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Xiaowen Yang1,2, Qianhui Wen1,2, Qian Wang1,2, Hao Liu1,2

and Rong Luo1,2*

1Department of Pediatrics, West China Second University Hospital, Sichuan University,
Chengdu, China, 2Key Laboratory of Birth Defects and Related Diseases of Women and Children
(Sichuan University), Ministry of Education, Chengdu, China
Background: Attention Deficit Hyperactivity Disorder (ADHD) is a common

neurodevelopmental disorder characterized by inattention, hyperactivity, and

impulsivity. A core cognitive deficit in ADHD is executive function (EF)

impairment, which significantly impacts daily life. Methylphenidate (MPH) is a

widely used first-line treatment for ADHD, but objective biomarkers to assess

treatment response are lacking. The aim of this study was to investigate the

effects of MPH on executive function and identify potential neural biomarkers of

response in children with ADHD using electroencephalogram (EEG).

Methods: A total of 26 boys with ADHD (mean age 8.64 ± 1.30 years) participated

in the study. All participants were treated with 18 mg/day of oral extended-

release MPH in the morning for 8 weeks. Executive function was assessed using

the BRIEF2 and Digit Span Test (DST), and event-related potentials (ERP) were

measured at baseline and after 8 weeks of MPH treatment.

Results: After 8 weeks of MPH treatment, significant improvements were

observed in several executive function domains. BRIEF2 scores, including

inhibition, self-monitoring, shifting, emotional control, initiation, working

memory, planning/organization, task monitoring, and material organization,

were significantly reduced (P < 0.05). Behavioral performance in the Go/NoGo

task also improved, with shorter correct response times and higher accuracy

rates (P = 0.002, P = 0.009). EEG results revealed a reduction in Nogo-P300

latency at Fz, Cz and Pz compared to baseline (P<0.05).
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Conclusions: The normalization of P300 latency following MPH treatment

appears to be a reliable neural biomarker of positive treatment response in

children with ADHD. MPH was associated with improvements in executive

function, particularly in inhibitory control and working memory.
KEYWORDS

attention deficit hyperactiv ity disorder, chi ldren, executive function,
methylphenidate, p300
1 Introduction

Attention Deficit Hyperactivity Disorder (ADHD) is a prevalent

neurodevelopmental disorder marked by persistent symptoms of

inattention, hyperactivity, and impulsivity that are not consistent

with a child’s developmental stage. A core cognitive deficit in ADHD

is impairment in executive function (EF), which includes essential

cognitive processes such as attention regulation, working memory,

decision-making, impulse control, and time management (1–3).

Notably, ADHD exhibits a pronounced male predominance, with a

male-to-female ratio ranging from 2:1 to 3:1 in clinical populations,

potentially due to differences in symptom presentation and

neurobiological mechanisms (4, 5). Males with ADHD are more

likely to display externalizing behaviors (e.g., hyperactivity and

impulsivity) compared to females, who may exhibit internalizing

symptoms, leading to underdiagnosis in females and a higher

representation of males in research cohorts (6, 7). Working memory

and inhibitory control are two fundamental components of EF that are

interrelated. Children with ADHD often experience deficits in both

areas, which contribute to inattention, academic underachievement,

and difficulties in social interactions and daily tasks. These challenges

frequently extend into adulthood, leading to lower high school

graduation rates, decreased college enrollment, and difficulties in

employment due to poor organizational skills, time management,

and self-regulation (8–11). Importantly, sex differences may further

modulate these outcomes; for example, males with ADHD are at higher

risk for academic underachievement and conduct-related problems

compared to females (12, 13). The long-lasting nature of these

impairments underscores the importance of investigating

interventions, such as methylphenidate (MPH), that may improve

EF and, in turn, enhance academic and career opportunities for

children with ADHD.

