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Gardanne, France, 3Unité propre de recherche (UPR) Risk Epidemiology Territory INformatics
Education and Health (UPR RETINES), Université Côte d’Azur, Nice, France, 4Medical Information
Department, Alpes-Maritimes Hospitals Group (GHT 06), Nice, France
Attention-deficit hyperactivity disorder (ADHD) occurs in 5.9% of youth,

impacting their health and social conditions often across their lifespan.

Currently, early diagnosis is constrained by clinical complexity and limited

resources of professionals to conduct evaluations. Scalable methods for ADHD

screening are thus needed. Recently, digital epidemiology and biometry, such as

the visual, emotional, or digit pathway, have examined brain dysfunction in ADHD

individuals. However, whether biometry can support screening for ADHD

symptoms using a multimodal tech system is still unknown. The EPIDIA4Kids

study aims to create objective measures, i.e., biometrics, that will provide a

comprehensive transdiagnostic picture of individuals with ADHD, aligning with

current evidence for comorbid presentations. Twenty-four children aged 7 to 12

years performed gamified tasks on an unmodified tablet using the XAI4Kids®

multimodal system, which allows extraction of biometrics (eye-, digit-, and

emotion-tracking) from video and touch events using machine learning.

Neuropsychological assessments and questionnaires were administered to

provide ADHD-related measures. Each ADHD-related measure was evaluated

with each biometric using linear mixed-effects models. In contrast to neuro-

assessments, only two digit-tracking features had age and sex effects (p < 0.001)

among the biometrics. Biometric constructs were predictors of working memory

(p < 0.0001) and processing speed (p < 0.0001) and, to a lower extent, visuo-

spatial skills (p = 0.003), inattention (p = 0.04), or achievement (p = 0.04), where

multimodalities are crucial to capture several symptomatology dimensions.
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These results illustrate the potential of multimodality biometry gathered from a

tablet as a viable and scalable transdiagnostic approach for screening ADHD

symptomatology and improving accessibility to specialized professionals. Larger

populations including clinically diagnosed ADHD will be needed for

further validation.
KEYWORDS

digital epidemiology, multidimensional assessment, biometry, multimodality, child
development, ADHD, Cognitive and behavioral performances
Introduction

Attention-deficit hyperactivity disorder (ADHD) is one of the

most common neurodevelopmental disorders, affecting

approximately 5% [95% confidence interval (CI) = 5.0, 5.6] and

7.2% (95% CI = 6.7, 7.8) of children and adolescents across the

world (1, 2). This disorder is characterized by developmental

impairments of inattention, hyperactivity, or a combination of

both. Various genetic and environmental risk factors contribute

to ADHD (e.g., prenatal factors and early life adversities) (3), but

the pathomechanism of such a condition is not yet deciphered (4).

Youth with ADHD are affected in their daily cognitive,

behavioral, and social functions (5) and often require support in

and beyond school in many trans-nosographic dimensions such as

emotion dysregulation, irritability, and impairment in executive

functions (6). Longitudinal studies have shown that persistent

symptoms in childhood and adolescence lead to chronic

conditions that may persist into adulthood (7). Youth with

ADHD have a higher risk for somatic, medical, and psychiatric

conditions (4, 6) with a decreased life expectancy of 10 to 15 years

compared to the general population (1, 8). Therefore, ADHD has

become a public health challenge with important socio-economic

burdens to children, families, and the whole society.

The early detection and diagnosis of ADHD is reliable (4) when

evaluated by well-trained practitioners following the standard

diagnostic criteria (9). Adequate early detection of ADHD and its

associated conditions appears crucial to reduce the risk of

comorbidities, alter the course of the disorder, and hereby

improve several health and well-being outcomes of children and

adolescents (10–12). However, access to ADHD evaluation and

diagnosis is limited by a lack of consultation time, trained specialists

in the current care system (1, 13, 14), and stigmatization for both

patients and families (15, 16). A further complementary approach

based on technology (17) has emerged to reach screening at a large

scale while improving diagnosis accuracy and lowering stigma and

cost (18). Objective screening methods are thus increasingly

needed; however, they have to be translated into clinical practice

after rigorous scientific validation.

Digital epidemiology relies on the data acquired from devices to

advance the understanding of health and disorders related the
02
population dynamics (19). In the meantime, lab-scale evidence

showed that biometry such as eye-tracking (20–23), digit-tracking

(24, 25), or emotion dysregulation (26–28) has at the potential to

provide high accuracy classification of ADHD through digital

assessments (29). Thus, biometry can measure at once multiple

traits (iris, fingerprints, face, retina, hand geometry, and voice) of an

individual, which will allow the identification of various dimensions

and comorbid presentations as symptoms of ADHD. In contrast to

neuroimaging modalities (30, 31) or physiological signals (i.e.,

electroencephalogram and electrocardiograms) (32, 33), biometry

markers or biometrics can easily be used in real-life practice or even

remotely during ADHD assessments in children and adolescents.

