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Hui Li3, Junzi Long1,2, Xingxing Liao1,2 and Hao Zhang1,2,3*

1School of Rehabilitation, Capital Medical University, Beijing, China, 2Beijing Bo’ai Hospital, China
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Background: Apathy is a prevalent psychiatric condition after stroke, affecting

approximately 30% of stroke survivors. It is associated with slower recovery and

an increased risk of depression. Understanding the pathophysiological

mechanisms of post stroke apathy (PSA) is crucial for developing targeted

rehabilitation strategies.

Methods: In this study, we recruited a total of 18 PSA patients, 18 post-stroke

non-apathy (NPSA) patients, and 18 healthy controls (HCs). Apathy wasmeasured

using the Apathy Evaluation Scale (AES). Resting-state functional magnetic

resonance imaging (rs-fMRI) was utilized to investigate spontaneous brain

activity. We estimated the amplitude of low-frequency fluctuation (ALFF)

across three different frequency bands (typical band: 0.01–0.08 Hz; slow-4:

0.027–0.073 Hz; slow-5: 0.01–0.027 Hz) and the fractional amplitude of low-

frequency fluctuation (fALFF).

Results: Band-specific ALFF differences among the three groups were analyzed.

Significant differences were found in the typical band within the left lingual gyrus,

right fusiform gyrus, right superior temporal gyrus (STG), and left insula. In the

slow-4 band, significant differences were observed in the left middle frontal gyrus

(MFG) and right STG. In the slow-5 band, significant differences were identified in

the left calcarine cortex and right insula. For fALFF values, significant differences

were found in the left lingual gyrus and right thalamus. Moreover, positive

correlations were observed between AES scores and the ALFF values in the

right STG (r = 0.490, p = 0.002) in the typical band, left MFG (r = 0.478, p = 0.003)

and right STG (r = 0.451, p = 0.006) in the slow-4 band, and fALFF values of the

right thalamus (r = 0.614, p < 0.001).
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Conclusion: This study is the first to investigate the neural correlates of PSA using

voxel-level analysis and different ALFF banding methods. Our findings indicate that

PSA involves cortical and subcortical areas, including the left MFG, right STG, and

right thalamus. These results may help elucidate the neural mechanisms underlying

PSA and could serve as potential neuroimaging indicators for early diagnosis

and intervention.
KEYWORDS

post stroke apathy, resting state fMRI, amplitude of low-frequency fluctuation,
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1 Introduction

Apathy is characterized by a measurable decline in goal-directed

behaviors across the cognitive, emotional, and social dimensions of

an individual’s life (1). It is a common neuropsychiatric symptom

after stroke, which affects approximately 30% of stroke survivors

(2, 3). Post-stroke apathy (PSA) is associated with functional

disabilities, slower recovery, cognitive deficits and an increased risk

of subsequent depression (4–6). However, the pathophysiological

mechanisms that contribute to apathy in stroke patients are yet to be

fully elucidated. Understanding these mechanisms could facilitate

the development of more effective, targeted rehabilitation strategies

for PSA.

Resting-state functional magnetic resonance(rs-fMRI), which

assesses spontaneous fluctuations in blood-oxygen-level-dependent

signals, serves as a robust non-invasive method for examining brain

functional connectivity (7, 8). During rest, the brain is still active,

resulting in slow fluctuations of blood flow that is seen as a marker

of spontaneous brain activation (9). The amplitude and frequency

of these fluctuations correlate with emotional regulation (10). The

amplitude of low-frequency fluctuations (ALFF) quantifies the

spontaneous activity amplitude of brain regions during resting

state by calculating the average square root of the power spectral

density within a specific low-frequency range (0.01-0.08Hz) (11).

Further, the typical frequency bands can be divided into the

following ranges: slow-5(0.01–0.027Hz), slow-4(0.027–0.073Hz),

slow-3(0.073–0.198Hz), and slow-2 (0.198–0.25Hz) (9, 12).