MPH is a widely used first-line treatment for ADHD, acting

primarily by blocking the reuptake of dopamine (DA) and

norepinephrine (NA) in the brain, which enhances their

concentrations in synaptic gaps and improves EF (14). MPH is well-

established for rapidly alleviating core ADHD symptoms and

improving attention, hyperactivity, and impulse control, making it

the preferred choice among stimulant medications (15). Studies also

suggest MPH is more effective than non-stimulant treatments in
02
improving ADHD symptoms. In China, MPH is commonly

prescribed by psychiatrists to children diagnosed with ADHD,

particularly for those who fail to respond to behavioral therapies

alone (16). The Digit Span Test (DST) is an important indicator for

assessing working memory. Karatekin & Asarnow et al. (17) have

found that children with ADHD significantly underperform in the

DST compared to healthy controls. Frankfort et al.’s study on cognitive

function in boys with ADHD found that MPH significantly improved

performance in executive function, visual memory, reaction time skills,

and general cognitive abilities (18). Li Yang et al. (19) have found that

MPH can improve EF in children and adolescents with ADHD, and

can restore working memory to normal performance levels. Boys with

ADHD demonstrate impairments in response inhibition, which can be

ameliorated through the use of MPH (20, 21).Functional magnetic

resonance imaging (fMRI) studies have shown that acute

administration of MPH can normalize brain dysfunction in typically

affected frontal areas in children with hyperactivity, potentially

explaining the impact of MPH on EF (22). Patients with ADHD

treated with MPH may exhibit characteristic changes in the

electroencephalogram (EEG) activity (23).

In addition to its impact on dopaminergic and noradrenergic

activity, there is growing evidence that MPH may also influence

brain activity, particularly through alterations in event-related

potentials (ERP). ERP, which provides high temporal resolution,

is a valuable tool in assessing cognitive functions by measuring

brain responses to stimuli in real time (24, 25). One of the most

widely studied ERP components is the P300 wave, which reflects the

brain’s processing of information during cognitive tasks (26, 27).

Research has shown that children with ADHD have consistently

lower P300 amplitudes compared to typically developing children

(28). Interestingly, these differences can be improved with the use of

psychostimulant medications. Lawrence et al. (29)examined the

effects of MPH on boys with ADHD and observed a reduction in

P300 latency following treatment. Ozdag et al. (30) found that boys

with ADHD exhibited a reduction in P300 latency and an increase

in amplitude following MPH treatment. Studies suggest that the

P300 wave’s neural activation is linked to dopamine and other

related neurotransmitters (26, 31). In Go/NoGo tasks, which test a

child’s ability to respond or inhibit a response, children with ADHD

show a delay in the P300 wave’s timing for both “Go” (respond) and
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“NoGo” (don’t respond) trials compared to healthy peers. They also

exhibit reduced P300 amplitudes specifically during “NoGo” trials

(32). Overall, compared to controls, children with ADHD perform

worse on these tasks, and ERP analyses reveal distinct patterns of

brain activity, particularly a delayed P300 latency in the “NoGo”

trials (33). Interestingly, MPH treatment has been shown to

normalize these P300 deficits, suggesting that ERP components

could serve as reliable biomarkers for monitoring treatment efficacy

in ADHD.

However, despite these promising findings, few studies have

directly linked ERP components with behavioral outcomes in

children during the acute phase of MPH treatment, highlighting a

gap in current research. Thus, the present study aims to explore the

neural markers of MPH response in children with ADHD, with a

focus on EF improvements and changes in brain activity as

measured by ERP. We hypothesize that MPH treatment will lead

to significant improvements in both EF and ERP markers,

particularly in working memory and inhibitory control, which are

crucial components of EF in ADHD. Given the male predominance

in ADHD and potential sex-specific neurobiological responses to

stimulant medications, the current study focuses exclusively on

male participants to control for confounding effects of sex

differences in neural and behavioral outcomes.
2 Methods

2.1 Participants

The participants were school-aged male children (6 to 12 years

old) diagnosed with ADHD at West China Second University

Hospital, Sichuan University, between October 2022 and January

2024. Written informed consent was obtained from each

participant’s parents, and the study was approved by the Human

Research Ethics Committee of the West China Second University

Hospital, Sichuan University.