However, very few diagnostic biomarkers for ADHD have been

validated clinically (34, 35) based on criteria set by the World

Federation of ADHD and the World Federation of Societies of

Biological Psychiatry (4). Nevertheless, these results have no

attempts to screen for ADHD symptomatology and its

comorbidities in real-life practice. An alternative transdiagnostic

approach using digital epidemiology may support a better

understanding of brain function by providing a screening tool to

the general population.

In this paper, we present the preliminary results of the

EPIDIA4Kids study (36) based on a multimodality biometry

system combining digit- , eye-, and emotion-tracking

measurements to examine brain function in children aged 7 to 12

years. Using machine learning, we investigated whether multimodal

biometry could serve as an objective measurement for ADHD-

related symptomatology in a pediatric population.
Methods

Ethics approval

EPIDIA4Kids is an observational uncontrolled multi-center

study (several cities in France) approved by the Committee for

the Protection of Individuals Sud-Est II under the national French

register number 2022-A00766-37 and the Commission Nationale

de l’Informatique et des Libertés (CNIL). This study was registered

in October 2022 on ClinicalTrials.gov under the number
frontiersin.org
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NCT05577533. The study is designed to create a brain function

normative database relying on digital epidemiology in children aged

7 to 12 years using multimodality biometry (36).
Participants

The present study is a preliminary investigation aimed at

exploring the feasibility and potential of using multimodal

biometry for ADHD symptomatology screening. As such, it is

part of a larger ongoing study that aims at recruiting 400 children

for a power analysis of 0.8, a confidence level of 0.05, and a type I

error, based on three dimensions of executive skills, processing

abilities, and processing speed, previously reported in the literature

(36). Twenty-four children aged 7 to 12 years were enrolled in the

EPIDIA4kids study fromMarch 2023 to December 2023. Details on

recruitment and participants’ characteristics were reported

previously. Informed consent was obtained from parent/legal

representatives with child assent. Children were screened to

ensure that they have no parent-reported history of major

psychiatric or neurological disorders, brain injury, or other

medical conditions that would affect their brain development.

Children born prematurely (<32 weeks gestational age) with

significant prenatal drug or alcohol exposure were also excluded.
Frontiers in Psychiatry 03
Questionnaires and neuro-assessments

All questionnaires and neuro-assessments are detailed in Table 1.

Children performed the digitalized Wechsler Intelligence Scale for

Children® Fifth Edition (WISC-V) battery (1.5 hours; 37). Parents or

legal representatives answered standardized questionnaires digitally.
XAI4Kids® multimodality biometry tool and
feature extraction

XAI4Kids® is a multimodality biometry tool that combines data

acquisition and an AI pipeline to model heterogeneous and

dynamic data/signals in relation to the target variables. Data were

collected from an unmodified touch-screen tablet with an intrinsic

camera (video, ~28 frames per second; digit, ~100 Hz) while

participants were playing the O-Games battery. In the present

paper, the two games, named Rocket and Connect, were included

in the analysis. Each game was divided into challenges (11 for

Rocket and six for Connect). Time-series data were analyzed for

each challenge, which themselves represent a higher-order time

series for each game.

Seven emotion features (Table 1) were predicted per frame from

video processing using a single neural network that was pre-trained
TABLE 1 The description of each target variable and each candidate for explanatory variables.

Target variable Neuropsychopathological measure

N
eu
ro

�
as
se
ss
m
en
ts
ðW

IS
C
�
V
Þ

Block design Visuo-spatial subtest

Matrix reasoning Fluid reasoning

Digit span Working memory

Letter–number sequencing Auditory verbal working memory

Cancellation Visuo-spatial processing speed

Coding Processing speed

Symbol search Processing speed, impulsivity

Comprehension Comprehension

Similarities Verbal comprehension

Vocabulary Verbal comprehension

Q
ue
st
io
nn

ai
re
s

Hyperactivity/impulsivity ADHD scale, an 18-item self-report questionnaire designed to assess attention-deficit hyperactivity
disorder (ADHD)

Inattention

Social problems Social Problems, Child Behavior Checklist. The Child Behavior Checklist (CBCL) is a widely used
questionnaire to assess behavioral and emotional problems

Achievement Grit Scale for Children and Adults (GSCA) assesses the ability to sustain a focused effort to achieve
success in a task, regardless of the challenges that presented themselves, and the ability to overcome

setbacks in children and adults

Manual laterality The Edinburgh Handedness Inventory (EHI) is a measurement scale used to assess the dominance
of a person’s right or left hand in everyday activities.