Studies indicate that various neural oscillation frequencies within

the brain may exhibit sensitivity to activity across different brain

regions. The slow-5 and slow-4 bands are primarily related to gray

matter, whereas slow-3 and slow-2 bands are associated with white

matter and can be affected by aliasing with respiratory and cardiac

signals (9). The fractional amplitude of low-frequency fluctuations

(fALFF) is a method that calculates the ratio of the power spectrum

within the low-frequency range to the power spectrum across the

entire frequency range (13). It also measures spontaneous neural

activity, and is often preferred because it standardizes the power

spectra and is robust against physiological noise (13). These rs-

fMRI indices are widely utilized in the study of neurological
02
disorders, such as Parkinson’s disease, Alzheimer’s disease, and

stroke (14–16).

Neuroimaging studies have consistently linked the apathetic

syndrome to disruptions in specific medial frontal cortex and

subcortical structures, particularly the anterior cingulate cortex,

medial orbitofrontal cortex, and ventral striatum (17, 18). These

areas are integral parts of the brain’s reward system. Emerging

physiological evidence indicates that reward processing is altered in

apathetic patients, making them less sensitive to rewarding

outcomes (19, 20). Previous studies have primarily associated

apathy with abnormal activity in various brain regions, including

the frontal lobe and the cingulate gyrus. For example, Parkinson’s

patients with apathy show reduced ALFF in the right anterior

cingulate gyrus in the slow-5 band and decreased fALFF in the

right middle frontal gyrus in the typical band (21). Another study

indicated decreased ALFF in left orbital middle frontal gyrus and

bilateral superior frontal gyrus (22). Only one study has investigated

the fALFF, finding significant differences in the left middle temporal

regions, right anterior and middle cingulate regions, middle frontal

region, and cuneus region in PSA patients (23). However, to date,

no studies have explored changes in brain regions across different

frequency bands in PSA patients. It is critical for elucidating the

pathophysiological mechanisms underlying apathy after stroke.

In this study, we utilize ALFF and fALFF to investigate the

changes in spontaneous brain activity during resting state in PSA

patients. Based on prior study, we hypothesize that PSA patients

will exhibit alterations in ALFF within the frontal lobes and

subcortical region. Identifying abnormalities in spontaneous brain

activity in PSA patients could elucidate potential therapeutic

targets, thereby improving our understanding and management

of PSA.
2 Methods

2.1 Participants

The inclusion criteria for this study were as follows: (1) a

confirmed diagnosis of stroke with a disease duration of more
frontiersin.org
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than one month; (2) a diagnosis of apathy based on established

consensus criteria, with an Apathy Evaluation Scale (AES) score

greater than 38 (24, 25); (3) ages between 18 and 75 years; (4) were

right-handed; (5) willing to participate to the study, and signed a

written informed consent. The exclusion criteria were: (1) presence

of severe liver or kidney diseases or a history of tumors; (2)

contraindication for MRI; (3) refusal to participate in the study.

This study adheres to the Helsinki Declaration and has been

approved by the Medical Ethics Committee of the China

Rehabilitation Research Center.
2.2 Neuropsychological evaluation

Apathy was assessed by the Apathy Evaluation Scale (AES),

which includes 18 items evaluating the behavioral, cognitive, and

emotional dimensions of apathy (26). The AES has a cutoff score of

>38, with scores ranging from 18 to 72; higher scores indicate

greater apathy. Depression was assessed by Hamilton Depression

Rating Scale (HAMD). HAMD is the most commonly used

depression scale because it has a high specificity to assess the

severity of depression symptoms. The Cronbach’s a score of

HAMD-24 is 0.88, and the k-score is 0.92 (27). Cognitive

function was assessed using the Mini-Mental State Examination

(MMSE), a widely utilized tool for evaluating cognitive function

globally (28, 29). The total cognition score ranges from 0 to 30 (30).

Neurological functional status was assessed using the National

Institutes of Health Stroke Scale (NIHSS) and Barthel index. The

NIHSS is a standardized tool used to quantify stroke severity (31).

