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vector machine models
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Yanming Wang3 and Peter Shaw1*

1Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou
Medical University, Wenzhou, Zhejiang, China, 2School of Biomedical Engineering, School of
Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou,
Zhejiang, China, 3Center for Biomedical Imaging, University of Science and Technology of China,
Hefei, Anhui, China
Introduction: Parkinson’s disease (PD) heterogeneity poses challenges to the

current development of discovering the best therapeutic targets.

Methods: Here, we employ K-means and hierarchical clustering algorithms on

data from the Parkinson’s Progression Markers Initiative (PPMI) to identify

network-specific patterns that describe PD subtypes using the optimal number

of brain features. The features were specifically the gray matter volume and

dopaminergic features of the neostriatum, i.e., the caudate, putamen, and

anterior putamen. We use machine learning (ML) algorithms, including Random

Forest, Logistic Regression, and Support Vector Machine, to evaluate the

diagnostic power of the brain features and network patterns in differentiating

the PD subtypes and distinguishing PD from HC. Finally, we assessed whether PD

subtypes described through network-specific patterns are dependent on the

APOE genotype.

Results: Using data from 2396 subjects, we show that PD (n=2037) is highly

associated with APOE e2/e4. Our findings reveal a significant DAT deficit in the

left and right structures of the caudate, putamen, and anterior putamen in

subjects with PD compared to subjects with SWEDD(n=137) or HC(n=222), and

that APOE e2/e4may accelerate DAT deficits and brain alterations in both PD and

SWEDD. Furthermore, clinical symptoms of PD in subjects (SWEDD), which

hardly validated by DAT scan data, can be explained by variations in APOE

genotypes and other brain features beyond DAT. We show the existence of

three networks states for the whole data, with the first network state describing

the subjects in HC, while the remaining two network states describing the two PD

subtypes—one network state typified by a mildly sparsely connected network

(patterns) and the other network state characterized by a more intensified

sparsity in their network. We also show that the two subtypes of PD are

characterized by distinctly different levels of total gray matter volume and DAT

deficit. MLmodels show that features extracted from brain structure and network

patterns can serve as reliable biomarkers for PD and its subtypes, with the highest

performance (100% AUC, 99.3% accuracy, 0.993 F1) demonstrated by the fine-

tuned SVM model.
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Conclusion: Our findings suggest that, while PD is generally associated with a

larger DAT deficit in specific brain structures of the neostriatum, it exhibits

intrinsic heterogeneity across individuals, which may stem from genetic

factors. Such heterogeneity can be characterized by ML models and optimally

mapped into network states, providing new insights to consider when developing

personalized drugs.
KEYWORDS
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1 Introduction

Parkinson’s Disease (PD) affects about 1% of people over 60

years old and 4 to 5% of those over 85 years old (1), with an

incidence of 10 to 20 new cases per 100,000 annually (2).

Economically, PD incurs billions in direct medical costs and

significant indirect costs from lost productivity and caregiving (2).

By 2030, PD prevalence could double to 14 million, with healthcare

costs potentially exceeding tens of billions globally, stressing the

need for effective treatments (2, 3). The economic impact includes

substantial indirect costs, affecting GDP and societal well-being,

highlighting the importance of innovative healthcare

interventions (3).

Efforts have been made to understand the mechanisms of

Parkinson’s disease (PD) and the possibilities of identifying the

best therapeutic target. However, these efforts face challenges for

several reasons. First, PD, as a neurodegenerative disorder, has a

wide range of clinical manifestations and purported underlying

causes, making it difficult to identify common mechanisms and

develop therapies that are effective for all patients. Second, studies

have demonstrated that PD is not caused by a single factor but

rather a combination of several factors, including genetic,

environmental, aging, and lifestyle factors (4). This makes it

challenging to pinpoint the specific pathways involved in disease

evolution. Third, PD worsens over time, with different trajectories—

some patients exhibit fast progression, while others display slow

progression—adding complexity to the overall understanding of the

disease and target areas for developing drugs. Therefore, this study

aims to provide insights into optimal states (PD subtypes) at which

patients with PD exist, which would guide individuals

developing drugs.

Here, we employ three approaches: First, we use clustering

approaches—both K-means and hierarchical clustering algorithms

—to identify the key states at which PDmanifests using the optimal

number of brain features. Second, we build structural networks of

these states (PD subtypes) to observe how the brain structures

appear in the network space and use this information to describe the

PD subtypes. Third, we use Machine Learning (ML) algorithms to

identify the diagnostic powers of brain structures and other features

derived from this structural information in differentiating PD from
02
HC and in differentiating patterns associated with different PD

subtypes. In addition, we conducted an intensive exploration to

identify which APOE genotypes are highly associated with PD and

its subtypes, considering that a significant body of research has

shown an association between PD and APOE genotypes (5) but not

at the PD subtype scale.

Presently, significant progress in understanding PD

mechanisms has been made through genetic studies, revealing key

mutations such as SNCA and LRRK2, and large-scale genome-wide

association studies identi fying multiple risk loci (6).