(Continued)
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on face identification and fine-tuned for facial expression

recognition on static images from AffectNet (38). Four eye-

tracking features (Table 1) were extracted with a velocity-

threshold identification (I-VT), a method that separates fixation

and saccade points based on their point-to-point velocities (39).

Using the touch data and kinetic information collected from the

tablet, a set of five digit-tracking features (touch events, Table 1)

were computed representing the participant’s motor behaviors (40).
Statistical analysis

Databasing, statistical software, and analysis implementation

were programmed in Python using the Pandas library (41).

Statistical analysis used the Statsmodel and Pingouin packages (42).

Graphs presented in this paper were plotted using thematplotlib (43)

and seaborn packages (44). The Holm–Bonferroni sequential

correction (45) was used to correct for multiple comparisons (46).

Extracted biometric features (emotion-, digit-, or eye-tracking)

were statistically modeled as time series using a moving-average

(MA) model that uses past values of the series itself and relies on a

series of past errors. Indeed, since biometric features were collected

as a function of the behavior of each child and their related

performances at the psychometric tasks, the assumption is that

the past values of the biometric values have a linear relationship
Frontiers in Psychiatry 04
with the current values. Extracted biometric features have a very

high-dimensionality vector representing the data for one

participant: n features, by 100 bins, for each ci challenge.

Biometric features and bins were merged into a single dimension,

accounting for a time series, consisting of a vector of n * 100 second-

order features per participant.

Principal component analysis (PCA) was then performed on

every single dimension to identify for each gamified task the three

most informative components that were called “biometric construct”

as an objective time-series measurement of biometric features that

cannot be directly observed.

To reduce selection bias and improve representativeness and

statistical power (overfitting), PCAs were fitted on an internal dataset

of 63 children who underwent the same study protocol. The obtained

eigenvectors were then applied to biometric constructs of the

EPIDIA4Kids cohort to ensure the same dimensionality reduction.

Statistical relationships between biometric constructs and

multidimensional assessment measures were examined using

linear mixed models that allow for fixed and random effects to

account for the effect of each O-Games challenge as well as the

effects of biometric constructs on multidimensional assessment

measures. O-Games challenges were set as a random effect, and

each biometric construct had a fixed effect. Regression model fitting

was performed for each ADHD-related symptomatology measure

across challenges to account for individual variability in gaming
TABLE 1 Continued

Target variable Neuropsychopathological measure

Explanatory variables (biometric features) Description/parameter or model

D
ig
it
�
tr
ac
ki
ng

Touch speed Mean of point-by-point trajectory speed (in pixels per second)

Touch area Area occupied by a gesture, computed as the area occupied by a minimal adaptive polygon fitted to
the gesture (in pixels squared)

Touch distance Sum of point-by-point trajectory distance (in pixels)

Touch duration Duration of a touch gesture (in seconds)

Touch height Maximum value of height (Y-axis absolute) gesture distance (in pixels)

E
ye

�
tr
ac
ki
ng

Angular distance Distance between two consecutive gaze angles (in degrees)

= cos−1 (
a :   b
aj j : bj j )

Total angular distance Sum of absolute distances between consecutive gaze angles (in degrees)

o aj j

Angular velocity Angular distance divided by the time elapsed between two consecutive gaze angles (in degrees per
second)

da
dt

Saccade/fixation Boolean indicator whether the eye is performing a saccade or a fixation in each frame according to a
fixed velocity threshold where fixations are segments with point-to-point velocities below the set
velocity threshold, and saccades are segments with velocities above this threshold [the velocity-

threshold identification (I-VT)]. In the present study, the velocity threshold of 100°/sec was applied
and a fixation duration of 70 ms

E
m
ot
io
n 7 emotions: anger, disgust, fear,

happiness, neutral, sadness,
and surprise

Probability distribution that the emotion is present in the video frame (between 0 and 1)
CBCL, Child Behavior Checklist; ADHD, attention-deficit hyperactivity disorder; GSCA, Grit Scale for Children and Adults; WISC-V, Wechsler Intelligence Scale for Children® Fifth Edition;
EHI, Edinburgh Handedness Inventory.
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performance. Targeted variables and explanatory variables are listed

in Table 1. Parameter estimation was conducted using restricted

maximum likelihood (REML). The model’s goodness of fit was

assessed using R-squared and log-likelihood metrics. Residual

diagnostics confirmed the normality, homoscedasticity, and

independence of residuals. The fixed effects of the biometric

constructs showed significant predictive power, with effect sizes

(Cohen D between 0.4 and 1.8 for each significant PC).