In this study, all children suspected of having ADHD initially

visited the pediatric neurology and psychiatry outpatient clinics at our

hospital. Within one month of their first visit, they were diagnosed by

two experienced pediatric neurologists and psychiatrists. Initial

screening for ADHD was conducted using Conners’ Parent/Teacher

Rating Scales to identify potential ADHD symptoms. Detailed clinical

assessments were subsequently carried out according to Diagnostic and

Statistical Manual of Mental Disorders, 5th Edition (DSM-5) standards

to confirm the diagnosis of ADHD. To exclude Oppositional Defiant

Disorder (ODD) and other potential psychiatric illnesses, the Kiddie

Schedule for Affective Disorders and Schizophrenia for School-Age

Children – Present and Lifetime Version (K-SADS-PL) was utilized.

Additionally, each child underwent comprehensive medical and

psychological evaluations to exclude any other variables that could

affect the study’s outcomes, such as tic disorders, autism spectrum

disorders, and other neurodevelopmental disorders. Participants

scoring below 80 on the Wechsler Intelligence Scale for Children-

Fourth Edition (WISC-IV), those who have taken any psychotropic
Frontiers in Psychiatry 03
medication (including stimulant and non-stimulant drugs) in the past

three months, those who have consumed any non-psychotropic

medications in the past month, and those suffering from chronic

systemic diseases were all excluded from the study. The data selection

process is depicted in the flowchart presented in Supplementary

Figure S1.

In the acute phase assessment, a fixed dose of extended-release

MPH was used to more effectively observe the drug’s effects and

tolerability. Although there is an established framework for titrating

MPH based on individual responses and clinical guidelines, we

chose a standard starting dose to simplify the treatment protocol of

this study. Some studies suggest that a 18 mg dose is considered a

safe and effective starting dose, particularly for children beginning

MPH treatment (34, 35). Therefore, in this study, participants

received oral extended-release MPH treatment at a fixed dose of

18 mg every morning for 8 weeks. The effects of methylphenidate

treatment were assessed in the hospital evaluation room at baseline

(week 0) and after 8 weeks of treatment (36, 37).
2.2 Executive function assessment

The Behavior Rating Inventory of Executive Function-Parent

form, Second edition(BRIEF2): It was developed by Gioia (38)et al.

and assessed behavioral, affective, and cognitive abilities in

executive functioning in children and adolescents aged 5-18 years.

It consists of three main dimensions and nine subscales with 63

items in total. The three dimensions are as follows: (1) Behavioral

Regulation Index (BRI), including inhibition and self-monitoring;

(2) Emotional Regulation index (ERI), including shifting and

emotional control; and (3) Cognitive regulation index (CRI),

including planning/organization, organization of materials,

initiation, task monitoring, and working memory. Higher scores

for each factor indicated more serious behavioral problems.

Digit Span Test (DST): It is a subtest of the Wechsler

Intelligence Scale for Children, Fourth Edition (WISC-IV) (39),

which assesses a participant’s working memory and consists of

forward digit span (FDS) and backward digit span (BDS) tasks. The

longer the string of numbers the participant recited, the higher the

score. DST is an important indicator for assessing working memory.

Go/Nogo task: It was adapted from Serrien, at al (40). Target

stimuli for the Go/Nogo task: the letter “R” as the Go stimulus and

the letter “P “as the NoGo stimulus. The number of letters “R” was

144 (80%), and the number of letters “P” was 36 (20%). The task

started with a cross appearing in the middle of the computer screen

for 400ms as a cue, followed by the letters “R” and “P” appearing

randomly in the center of the computer screen for 200ms each, with

the next letter appearing after a time interval of 800 ± 200ms.

Participants press the left mouse button when they see the letter “R”

and do not press the button when they see the letter “P” (Figure 1).

Variables related to behavioral performance, such as reaction time

and accuracy rate, were extracted and subjected to statistical

analysis. This study utilized PsychToolbox software to present

visual stimuli.
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2.3 Efficacy assessment