The total NIHSS score ranges from 0 to 42, with higher totals

signifying greater stroke impact. The Barthel index was utilized to

evaluate activities of daily living. The Barthel index includes ten self-

care items including grooming, bathing, feeding, toilet use, dressing,

walking, transferring from bed to chair, stair climbing, bowel

control, and bladder control (32).
2.3 Imaging data acquisition

Participants underwent both T1 and rs-fMRI scanning. The

data were collected on a Philips Ingenia 3T MRI scanner equipped

with a 32-channel head coil. High resolution T1-weighted

anatomical images were acquired (TR = 7.13ms, TE =3.22ms;

FOV = 256 × 256 mm2; flip angle = 7°; 256 × 256 matrix; 192

slices; voxel size = 1 × 1 × 1 mm3). Rs-fMRI were acquired using a

gradient echo planar imaging (EPI) sequence (TR = 2000ms, TE

=30ms; FOV = 224 × 224 mm2; flip angle = 90°; 64 × 64 matrix; 32

slices; voxel size = 3.5 × 3.5 × 4.35 mm3). Participants were required

to keep still and awoke during the entire scanning.
2.4 Data preprocessing and analysis

Data preprocessing was performed using the DPARSF (http://

rfmri.org/DPARSF) toolkit based on the MATLAB 2021b (33).

Preprocessing includes the following steps: (1) Conversion of
Frontiers in Psychiatry 03
DICOM format to NFITI format; (2) Removal of the first ten

time points; (3) Time layer and head motion correction; (4) Each

participant’s fMRI images were co-registered with their T1 images.

Subsequently, the DARTEL method was employed to segment the

T1 images into gray matter, white matter, and cerebrospinal fluid,

followed by spatial transformation of the segmented gray matter

probability maps. The same transformation parameters were then

applied to the corresponding fMRI images; (5) Spatial smoothing

was performed using a 8-mm full width at half maximum (FWHM)

Gaussian kernel to reduce noise and enhance the reliability of the

signal; (6) Detrend; (7) regression of head motion, brain white

matter signal, cerebrospinal fluid signal, and global signal as

covariates. In this study, the rs-fMRI data for subjects with head

motion displacement >2.5mm or rotation >2.5° in any axis were

discarded. Four participants were consequently excluded from the

study due to head movement. A total of 18 PSA patients, 18 post

stroke non-apathy (NPSA) patients and 18 health controls (HC)

were finally included in the following analysis.

The typical bands (0.01-0.08Hz) (11), slow-5(0.01–0.027Hz)

and slow-4(0.027–0.073Hz) were extracted. and the fALFF value

was obtained by dividing the sum of ALFF values in this frequency

band by the sum of amplitudes in the full frequency band.

Normalization was performed by dividing each voxel’s ALFF or

fALFF value within the specified frequency band by the brain-wide

mean, yielding normalized metrics (mALFF and mfALFF) to

quantify relative low-frequency fluctuations for statistical analysis.
2.5 Statistical analysis

The age, gender and years of education were compared using

analysis of variance (ANOVA) in the PSA, NPSA, and HC group.

The chi-square test was used to analyze the disease types and

lesion sides. The duration of disease, as well as the AES, HAMD,

MMSE, NIHSS, and Barthel Index scores, between the PSA and

NPSA groups were analyzed using either the Mann-Whitney test or

the t-test, depending on the distribution and nature of the data. The

above data were analyzed by SPSS (version 25.0, Armonk, NY,

USA). Statistical significance was set at p<0.05. Sex, age, and head

motion were used as covariates in the ANOVA analysis to compare

ALFF and fALFF values among the three groups. Post-hoc pairwise

t-tests with Bonferroni correction were conducted to evaluate group

differences in ALFF and fALFF values among the PSA, NPSA, and

HC groups. Spearman correlation analysis was performed to assess

the relationship between ALFF, fALFF values, and AES scores

within the regions that showed significant differences between the

PSA and NPSA groups.
3 Results

3.1 Demographic and
clinical characteristics

In this study, 54 participants were selected for the present study,

including 18 PSA patients, 18 NPSA patients and 18 HCs. A
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TABLE 2 Covariance results of ALFF values among the PSA, NPSA and HC groups.