To assess multimodal over unimodal biometry, model

performance was examined using the mean absolute error. The

multimodal biometric construct model was considered the baseline

model and referred to as 1. Values for the model for each unimodal

biometric construct (emotion, digit-, or eye-tracking) were

calculated as percentage increases relative to the baseline

model (Table 2).
Results

Participant characterization

Twenty-four children (11 girls and 13 boys; mean age 10.55 years ±

1.69) were enrolled in the study as the database in December 2023. No

sex difference was observed in socio-economic status or manual

laterality (Table 3). Among neuro-assessments and standardized

questionnaires, girls scored lower than boys only on the Inattention

score of the ADHD scale (p = 0.04; F = 4.7), while boys tended to

perform worse on the Cancellation subscale of the WISC-V battery

than girls (p = 0.05; F = 4.26). These suggest that the children were well-

matched in sex, age, and ADHD-related symptomatology.
Effects of sex and age on
biometric features

Age- and sex-based differences are crucial covariates in brain

function and psychopathology research (47). To account for them

and minimize further bias, we examined whether these two

variables alter biometric measurement. We showed that biometric

features exhibited no age or sex effect in both gamified tasks. We

found a sex effect only in touch area (p(adjusted for Holm–Bonferroni

correction) = 0.001) and touch duration (p(adjusted for Holm–Bonferroni

correction) = 0.001), i.e., digit-tracking features, in one of the

challenges of the Rocket task and Connect task, respectively. All

biometric features were then not adjusted for age and sex in contrast

to neuro-assessments and standardized questionnaires.
Multimodal biometric time-series constructs
to reflect ADHD-related symptoms

Sixteen biometric features (Table 1) were collected from video

and touchscreen events while children were playing on gamified

tasks. They were extracted for the eye-, emotion-, and digit-tracking
Frontiers in Psychiatry 05
analyses to capture simultaneously behavioral, emotional, and

cognitive states to obtain a multidimensional clinical picture of

each child. Since trajectories, i.e., time-series data, reflect better

abilities of children than just aggregated point scores, these

biometric features were structured as a time-series construct per

type of biometry modalities (eye-, emotion-, and digit-tracking) and

called biometric constructs.

A PCA with all biometric constructs was performed per gamified

task to extract the most informative components, named multimodal

biometric construct component (MBC). Effects of the MBC were

assessed on neuro-assessments and standardized questionnaires using

both linear model and robust linear models (Supplementary Table 1).

Both models showed that for Connect, MBC1 was a predictor of Digit

span (p < 0.003) and Letter–number sequencing (p = 0.0001–0.04) as

measures of the working memory, of Symbol search (p < 0.002), and to

a lower extent of Coding (p = 0.02) and Cancellation (p = 0.01–0.04) as

measures of processing speed. It was also found that the MBC1 has an

effect on the Inattention score (ADHD scale Inattention, p = 0.04) and

theAchievement score [Grit Scale for Children and Adults (GSCA); p =

0.04]. A strong effect on Block design (p = 0.003) was found only with

the linear model, while MBC3 had an effect only on Social problems

(CBCL, p = 0.007) using the robust linear model. Altogether, these

results strongly suggest that the multimodal biometric constructs are

objective measurements capturing ADHD symptomatology.
Gamified-task specificities allow to capture
multiple neuropsychopathological measures

Cognitive performance and rating scales, such as the WISC-V (37)

alone, cannot lead to an ADHD diagnosis (4, 48), but they are

commonly used in clinical practice (49). They can also provide a

comprehensive assessment of ADHD-related symptomatology to align

with a transdiagnostic approach. Gamified tasks were then designed to

trigger several behavioral, cognitive, and emotional states in a reduced

time. Using linear model regression (Table 4), it was found that the

Connect task allowed predictions for working memory scores (p ≤

0.001), for Symbol search (p < 0.0001), and “at lower extent” for

Inattention (p = 0.04) and Achievement (p = 0.04) abilities. The

Rocket task allowed specific predictions for processing speed as

measured by Coding and Cancellation (p ≤ 0.001), Manual laterality

[Edinburgh Handedness Inventory (EHI); p = 0.002], and Vocabulary

(p = 0.003). Independently of the gamified tasks, each MBC1 predicted

only Block design (p ≤ 0.003) that reflects visuo-spatial reasoning. These

indicated that biometric constructs could predict several

neuropsychopathological measures related to ADHD symptomatology

that were triggered by the proprieties of each gamified task.
Multimodality biometry to develop a
multidimensional screening

The goal is to achieve the optimal biometric construct model to

predict a multidimensional screening for ADHD-related
frontiersin.org
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TABLE 2 Multimodal biometry allowed capture of more multidimensional measures of ADHD-related symptomatology.