The Clinical Global Impressions-Improvement Scale (CGI-I) was

used to classify participants with ADHD as responders or non-

responders to methylphenidate (41). Scores ranged from 1

(significant improvement) to 7 (very much worse). Participants with

a CGI-I score <3 were considered responders, while those with ≥3 were

non-responders. The Clinical Global Impressions-Severity of Illness

Scale (CGI-S) assesses illness severity on a 7-point scale: 1, no illness; 2,

borderline mental illness; 3, mild illness; 4, moderate illness; 5, marked

illness; 6, severe illness; and 7, most severe illness (42).
2.4 EEG acquisition

The participants sat in a quiet, temperature-controlled room

with dim lighting to minimize external distractions during the EEG

test. Nineteen Ag/AgCl electrodes were placed at Fp1, Fp2, Fz, F3,
Frontiers in Psychiatry 04
F4, F7, F8, Cz, C3, C4, Pz, P3, P4, T3, T4, T5, T6, O1, and O2

according to the International 10-20 system. The sampling rate was

2000 Hz, and the impedance between the electrodes and the scalp

was kept less than 5 kW. Two reference electrodes (A1 and A2) were

placed on both earlobes. EEG recordings while participants

completed the computerized Go/Nogo task.
2.5 EEG processing

The procedure included downsampling to 512 Hz, 0.5 - 35 Hz

bandpass filtering, averaging reference, baseline correction, artifact

removal by independent component analysis (ICA), and setting the

threshold to ±100 mV. Segments during responses were set with

windows from −200 ms before the event to 600 ms after. The mean

amplitude and latency of the P300 component were extracted from

the Fz, Cz, and Pz electrodes in a 250-500 ms time

window (Table 1).
TABLE 1 EEG processing steps.

Step Description Purpose

1. Downsampling The original EEG data were downsampled to 512 Hz. To reduce the amount of data without losing critical
information, facilitating efficient processing.

2. Bandpass Filtering A bandpass filter was applied to the data within the frequency range of
0.5 to 35 Hz.

To eliminate low-frequency drifts (e.g., movement
artifacts) and high-frequency noise.

3. Averaging Reference An average reference was computed by averaging the signals from
all electrodes.

To minimize the effects of common noise across
electrodes and enhance the detection of local
brain activity.

4. Baseline Correction The data were baseline corrected using the average amplitude during a
pre-stimulus period (from -200 ms to 0 ms).

To remove pre-existing activity that could influence
post-stimulus measurements, ensuring
clearer assessments.

5. Segmentation EEG data were segmented into epochs, with each epoch ranging from
-200 ms before the event to 600 ms after the event.

To analyze specific time windows around events
of interest.

6. Artifact Removal Independent Component Analysis (ICA) was employed to identify and
remove artifacts from the EEG signals.

To ensure that the analysis is based on clean EEG
signals, improving the reliability of results.

7. Threshold Setting A threshold of ±100 mV was applied to exclude any segments that
contained excessive noise or artifacts.

To include only clean and reliable data segments in
the analysis.

8. P300 Component Extraction The mean amplitude and latency of the P300 component were extracted
from the Fz, Cz, and Pz electrodes within the time window of 250-500 ms
post-stimulus.

To evaluate the P300 component characteristics, which
are indicative of cognitive processes related to
stimulus evaluation.
FIGURE 1

Go/Nogo task design.
frontiersin.org

https://doi.org/10.3389/fpsyt.2025.1475889
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Wang et al. 10.3389/fpsyt.2025.1475889
2.6 Statistical analysis

The outcome metrics were analyzed using SPSS version 23.0.

Data were tested for normality using the Kolmogorov-Smirnov and

Shapiro-Wilk methods, with measures that conformed to normality

described as “mean ± standard deviation” and those that did not

conform to the normal distribution described as “median ±

interquartile spacing.” Paired t-test and independent t-test were

used for measures that conformed to a normal or approximately

normal distribution, and nonparametric rank-sum tests were used

for measures that did not conform to a normal distribution. The

chi-squared test was used for between-group comparisons of

categorical information.
3 Results

3.1 Demographic characteristics

The demographic characteristics of children with ADHD are

presented in Table 2. This study enrolled 26 male children with

ADHD (8.64 ± 1.30 years). Eight ADHD-inattention types

(ADHD-I) (30.8%), one ADHD-hyperactive-impulsive type

(ADHD-HI) (3.8%), and 17 ADHD-combined types (ADHD-C)

(65.4%) were included.
3.2 Executive function

3.2.1 BRIEF2 and DST
Changes in BRIEF2 after eight weeks of treatment with MPH in

children with ADHD, compared to baseline, are shown in Table 3.

