior brain regions of ADHD compared to HC.

Overall, children with ADHD exhibit increased MI values in

multiple brain regions, especially under theta and beta rhythms.
4 Discussion

4.1 Satisfactory classification performance

To date, multiple studies had shown the feasibility of utilizing

EEG features in the diagnosis of ADHD. Different types of features

could decode EEG signals from different perspectives, but not all

features are relevant to diagnosis. This study obtained an optimal

feature subset of 206 features, achieving a superior classification

accuracy of 99.58 ± 0.29%. The classification performance was

mostly superior in comparison with several recent studies [i.e., Saini

et al., 85% (35), Ahire et al., 96% (36), and Manizuzzaman et al.,

93.4% (37) and 97.53% (15)]. Of note, different machine learning

models and EEG features were employed in these studies that may

lead to the differences of classification performance. For instance,

naïve Bayes, k-nearest neighbor (KNN), and logistic regression

models were adopted by Saini (35), while AdaBoost, KNN, naïve

Bayes, and RF were employed by Ahire (36), and support vector

machine, KNN, multilayer perceptron (MLP), and logistic

regression were used by Manizuzzaman (37). These studies

collectively demonstrate that machine learning methods can

utilize EEG data for identifying ADHD. In fact, a convergent

research direction of machine learning analysis of EEG features

for ADHD diagnosis is emerging. The superior classification

accuracy achieved in this study indicates that machine learning
Frontiers in Psychiatry 08
methods using multidimensional EEG features and feature selection

algorithms enhance the identification of ADHD.
4.2 Altered brain EEG power in ADHD

Children with ADHD have been shown to exhibit increased slow

wave power, primarily theta waves, in the frontal and top areas

compared to normal control children (38). Increased slow wave

power, particularly theta waves, may indicate immature cortical

function and delayed inhibitory function, which are suggestive of low

arousal within the nervous system. This may be supported further by

the increase of theta waves, which might mirror failures in information

processing and cognitive control in these regions. Executive functions,

including attention control, planning, and decision-making, are

primarily associated with the frontal lobe, whereas perception and

spatial processing are linked to the top region of the brain. Impairments

in these regions may contribute to behavioral symptoms such as

attention deficit, excessive activity, and impulsive behavior in child

ADHD (39). Abnormal brain electrical activity in specific frequency

bands may be the result of neurochemical abnormalities from an EEG

perspective (40). For instance, the elevated theta wave power observed

in children with ADHD has been postulated to result from decreased

dopamine levels in the frontal lobe, leading to functional deficits. This

increased theta wave power is considered to reflect inefficiency within

the brain to perform tasks. Moreover, a decrease in power within the

beta wave band is commonly observed in ADHD children, indicating a

reduction in high-frequency brain electrical activity, which may be

associated with impairments in higher-order cognitive processing and

alertness. These findings are crucial for ADHD diagnosis, as EEG

detection offers an objective means to identify abnormal brain activity

within specific frequency band, thereby enhancing diagnostic accuracy.

Furthermore, understanding the neurochemical mechanisms

underlying disorders such as ADHD facilitates the development of

targeted therapies aimed at addressing specific deficiencies, like low

levels of dopamine. Behavioral and cognitive interventions can serve as

complementary approaches to e pharmacological treatments, thus
FIGURE 4

Brain functional networks of delta, theta, alpha, and beta rhythms. Specifically, the red edges indicate increased values of mutual information (MI) in
the ADHD group, i.e., enhanced functional connectivity. And the blue edges indicate reduced values of mutual information in the ADHD group, i.e.,
weakened functional connectivity. (Note: The proportion of enhanced functional connectivity in ADHD is 15/17 = 88%, 28/40 = 70%, 24/34 = 71%,
48/57 = 84%).
frontiersin.org

https://doi.org/10.3389/fpsyt.2025.1475936
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Mao et al. 10.3389/fpsyt.2025.1475936
fostering a holistic enhancement of executive functions and attentional

control in children with ADHD.
4.3 Enhanced TBR in ADHD

The TBR is a cardinal indicator in EEG research into ADHD in

EEG readings (31). An elevated TBR reflects an increase in slow

theta waves and a decrease of fast beta waves within the brain,

potentially indicating high cortical arousal but low cortical

operational states (41). This shift in ratio is believed to be the

neurophysiological basis for the attention deficits and impulsive

behavior seen in people with ADHD. Those could be attributed to a

number of mechanisms, which involve several physiological and

neurological factors (42–44). This raises in TBR, in cases of ADHD,

points to two serious issues. First, it refers to a problem with the

prefrontal cortex (45). It is an area of the brain associated with

executive functions such as attention control and impulse

inhibition. A higher than usual activity of theta waves in this area

might mean inefficiency in processing tasks. Second, TBR in ADHD

is increased due to abnormalities in the central neurotransmitters,

such as dopamine and norepinephrine, which play a crucial role in

the top-down control of attention and behavior (45). This pattern of

TBR is frequently observed in individuals with ADHD and is of

significant clinical importance for diagnosis (46). However, it is

important to note that TBR has certain controversies and

limitations as a diagnostic tool. While it provides useful insights

into ADHD-related brain activity, TBR may be influenced by

factors such as age, gender, and individual differences, which can

affect its reliability (43). Additionally, specialized equipment and

technical expertise are required for accurate TBR measurement,

limiting its widespread applicability in routine clinical practice (47).