Connect Rocket

types Biometric types

Emotion Eye-
tracking

Multimodal Digit-
tracking

Emotion Eye-
tracking

0% −2% 1 0% 0% 0%

−1% −3% 1 0% −1% 0%

3% 2% 1 0% −2% 0%

1% 2% 1 0% −1% 0%

−1% −2% 1 0% −6% 0%

−3% 0% 1 0% −3% 0%

0% −2% 1 0% −13% 0%

−9% 1% 1 0% −2% 0%

−1% 3% 1 0% −5% 0%

−8% 1% 1 0% −11% 0%

1% −1% 1 0% −8% 0%

−6% −4% 1 0% −6% 0%

−2% −1% 1 0% −6% 0%

0% −2% 1 0% 0% 0%

−1% −3% 1 0% −1% 0%

increased performance analysis (expressed in increased percentage) was performed between unimodal biometric model and the

cale for Children and Adults; WISC-V, Wechsler Intelligence Scale for Children® Fifth Edition.
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ADHD scale

Hyperactivity
and impulsivity

1 1%

Inattention 1 2%

CBCL Social problems 1 3%

EHI Manual laterality 1 0%

GSCA Achievement 1 1%

WISC-V

Matrix reasoning 1 0%

Digit span 1 −1%

Letter–number sequencing 1 1%

Symbol search 1 0%

Coding 1 1%

Cancellation 1 3%

Block design 1 1%

Similarities 1 −2%

Vocabulary 1 1%

Comprehension 1 2%

The mean absolute error (MAE) was used as a critical indicator for comparing the performance of each biometric model. Comparative
multimodal model, which was set as the baseline model (1).
CBCL, Child Behavior Checklist; ADHD, attention-deficit hyperactivity disorder; EHI, Edinburgh Handedness Inventory; GSCA, Grit S
When p-value survived Holm-Bonferroni for mulitple comparison, values are marked in bold.
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symptomatology in children and adolescents. The mean absolute error

(MAE) is a critical indicator for comparing the performance of each

biometric model. Table 2 presents a comparative analysis of

performances between the multimodal and unimodal biometric

models in which the multimodal model was set as the baseline model.

First, a multimodal biometric model could enhance

performance to predict each of the neuropsychopathological

measures but not systematically. In the Rocket task, unimodal

models for digit- and eye-tracking had similar performances to

mul t imoda l b iometr ic mode l s independent ly of the

neuropsychopathological measures, while the unimodal model for

emotion (−13% to 0%) had systematically equal or better

performance than multimodal biometric model for each measure.

In the Connect task, the multimodal biometric model had better

performance overall than the unimodal digit-tracking model (−1%

to 3%) but worse performances over the unimodal model for
Frontiers in Psychiatry 07
emotion (−9% to 3%) and eye-tracking (−4% to 3%) dependently

to the neuropsychopathological measures.

Altogether, these results suggest that multimodal biometry is

required for capturing multidimensional measures of ADHD-

related symptomatology in children and adolescents. However,

the performance of multimodal biometric models can be lower

than that obtained from unimodal biometric models.
Discussion

These preliminary results from the EPIDIA4Kids study showed

that multimodality biometry provides insights into brain function

in children aged 7 to 12 years old. Biometrics may ultimately serve

as a viable candidate for an objective measurement to screen for

multidimensional ADHD symptomatology in children.
TABLE 3 Participant characteristics.