Inhibition, self-monitoring, shifting, emotional control, initiation,

working memory, planning/organization, task monitoring, material

organization, BRI, CRI, and total scores were significantly lower

(P < 0.05). Compared to baseline, FDS and BDS scores did not

significantly change after eight weeks of MPH treatment (P > 0.05).

3.2.2 Go/NoGo task
The results of the correctness and response time from the Go/

NoGo task after MPH treatment are shown in Table 3. Compared to

baseline, the NoGo task correct response time was significantly

shorter after eight weeks of MPH treatment (P = 0.002). The

correctness rate was also higher than baseline (P = 0.009) (Table 4).
3.3 Response to MPH

3.3.1 CGI
In the study involving 26 ADHD patients, 69.2% (18/26)

responded to MPH treatment (defined as CGI-I < 3), with

responders having a CGI-I of 1.5 ± 0.53; 30.8% (8/26) did not

respond to MPH treatment (defined as CGI-I ≥ 3), with non-

responders having a CGI-I of 3.06 ± 0.24 (Table 4).
Frontiers in Psychiatry 05
3.3.2 P300 component

Changes in P300 components after eight weeks of treatment

with MPH in children with ADHD are shown in Table 5. Compared

to baseline, the NoGo-P300 latency at Fz was significantly reduced

(P < 0.001). Similarly, the NoGo-P300 latency at Cz was shorter

than baseline (P = 0.028), and the NoGo-P300 latency at Pz also

decreased compared to baseline (P = 0.023) (Figure 2).
TABLE 2 Demographic characteristics.

Characteristics ADHD

N 26

Male, (%) 100

Age, mean (SD), years 8.64 ± 1.30

Subtype, No. (%) -

ADHD-I 8 (30.8)

ADHD-HI 1 (3.8)

ADHD-C 17 (65.4)
TABLE 3 Methylphenidate treatment BRIEF2 and DST change in children
with ADHD.

Items 0 week 8 weeks P

BRIEF2

Inhibition 63.8077 ± 9.34674 55.1923 ± 7.31584 0.001*

Self-monitoring 66.6923 ± 10.01107 59.7308 ± 5.78659 0.013*

Shifting 59.2308 ± 7.53290 54.3462 ± 7.86355 0.014*

Emotional control 58.6538 ± 9.97975 53.6923 ± 6.79864 0.023*

Initiation 61.7308 ± 7.23081 56.6923 ± 8.69836 0.009*

Working memory 69.6538 ± 8.33759 64.1538 ± 7.66651 0.002*

Planning/Organisation 65.9615 ± 8.70164 60.1154 ± 6.43942 0.012*

Task monitoring 67.8846 ± 9.13160 63.2692 ± 8.79799 0.023*

Material organization 61.0 ± 10.38075 56.6538 ± 6.36831 0.024*

BRI 64.8846 ± 8.45850 57.3462 ± 6.66299 0.001*

ERI 59.9615 ± 8.95089 56.8846 ± 11.73142 0.223

CRI 67.0385 ± 7.52851 60.5769 ± 7.41443 0.001*

Total score 68.0769 ± 7.82265 63.2692 ± 7.30785 0.013*

DST

FDS 7.1538 ± 1.75937 7.6154 ± 1.26734 0.103

BDS 3.8077 ± 1.49718 3.4231 ± 1.27037 0.178
frontie
BRIEF2, Behavior Rating Inventory of Executive Function-Parent form, Second edition; BRI,
Behavioral Regulation Index; ERI, Emotional Regulation Index; CRI, Cognitive Regulation
Index; DST, Digit Span Test; FDS, Digits Forward; BDS, Digits Backward.*P < 0.05 by Paired
t-tests.
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4 Discussion

In this study, we explored the acute effects of MPH on EF in

boys with ADHD. After 8 weeks of MPH treatment, BRIEF2

assessment results showed significant improvement in various

domains of EF compared to baseline measures. Interestingly,

although BRIEF2 scores significantly decreased, working memory,

as assessed by DST, did not show significant changes after MPH

treatment. This observation is consistent with previous studies,

highlighting the discrepancy between subjective and objective

cognitive function measurements in ADHD (43).These findings

emphasize the complexity of evaluating treatment effects in ADHD,

suggesting that a comprehensive assessment approach, combining

both subjective and objective scales, is necessary to fully understand

the impact of MPH on cognitive function in children with ADHD

Response inhibition deficits are considered one of the core

mechanisms in the pathophysiology of ADHD (44). The study by

Broyd et al. (45) found that MPH significantly reduced errors in the

Go/NoGo task in children with ADHD, indicating that MPH

particularly improves inhibitory motor control in these children.