Brain regions
Peak value

Voxels Size (mm^3) F values
X Y Z

Typical band

Lingual.L 0 -81 6 50 1350 15.03

Fusiform.R 36 -33 -18 38 1026 21.28

STG.R 54 3 0 37 999 19.73

Insula.L -30 15 -18 30 810 15.09

Slow-5

Calcarine.L 0 -81 12 69 1863 19.68

Insula.R 33 12 12 30 810 12.42

Slow-4

MFG.L -30 48 3 41 1107 16.55

STG.R 54 3 0 35 945 19.66

Fusiform.R 36 -36 -18 34 918 20.14

fALFF

Lingual.L 0 -78 -3 28 756 14.14

Thalamus.R 6 -18 12 23 621 15.75
F
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TABLE 1 Participants’ demographic and clinical data.

PSA NPSA HC F/T

Gender

male 14 12 13
0.758

female 4 6 5

Age 52.33 ± 12.319 54.50 ± 10.350 54.28 ± 6.890 0.779

Education (year) 14.16 ± 2.007 14.26 ± 1.643 14.41 ± 1.561 0.271

Diagnosis

cerebral infarction 10 11 /
0.735

cerebral hemorrhage 8 7 /

Hemisphere

left 15 13 /
0.423

right 3 5 /

Disease duration (month) 1.67 ± 0.514 1.56 ± 0.591 / 0.552

AES 49.56 ± 5.426 20.28 ± 4.443 / <0.001

MMSE 22.72 ± 4.599 24.94 ± 4.646 / 0.158

HAMD 22.83 ± 1.855 23.67 ± 3.199 / 0.346

NHISS 4.72 ± 2.396 5.50 ± 3.552 / 0.447

BI 60.00 ± 22.752 56.94 ± 22.172 / 0.686
AES, Apathy Evaluation Scale; MMSE, Mini-Mental State Examination; HAMD, Hamilton Depression Rating Scale; NHISS, National Institutes of Health Stroke Scale; BI, Barthel index.
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summary of the participants’ demographic and clinical data is

presented in Table 1. There were no significant differences in

gender (p =0.758), age (p = 0.779), education (p = 0.271),

diagnosis (p = 0.735), lesion hemisphere (p =0.423) among

three group. PSA group and NPSA group showed no

significant difference in MMSE (p =0.158), HAMD (p =0.346),

NHISS (p =0.447), BI (p =0.686). Compared with the NPSA group,

the PSA patients exhibited significantly higher AES scores (p

< 0.001).
3.2 ALFF and fALFF values in the PSA,
NPSA, and HC groups

In typical band (0.01–0.08 Hz), there are significant differences

in left lingual, right fusiform, right superior temporal gyrus (STG),

left insula among three group (voxel p<0.001, cluster p<0.05, GRF

corrected, cluster size >30 voxels) (Table 2, Figure 1A). Post-hoc

analyses showed increased ALFF values in the right fusiform and

right STG in PSA group when compared with both NPSA and HC

groups (p<0.05) (Figure 2A).

In slow-5 band (0.01–0.027 Hz), there are significant differences

in left calcarine and right insula among three group (voxel p<0.001,

cluster p<0.05, GRF corrected, cluster size >30 voxels) (Table 2,

Figure 1B). However, there are no significant difference in PSA
Frontiers in Psychiatry 05
group when compared with both NPSA and HC groups by post-hoc

analyses (p<0.05) (Figure 2B).

In slow-4 band (0.027–0.073Hz), there are significant differences

in left middle frontal gyrus (MFG), right STG, right fusiform among

three group (voxel p<0.001, cluster p<0.05, GRF corrected, cluster size

>30 voxels) (Table 2, Figure 1C). Post-hoc analyses exhibited increased

left MFG and right STG in PSA group when compared with both

NPSA and HC groups (p<0.05) (Figure 2C).

For fALFF values, there are significant differences in left lingual

and right thalamus among three group (voxel p<0.001, cluster p<0.05,

GRF corrected, cluster size >30 voxels) (Table 2, Figure 1D). Post-hoc

analyses exhibited increased right thalamus in PSA group when

compared with both NPSA and HC groups (p<0.05) (Figure 2D).
3.3 ALFF and fALFF values associated with
clinical scores in stroke patients

The ALFF values of right STG (r = 0.490, p = 0.002) in typical

band are positively correlated with the AES scores in stroke patients.