Girls (n = 11)
Mean (std)

Boys (n = 13)
Mean (std)

Exact p-value, F
value, or c2

Age at assessment (years) 10.44 (1.6) 10.83 (1.82) 0.79 (0.07)

Household income (1 = 0–3k€, 6 = 3–37€, and
12 = ≥7k€ monthly)

3.11 (1) 3.5 (1) 0.57 (0.35)

Highest education (7 = professional, 4 = high
school graduate, and 1 = <7 years of school)

5.89 (1) 6.17 (2) 0.76 (0.10)

Highest occupation (7 = higher executives, 4 =
clerical and sales workers, and 1 =
unskilled employee)

5.0 (1) 5.66 (2) 0.45 (0.59)

EHI, manual laterality (raw score) 200 (263) 223 (259) 0.84 (0.04)

z
�
Sc
or
e;
 a
dj
us
te
d 
by
 a
ge
 a
nd

 s
ex

ADHD scale, inattention 0.48 (0.84) 0.40 (1.11) 0.04 (4.70)

ADHD scale, hyperactivity and impulsivity −0.17 (1.1) 0.18 (1.05) 0.43 (0.65)

Social problems scale (CBCL) −0.09 (0.99) 0.35 (0.91) 0.27 (1.29)

GSCA, achievement −0.60 (0.91) −0.04 (0.84) 0.13 (2.42)

WISC-V (n = 11) (n = 12)

Matrix reasoning −0.17 (1.18) 0.16 (0.88) 0.46 (0.57)

Digit span 0.16(1.16) 0.13 (1.07) 0.52 (0.42)

Letter–Number sequencing −0.004 (1.24) 0.003 (0.86) 0.98 (0.00)

Symbol search 0.25 (1.21) −0.25 (0.78) 0.29 (1.20)

Coding 0.24 (1.16) −0.45 (1.07) 0.17 (2.0)

Cancellation 0.38 (0.73) −0.65 (1.41) 0.05 (4.26)

Block design 0.18 (1.16) −0.17 (0.91) 0.45 (0.59)

Similarities −0.02 (0.73) 0.02 (1.27) 0.94 (0.01)

Vocabulary −0.28 (0.85) 0.26 (1.14) 0.24 (1.47)

Comprehension 0.20 (0.79) −0.17 (1.19) 0.42 (0.68)
Student’s t-tests and Mann–Whitney U tests when variables are non-parametric were performed for continuous variables. Chi-squared tests were used for categorical variables. The z-scores were
adjusted for sex and age based on a proprietary dataset of 202 children aged 7 to 15 years. Results with p-values between 0.05 and 0.001 were considered a trend and significant when the p-value
survived Holm–Bonferroni for multiple comparisons (marked in bold).
CBCL, Child Behavior Checklist; ADHD, attention-deficit hyperactivity disorder; EHI, Edinburgh Handedness Inventory; GSCA, Grit Scale for Children and Adults; WISC-V, Wechsler
Intelligence Scale for Children® Fifth Edition.
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ADHD has a complex clinical presentation whose symptoms

are highly variable including age and sex. Indeed, sex- and gender-

specific differences in health exist largely due to genetic and

hormonal influences of biological sex, hereby influencing

physiology and disease and thus biometrics. Here, we showed that

most biometric features extracted using machine learning models

are not influenced by age and sex during this period of age. Further

validation will be needed on a larger cohort to examine whether this

statement stands. In line with previous research (24, 50), touch

duration and touch area were correlated with age, suggesting that

biometric constructs have a higher potential to assess

neurodevelopmental symptomatology while accounting for fewer

cofounders than the current assessments within this age range

(neuropsychological tests or clinical questionnaires).

Furthermore, we found that biometric constructs predict

performances of specific tasks that were shown mainly impaired in

children and adolescents with ADHD, i.e., working memory (51, 52)

and processing speed (53, 54). More specifically, several studies have

reported that ADHD children have lower scores on working memory

and processing speed indexes among the whole subtest battery of the

WISC using its different versions (55). Additionally, we showed a

specific prediction of the biometric construct for the Digit span

subtest: performances were lower in ADHD children compared to

healthy children (55). Interestingly, working memory was predicted

by biometric construct mainly with the Connect task and processing
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speed with the Rocket task, while visuo-spatial abilities were predicted

specifically in both gamified tasks. Verbal comprehension and fluid

reasoning were not predicted by any of the biometric constructs.

These findings suggest that biometric constructs have potential value

as biomarkers for ADHD-related symptomatology where the design

of gamified tasks plays a crucial role in triggering specific brain

functions. However, predictions for subtest scores and indexes should

be interpreted with caution since they assess symptoms at one time-

point rather than clinical deficits, and they cannot reflect causality but

correlations. For instance, we found that a biometric construct

predicts processing speed and the Vocabulary subtest in the same

Rocket task. Since verbal comprehension is highly correlated with

processing speed in ADHD children (56), we cannot rule out that

prediction for processing speed in Rocket tasks is not mediated by

deficits in vocabulary performance. Altogether, biometric constructs

can serve as a screening method at a large scale in children, but

longitudinal studies will be needed to understand clinical causality

among those biometric construct predictions.