Many studies have shown that older adolescents and young adults

perform better on response inhibition tasks than children, with

inhibitory processes undergoing a longer maturation process (46).

Structural MRI studies have found that poor response inhibition
Frontiers in Psychiatry 06
function in ADHD patients is associated with thickening of the

posterior inferior frontal cortex (47), and patients who perform

poorly on the Go/NoGo task may have delayed maturation in this

region. Patients with a CGI-I score of less than 3 are considered

responders to MPH treatment (41). In this study, 69.2% of ADHD

patients were classified as MPH responders, which is similar to the

findings of Retz et al. (48), where 74.5% of patients were classified as

responders. The study by Rosenau et al. (1) also showed that ADHD

patients with a pre-treatment CGI-S score greater than 4, consistent

with our findings, indicating significant improvement in ADHD

symptoms following MPH treatment.

Previous studies have not identified objective indicators for

evaluating the efficacy of MPH, and recent studies have increasingly

focused on identifying biomarkers to provide precise medical care

for patients with ADHD. ERP amplitudes and latency of ERP have

been identified as promising biomarkers for pharmacological

therapy in children with ADHD (49). The amplitude of an early

subcomponent of P300 is reduced in patients with ADHD when

confronted with salient or novel stimuli (50). Subcomponent P3a of

the P300 is generated by the excitation of the frontal striatal nerve

groups involved in the orientation and assessment of auditory or

visual stimuli. Frontal striatal neural circuits are regulated by

catecholamine neurotransmitters, particularly dopamine (51).

Electroencephalographic studies of patients with parkinson’s

disease with low dopamine levels have found a decrease in P3a

amplitude (52), which increases to normal levels after the

administration of stimulant medication, which is the effect of

dopamine agonists (26). In this study, we found that children

with ADHD who completed the Go/NoGo task after 8 weeks of

treatment with MPH had elevated NoGo-P300 amplitudes and

shortened latencies at Fz, Cz, and Pz. The NoGo-P300 latency was

significantly shortened at Fz, Cz and Pz. Lawrence et al. (29)

investigated the effects of MPH in 18 male children with ADHD

and found that MPH treatment significantly shortened P300

latency, a result that is in line with our own findings. Groom

et al. (53)conducted a Go/NoGo task with 28 male children with

ADHD and found that methylphenidate significantly enhanced the

amplitudes of error-related negativity (ERN) and error positivity

(Pe). We suggest that the normalization of the MPH to the P300

component may be due to improved frontal striatal cortical network

integrity and increased excitatory synaptic capacity. Our findings

suggest that changes in P300 amplitude and latency may be
TABLE 4 Changes in Go/NoGo task and CGI score after methylphenidate treatment.

Items 0 week 8 weeks P

Go/NoGo task

Correct response time (ms)
Correctness rate (%)

611.53 ± 84.21
40.92 ± 16.36

582.57 ± 71.29
59.08 ± 16.36

0.002a

0.009a

CGI-I score

<3 (Mean ± SD, score)
≥ 3 (Mean ± SD, score)

-
-

1.5 ± 0.53
3.06 ± 0.24

<0.001b

0.001a

CGI-S score 4.38 ± 0.75 3.15 ± 0.83
a by paired t – test, b by independent t – test.
TABLE 5 Comparison of Fz, Cz, and Pz Electrode Nogo-P300 after
methylphenidate treatment in Children with ADHD.