The ALFF values of left MFG (r = 0.478, p = 0.003) and right STG

(r = 0.451, p = 0.006) in slow-4 band are positively correlated with

the AES scores in stroke patients. The fALFF values of right

thalamus is positively correlated with the AES scores in stroke

patients (r = 0.614, p < 0.001) (Figure 3).
FIGURE 1

ANOVA differences in different frequency bands. (A) Brain regions showing typical band differences among PSA, NPSA and HC groups. (B) Brain
regions showing slow-5 band differences among three groups. (C) Brain regions showing slow-4 band differences among three groups. (D) Brain
regions showing fALFF differences among three groups.
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4 Discussion

This study utilizes different frequency bands of ALFF to

investigate local functional abnormalities in PSA patients. Our

findings reveal that the primary brain regions exhibiting

abnormalities in PSA patients are concentrated in the frontal and

temporal lobes, as well as the thalamus. Moreover, the ALFF values

in the left MFG, right STG, and right thalamus are positively

correlated with apathy scores.

The MFG, a core component of the dorsolateral prefrontal

cortex (DLPFC), plays a critical role in regulating goal-directed

behavior, motivation, and emotional responses, all of which are

often impaired in apathy (34, 35). Dysfunction in the MFG has been

strongly linked to apathy, a condition characterized by a

quantitative reduction in voluntary, goal-directed behaviors. This

is particularly evident in patients with focal prefrontal cortex

lesions, where decreased reactivity to emotional and reward-

related stimuli leads to deficits in decision-making. These deficits

hinder the ability to accurately evaluate the consequences of actions

within emotional and affective contexts, resulting in diminished

motivation and impaired goal-directed behavior (36–38). Apathy is

further characterized by a significant decrease in the motivation to

set and pursue goals, independent of cognitive impairment,

emotional distress, or depression (39). Structural imaging studies

have consistently shown reduced gray matter volumes in

individuals with apathy, particularly in the frontal and temporal

lobes (40). In conditions such as cognitive impairment and
Frontiers in Psychiatry 06
Alzheimer’s disease, apathy has also been associated with

increased white matter lesions and atrophy in frontal gray matter

(41–43). Hypoactivity in frontal lobe regions, including the DLPFC,

has been identified as a major contributor to apathy following

stroke (44). In this study, we observed increased ALFF values in the

left MFG, consistent with its critical role in integrating cognitive

and motivational processes. This finding aligns with prior research

linking DLPFC activity and connectivity with apathy severity.

Reduced activity and connectivity within the DLPFC, including

the MFG, has been associated with higher levels of apathy,

particularly in tasks involving working memory, attentional

processing, and motivational regulation. These findings

underscore the centrality of the MFG in the neural mechanisms

of apathy, highlighting its role in bridging cognitive and emotional

processes to sustain goal-directed behavior (45).

The temporal lobe plays a critical role in emotion, memory, and

social behavior, with STG serving as a key component of this region

(46–48). Structural abnormalities in the temporal lobe, such as

reduced inferior-temporal cortical thickness, have been identified as

significant risk factors for apathy, particularly in Alzheimer’s disease

and mild cognitive impairment (49, 50). Functional studies have

further highlighted the STG’s essential role in the neural

mechanisms of apathy. For instance, reduced functional connectivity

between the right STG and regions such as the right supramarginal

gyrus and the left precuneus has been significantly associated with self-

reported apathy symptoms in older adults (51). These disrupted

connections likely impair the integration of social and emotional
FIGURE 2

Post-hoc comparisons of ALFF between each pair of three groups. Between-group differences of ALFF in (A) typical band, (B) slow-5 band, (C) slow-
4 band, and (D) fALFF. *p < 0.05, **p < 0.01, ***p < 0.001. L, left; R, right. MFG, middle frontal gyrus; STG, superior temporal gyrus.
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information, contributing to decreased motivation and the

manifestation of apathy. In stroke patients, functional abnormalities

in the STG are further supported by changes in regional cerebral blood

flow (rCBF). Okada et al. demonstrated that apathetic stroke patients

exhibited significantly reduced rCBF in the right DLPFC and left

frontotemporal regions, with apathy severity negatively correlated with

rCBF in these areas (44, 51). This indicates that the STG not only plays

a localized functional role but also influences motivational states

through its broader network connections. Our findings further

confirm the importance of the STG in PSA. PSA patients showed

significantly increased ALFF values in the right STG across both the

typical band and the slow-4 band. This increase in ALFF may reflect

compensatory changes in local neural activity to counterbalance

network dysfunction caused by disrupted functional connectivity.