Finally, we showed that multimodality biometry is required to

capture multi-dimensional measurements of ADHD symptomatology

in a limited time. Previously, eye-tracking features were reported to

provide information on higher-order brain processes including

memory and attention in ADHD individuals as measured by

changes in gaze fixation, saccadic movements (23), or longer reaction

times and errors in the direction of anti-saccadic movements (21).
TABLE 4 Linear Model regression for significance of each multimodal biometric construct component (MBC) on neuro-assessments and standardized
questionnaires for both Rocket and Connect gamified tasks.

Connect Rocket

Multimodal biometric construct component

MBC1 MBC2 MBC3 MBC1 MBC2 MBC3

z
�
Sc
or
e;
 a
dj
us
te
d 
by
 a
ge
 a
nd

 s
ex

ADHD
Hyperactivity and impulsivity 0.4 0.35 0.94 0.392 0.863 0.61

Inattention 0.04 0.99 0.70 0.777 0.804 0.534

CBCL Social problems 0.07 0.84 0.60 0.414 0.261 0.735

EHI Manual laterality 0.60 0.43 0.07 0.002 0.833 0.007

GSCA Achievement 0.04 0.09 0.59 0.054 0.095 0.159

WISC-V

Matrix reasoning 0.32 0.41 0.84 0.648 0.912 0.539

Digit span <0.0001 <0.0001 0.25 0.091 0.685 0.742

Letter–number sequencing 0.001 0.24 0.89 <0.0001 0.073 0.43

Symbol search <0.0001 0.41 0.15 0.967 0.909 0.366

Coding 0.02 0.50 0.10 <0.0001 0.336 0.332

Cancellation 0.01 0.71 0.50 <0.0001 0.938 0.054

Block design 0.003 0.31 0.38 0.001 0.738 0.207

Similarities 0.20 0.53 0.16 0.982 0.455 0.064

Vocabulary 0.23 0.2 0.88 0.003 0.583 0.552

Comprehension 0.34 0.16 0.07 0.486 0.53 0.067
f

p-Values between 0.05 and 0.001 were considered a trend and significant when the p-value survived Holm–Bonferroni for multiple comparisons (marked in bold).
CBCL, Child Behavior Checklist; ADHD, attention-deficit hyperactivity disorder; EHI, Edinburgh Handedness Inventory; GSCA, Grit Scale for Children and Adults; MBC, Multimodal Biometric
Construct Component; WISC-V, Wechsler Intelligence Scale for Children® Fifth Edition.
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Digit-tracking using touchscreen events such as touch duration and the

number of clicks was described as a reliable tool for quantifying

attention (25) or visual motor skills (24) in ADHD children.

Likewise, evidence revealed that facial emotion recognition can be

used in the evaluation of children with ADHD (26–28). However, to

our knowledge, none has attempted to examine whether these

biometric features all collected from an unmodified tablet can serve

as objective measures for a multidimensional assessment of ADHD-

related symptomatology.

We found that multimodal biometric measures predicted

specifically working memory and processing speed abilities that

are mainly impaired in ADHD children. We should point out that

unimodal biometric models outperformed sometimes the

multimodal models for a specific psychopathological score.

However, multimodality is required to obtain a comprehensive

multidimensional picture of children. Biometric feature

identification and selection will help optimize the prediction of

multidimensional psychopathological measurements, but they are

out of the scope of the present study.
Limitations

The preliminary results represent thus a notable step toward

objective measurements based on multimodality biometry for

screening multiple dimensions of ADHD symptomatology in

children. However, most participants were healthy children with

no history of neurological disorders. The preliminary aim of the

present study was to first test our hypothesis on the potential of

multimodality biometry as a viable and scalable transdiagnostic

approach for screening ADHD symptomatology. A strong tension

exists between balancing the desire to minimize heterogeneity

(“noise”), which can mask the effect of interest, and the desire to

generate data that are generalizable to a broader population. We

chose to narrow eligibility criteria to limit the variability in a study

population and control for confounding factors. Narrowing

eligibility criteria will most probably diminish the understanding

and applicability of the findings in real-world ADHD populations,

but this step is crucial to move forward. Increasing the number of

participants diagnosed with ADHD is required to establish

generalizability with rigorous clinical validation.

As a secondary judgment criterion, multimodality approaches

bring high potential for improving access to trained specialists as

well as diagnosis support at cost-efficiency (57–59). Recent machine

learning techniques could handle heterogeneous data frommultimodal

sources for prediction (60–62), but combining data from multiple

sources can hurt model performance (63) and increase the risk of

incurring biases (64). Given this, we applied PCA technology, which

appears the appropriate approach to minimize data dimensionality,

thereby stabilizing subsequent modeling (65) to mitigate biases.