Items 0 week 8 weeks P

Fz

Latency (ms) 233.13±107.52 161.63±103.48 <0.001*

Amplitudes (mv) 3.39±2.66 3.63±1.85 0.693

Cz

Latency (ms) 243.01±60.33 217.76±31.10 0.028*

Amplitudes (mv) 1.54±1.94 1.71±1.86 0.702

Pz

Latency (ms) 242.11±98.32 204.81±97.92 0.023*

Amplitudes (mv) 5.59±4.23 6.99±3.44 0.103
*P < 0.05 by Paired t-tests.
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influenced by stimulant medication, although causality cannot be

definitively established in this study. Stimulant medication has been

shown to persistently alter ERPs in cognitive tasks related to

attention and inhibitory control (54). The simultaneous discharge

of localized networks of pyramidal cells resulted in greater ERP

amplitudes in the scalp, and the increase in P300 amplitude may

reflect greater coordination of cortical network activation,

particularly during the action execution phase of attentional

processing. Stimulant drug-associated P300 alterations suggest

that cognitive and behavioral deficits in patients with ADHD are

associated with reduced cortical network activation and

coordinated recruitment, which can be attenuated by increasing

presynaptic catecholamine availability. The P300 component is by

far the most promising ERP neuromarker for precision medicine in

ADHD (26), and normalization of the P300 amplitude after

stimulant treatment is a predictor of a positive response to

such treatment.

This study found significant changes in the P300 components

following MPH treatment, particularly a reduction in the Nogo-

P300 latency. As an ERP marker, P300 has been shown to reflect an

individual’s executive function and attention regulation during

cognitive tasks. Our results suggest that MPH treatment may

affect P300 components by improving cognitive control in

children with ADHD. Specifically, the reduction in NoGo-P300

latency may be closely associated with MPH’s improvement of
Frontiers in Psychiatry 07
cognitive inhibition, which is consistent with findings by

Pertermann et al. (55), who showed that MPH reduced neural

noise in ADHD children during NoGo tasks, particularly in the

theta frequency band, thus enhancing cognitive control. Moreover,

the changes in the P300 components reflect improvements in

executive function in ADHD children, such as faster response

times and higher accuracy, indicating that P300 may serve as a

potential neurobiological marker for assessing MPH treatment

efficacy (23, 56). In clinical practice, the changes in P300

components provide valuable information for personalized

medicine. By monitoring alterations in P300 amplitude and

latency, clinicians can better assess how children with ADHD

respond to MPH treatment and tailor the therapy based on each

child’s neurophysiological characteristics. Therefore, P300, as a

measurable biomarker, holds great potential for the development

of more precise treatment strategies in the future, particularly in the

personalized assessment of treatment outcomes and prediction of

drug responses.

MPH is a commonly used medication for treating ADHD, and

several studies have demonstrated its short-term efficacy (34, 35, 57).

Our study also supports this notion, with significant improvements in

children’s executive function observed after eight weeks of MPH

treatment. These findings suggest that MPH can effectively enhance

cognitive function in children with ADHD in the short term,

particularly across multiple dimensions of executive function.
FIGURE 2

Changes in P300 composition after MPH treatment in children with ADHD. The horizontal coordinate is the time (ms), and the vertical coordinate is
the amplitude of the waves (mV).
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However, its effectiveness may vary depending on individual

differences, and the long-term efficacy still requires further

validation. Unlike many studies that rely solely on behavioral rating

scales, our research incorporated changes in the P300 component,

providing more objective evidence for the neurobiological effects of

MPH treatment.

This study has several limitations. First, it only included male

children with ADHD, limiting the generalizability to females, as

gender may affect treatment responses. Second, without subgroup

analyses based on ADHD subtypes, the study could not assess

MPH’s effects across different presentations. Finally, relying solely

on the P300 component of ERPs, without incorporating other

neuroimaging techniques like fMRI, limits the understanding of

methylphenidate’s neural mechanisms. Future research should

address these issues by including diverse samples and using

multiple neuroimaging methods.

In conclusion, the normalization of the P300 component in the

medial prefrontal and medial parietal regions can serve as a

biological indicator of treatment efficacy in children with ADHD.

This can be utilized alongside clinical measures to assist in making

personalized treatment decisions for ADHD pharmacotherapy.

MPH improves EF in children with ADHD, and its modulatory

effects on these functions offer new insights into the underlying

neurophysiological mechanisms.
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