Lastly, the efficacy of this TBR in diagnosing ADHD has been varied

in various studies (48). Hence, it cannot stand as a single diagnostic

tool. This is frequently combined with other diagnostic measures to

enhance the accuracy and comprehensiveness of ADHD diagnoses

in clinical settings. As we delve deeper into studying ADHD EEG

signals and refine our detection methods, we will pave the way for

more reliable and effective approaches to diagnosing and treating

ADHD in the future.
4.4 Reorganization of whole-brain
functional connectivity in ADHD

Several studies have demonstrated marked abnormalities in

whole-brain functional connectivity among children with ADHD

(49–51). The present study utilized the SHAP algorithm to identify

the most critical EEG features, revealing functional connectivity as a

distinguishing characteristic. Functional connectivity abnormalities

manifest as weakened or strengthened connections in particular

circuits between brain regions, impacting attention, impulse control

and multitasking abilities (50). In this line, this study is set in a more

general framework of dynamic reconfiguration of brain networks in
Frontiers in Psychiatry 09
ADHD, who has viewed changes in functional connectivity patterns

that have included changes in the strength of connections,

reconfiguration of pathways of connectivity, and also adjustments

in interaction patterns between functional networks. The MI

analysis utilized in this study was crucial for evaluating functional

connectivity, as it provided a non-parametric measure of shared

information between EEG signals. MI highlighted notable

differences in connectivity patterns between children with ADHD

and HC, especially in theta and beta rhythms (29). These findings

underscore the importance of functional connectivity in

characterizing ADHD-related brain dysfunction. A different

degree of functional connectivity abnormality in children with

ADHD was witnessed (46, 52, 53), which may be responsible for

an unbalanced allocation of attentional resources and hence poor

task performance (54). Functional connectivity abnormalities are

found in ADHD for both long-range and short-range connections

with fMRI (55). A weakening of long-range connections can lead to

a reduction in information integration across the brain; at the same

time, enhanced short-range connections might compensate for

these long-range deficits (55). The dynamic reconfiguration of

brain networks in children with ADHD reveals complex changes

of these patterns. It involves changes in the strength of connections,

their pathway reconfiguration, and changes in interaction patterns

between functional networks (28). These findings have critical

clinical implications, offering insights into the neural mechanisms

underlying ADHD symptoms and guiding the development of

targeted interventions. Further research is warranted to elucidate

the dynamic reconfiguration of brain networks in ADHD and its

longitudinal evolution.
4.5 Methodological considerations

There are several factors that need to be considered when

interpreting the findings of this work. First, it is important to

note that due to the limitations of the publicly available dataset

used in this study, we are unable to provide information on the

demographic and clinical characteristics of the participants

(including current treatments, duration of ADHD, cognitive

functioning, etc.). This information may not only contribute to a

deeper understanding of the neural mechanisms of ADHD and the

effectiveness of different treatments, but also may further improve

the robustness of the machine learning analysis framework.

Therefore, we suggest that future studies should prioritize

obtaining these comprehensive participant characteristics when

collecting primary data to enrich the study and promote a more

nuanced understanding of ADHD. Second, a previously-validated

feature selection and cross-validation approach was adopted in this

work to mitigate the influence of overfitting. Moreover, the

CatBoost model was determined for presenting the main findings.

The CatBoost model is capable of reducing the overfitting influence

through Symmetric Trees and Ordered Boosting. Nevertheless, the

robustness and the generalizability of the results could be benefit

from replication in larger independent cohorts.
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5 Conclusion

In this study, we constructed a machine learning analysis

framework through incorporating multidimensional feature

extraction and selection framework for ADHD diagnosis and

more importantly investigate the underlying neural mechanisms

in children with ADHD. The results indicate that the optimal

feature subset contains 206 features, corresponding to a superior

classification accuracy of 99.58%. Within the optimal feature subset,

ADHD exhibit increased power in theta, alpha, and beta rhythms,

elevated TBR values, and reorganization of whole-brain functional

connectivity across all frequency bands, primarily characterized by

enhanced functional connectivity. This study utilizes machine

learning to reveal the neural mechanisms of ADHD from a data-

driven perspective and provides an analytical framework for ADHD

diagnostic research. With further validation on larger external

cohorts, the results may lead to practical automatic diagnosis of

ADHD based upon objective neuroimaging data.
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