Another limitation is to account for the inherent complexity of

health data that encompass many domains (social, biological,

environmental, and genetic) that influence health. Multimodal

machine learning can leverage different types of data and find
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patterns in and between modalities to improve prediction

performance (66) using transformer architectures. However,

training of supervised machine learning model relied on existing

samples, and no database with images of children with ADHD is

available. A promising aspect of transformers is the ability to learn

meaningful representation with unlabeled data, which is paramount

in biomedical artificial intelligence given the limited and expensive

resources needed to obtain high-quality labels. Diagnostic testing

tools such as those based on digital technology, i.e., multimodal

biometry, would then provide for global mental and medical states

of individuals in a shorter time but will not replace the

professionals’ experience and observation time (29, 67). Such

scales or tools are complementary to them, as they will be helpful

in diagnosing and predicting the full spectrum of ADHD symptoms

by accelerating and improving medical information and history

retrievals. Knowledge of clinical expertise and technologies is

required to gather clinical evidence for such digital tools.

Diagnosis of ADHD will stay primarily a clinical one where

clinicians/professionals are at the core of the whole process.

However, there is a shortage of medical professionals in which

40% of medical doctors are retiring or will retire by 2030. Therefore,

remote and digital assessments would be valuable tools in routine

care, but it is essential to account for patients and relatives who are

digitally disadvantaged and cannot access remote technologies (68).

Low- and middle-income families or households have often lower

digital literacy and are less likely to access digital psychiatric services

(69). To minimize such social inequities, the XAI4Kids® system was

developed for ADHD assessments at a large scale in a natural setting

without the need for additional cost-limiting equipment.
Conclusions

Altogether, evidence strongly suggests that the XAI4Kids®

system combining biometric measures and transdiagnostic

approaches may provide compelling alternatives in capturing the

multiple dimensions of ADHD symptomatology in the pediatric

population and at a large scale. Multimodality data and modeling

have the goal of addressing urgent issues such as easing access to

child specialists due to limited resources.

Future work focuses on conducting a comprehensive and

rigorous validation with clinically diagnosed ADHD participants

to ensure reliability in clinical settings but also apprehend

differences in ADHD presentation and comorbidities. Lastly, the

integration of XAI4Kids® and its efficiency along the existing

clinical workflow will be examined to tailor screening and

diagnosis in primary care.
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2012-300 of March 5th, 2012) after reviewing the informed consent

forms and all information notice dedicated to participants. The

participants have provided their written informed consent to

participate in this study. The study is conducted in accordance

with the principles of the Declaration of Helsinki (1964) as reviewed

in Edinburgh (2000). Data collection and processing is complying

with General Data Protection Regulation (GDPR). The studies were

conducted in accordance with the local legislation and institutional

requirements. Written informed consent for participation in this

study was provided by the participants’ legal guardians/next of kin.
Author contributions

YG: Writing – review & editing, Data curation, Formal

Analysis, Visualization. AH: Data curation, Formal Analysis,

Writing – review & editing. TM: Data curation, Writing – review

& editing. MC: Data curation, Writing – review & editing. LP:

Methodology, Project administration, Validation, Writing – review

& editing. PS: Conceptualization, Investigation, Methodology,

Supervision, Validation, Writing – review & editing. VDV:

Writing – review & editing, Conceptualization, Methodology,

Project administration, Investigation, Supervision.
Funding

The author(s) declare that financial support was received for the

research and/or publication of this article. The study was funded

partially by the Bank of Innovation (grant: DOS0180634/00) to O-

Kidia. The funding institution had no role in study design, data

collection, data analysis and interpretation, writing the manuscripts,

or the decision about publication.
Frontiers in Psychiatry 10
Acknowledgments

We thank the caregivers, parents, and children for their

participation in the study without which this research would not

have been possible. Special thanks to the Fuso France non-profit

organization. We gratefully acknowledge the collaboration of
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Comité de Protection des Personnes Sud-Est II CPP 69.

The remaining author declares that the research was conducted

in the absence of any commercial or financial relationships that

could be construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fpsyt.2025.

1466107/full#supplementary-material
References
1. Cortese S, Song M, Farhat LC, Yon DK, Lee SW, Kim MS, et al. Incidence,
prevalence, and global burden of ADHD from 1990 to 2019 across 204 countries: data,
with critical re-analysis, from the global burden of disease study.Mol Psychiatry. (2023)
28:4823–30. doi: 10.1038/s41380-023-02228-3
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