This result aligns with studies of first-episode, drug-naive major

depressive disorder patients, who also exhibited significant increases

in ALFF values in the right STG, suggesting that the STG may play a

similar role in regulating emotion and motivation across different

pathological conditions (52). Additionally, growing evidence suggests

that post-stroke apathy arises not from damage to a single brain region

but from the disconnection of a complex functional network (53). As a

hub for integrating auditory, emotional, and social signals, the STG is

critical for maintaining the functional coherence of these networks.
Frontiers in Psychiatry 07
Disruptions in STG activity and its connectivity patterns are likely to

propagate through the network, leading to widespread impairments in

emotional and motivational regulation.

In addition, beyond the changes in ALFF values in cortical

regions, spontaneous activity in subcortical regions also changed in

PSA patients. Our results showed that right fusiform and right

thalamus exhibited increased ALFF values in PSA patient. A study

indicated that patients with apathetic depression had lower

functional connectivity between the nucleus accumbens and the

thalamus (54). Apathy may be a prominent feature of thalamic

strokes, particularly those involving the territory of the paramedian

arteries, including the dorsomedian and intralaminar thalamic

nuclei (55). The thalamus plays a crucial role in regulating

emotional and behavioral processes due to its extensive

connections, which are critical for emotional and motivational

regulation. Research has shown that thalamic damage can trigger

symptoms of apathy (55, 56). Our study further confirms the

important role of the thalamus in apathy.

Finally, several brain regions, including the right STG, the left

MFG, and the right thalamus, were found to be positively correlated

with apathy score. These results suggest that PSA is closely related

to functional changes in several brain regions, involving multiple

aspects of emotion, motivation, and cognition (57). Alterations in
FIGURE 3

Relationship between ALFF alterations and apathy scores. (A) typical band, (B, C) slow-4, and (D) fALFF. L, left; R, right. MFG, middle frontal gyrus;
STG, superior temporal gyrus.
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right STG, left MFG, and right thalamic function may work

together to cause a decrease in patients’ levels of emotion and

motivation. In the future, ALFF changes in PSA patients at different

stages of recovery could be tracked to understand the relationship

between functional changes in brain regions and the evolution of

apathy symptoms. Additionally, targeting these apathy-related

brain regions with transcranial magnetic stimulation or other

neuromodulation techniques could potentially improve

symptoms. Combining various imaging techniques, such as

electroencephalography, could further elucidate the specific

mechanisms through which these brain regions regulate emotion

and motivation.

There are a couple of limitations to our findings. First, the

relatively small sample size of 54 participants may limit the

reliability and statistical power of our findings. This limitation

underscores the need for future studies with larger cohorts to

validate and extend these results. Second, although our study

focused on abnormal functional changes in specific brain regions

using ALFF and fALFF at the voxel level, it did not explore the

interactions within and between functional brain networks. Future

studies could incorporate additional analytical approaches, such as

functional connectivity analysis, to provide a more comprehensive

understanding of the overall abnormalities in midbrain networks

among PSA patients. This may offer deeper insights into the

underlying pathological mechanisms of PSA. Third, we did not

consider the different symptom dimensions of apathy. Further

analysis is necessary to assess the relationship between different

dimensions of apathy and brain function.
5 Conclusion

In conclusion, this is the first study to investigate the neural

correlates of PSA based on voxel level using different ALFF banding

methods. These findings reveal that PSA patients mainly involve

cortical and subcortical areas including left MFG, right STG, and

right thalamus. This may help to elucidate the neural mechanisms

of PSA and may be a potential neuroimaging indicator for early

diagnosis and intervention in PSA.
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