Pathophysiological insights have highlighted the roles of alpha-

synuclein aggregation, mitochondrial dysfunction, oxidative stress,

and neuroinflammation in PD progression (7–9). Some ideas point

out that cellular pathways involving autophagy-lysosome

dysfunction and endoplasmic reticulum stress may be involved in

PD development (10). Neuroanatomical studies emphasize

nigrostriatal degeneration and non-motor symptoms, such as

cognitive decline, as central to PD pathology (11). However,

despite these advances, it is still not clear what triggers the alpha-

synuclein misfolding, or what are the detailed mechanisms linking

mitochondrial dysfunction to selective neuronal vulnerability, and/

or what factors accelerate the variability in disease progression

among patients. Nevertheless, we hypothesize that Machine

learning techniques may offer insights at least to the dimensions

of PD manifestations and provide intuitions of possible optimal PD

subtypes, which could aid in targeted drug discovery and treatment

based on individual disease profile.
2 Method

2.1 Data source

The datasets utilized for this study were retrieved from the

Image and Data Archive (IDA) database under Parkinson’s

Progression Markers Initiative (PPMI, https://ida.loni.usc.edu/

login.jsp?project=PPMI, retrieved on Sept.3.2023). They include

the data collected directly from the clinics, remote platforms, and

online sources. Subjects had a complete set of clinical trials, MRI

scanning, demographics, and genetic markers recording. Part of the
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subjects were Healthy Control (HC), while others had Scans

Without Dopaminergic Deficit (SWEDD), and others had

moderate Parkinson’s Disease (PD).
2.2 Demographics

All participants in the PPMI study belong to four cohorts: PD,

HC, SWEDD, and Prodromal Cohort. The number of patients in

each cohort was counted and segmented accordingly. A subset of

the patient’s personal, genetic, treatment information, and brain

data was extracted and merged according to patient number and

return visit time. Since some patients have missing data, rows with

missing and duplicate values need to be removed during the

merging process. Finally, data from all cohorts were combined

into a comprehensive dataset. PD subjects were 30 years of age and

above, untreated with PD medications (levodopa, dopamine

agonists, MAO-B inhibitors, or amantadine), and within 2 years

of diagnosis. Criteria from Clinical features: They must have Hoehn

and Yahr < 3 (only affected in walking or fine motor skills), resting

tremor (shaking while at rest), bradykinesia (slowness of

movements and difficulty in initiating movements), rigidity

(increased resistance, regardless of speed, to passive movements

throughout the range of the joint), or a single asymmetric resting

tremor or asymmetric bradykinesia. In addition to the clinical

features of the disease, PD subjects who had dopamine

transporter (DAT) or vesicular monoamine transporter 2

(VMAT-2) demonstrating dopaminergic deficit (uptake/binding

reduction, reflecting loss or dysfunction of dopaminergic

neurons) consistent with PD, were enrolled as PD cohort. And

the subjects who were clinically considered as potential PD but had

DAT or VMAT-2 scans without evidence of dopaminergic deficit

(SWEDD) were enrolled as SWEDD cohort. Subjects considered

HC were those aged 30 years and older, without an active, clinically

significant neurological disorder or a first-degree relative with PD.
2.3 MRI imaging

MRI imaging for data was performed using a standard protocol

electronically shared across all ten sites. The MRI machines used

were either Trio™ or Verio™ systems from Siemens Healthcare

Systems. The imaging protocol includes sequences for anatomical

and diffusion data. Imaging anatomical details was performed

through T1-weighted image via a 3D magnetization prepared

rapid gradient echo (MPRAGE) sequence, with the following

configurations: TR/TR/TI = 2300/3/900ms; 1 mm isotropic

resolution; twofold acceleration; sagittal-oblique angulation.

Imaging for diffusion was performed using a cardiac-gated 2D

single-shot echo-planar DTI sequence, with the following

configurations: TE = 88ms, 2 mm isotropic resolution; 72

contiguous slices each 2mm thick, twofold acceleration, axial-

oblique aligned along the anterior-posterior commissure;

diffusion-weighting gradients along 64 sensitization directions; a

b-value of 1000s/mm2; TR in order of 8,400-8,800ms, depending on

the subject’s heart rate. After data acquisition, each site transferred
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the data to the PPMI Imaging Core Lab for checking parameter

consistency across data and for processing.
2.4 Dopamine transporter and vesicular
monoamine transporter 2 imaging
and quantification

All PD subjects underwent dopamine transporter (DAT)

imaging or vesicular monoamine transporter 2 (VMAT-2)

imaging to identify if the clinical features of PD align with

dopaminergic features of the brain. The imaging for DAT (i.e.,

presynaptic protein highly concentrated in the striatum

dopaminergic neurons) was performed with the assistance of 123I

Ioflupane (also called FP-CIT), which binds to the dopamine

transporter once administered and allows for visualization of

dopaminergic neuron terminals through single-photon emission

computed tomography (SPECT) imaging. On the other hand,

imaging for VMAT-2, a protein responsible for packaging

neurotransmitters like dopamine, serotonin, and norepinephrine

into vesicles within presynaptic neurons, was performed only for

PD subjects from Australia with the assistance of 18F AV133. The

18F AV13 (a radiolabeled designed ligand) binds to VMAT2 and is

synthesized using fluorine-18, a positron-emitting isotope that

allows for imaging via positron-emission tomography (PET) for

the visualization of changes in dopaminergic function (Please refer

to Supplementary Materials for the details procedures and

descriptions for DAT and VMAT-2 Imaging). On the standard

space, with the assistance of a standard striatal template, all images

were interpreted as positive or negative for DAT or VMAT-2 deficit

based on the intensity and symmetry of radiotracer uptake in the

left and right putamen. This process was performed visually by two

experienced radiologists specializing in PD. The deficit in DAT or

VMAT-2 was recorded and reflected on the product label. Of

importance is that, in addition to clinical features of PD, subjects

with DAT or VMAT-2 demonstrating dopaminergic deficit were

enrolled as the PD cohort. Those clinically considered potential PD

but had DAT or VMAT-2 scans without evidence of dopaminergic

deficit (SWEDD) were enrolled as the SWEDD cohort. Quantitative

data from DAT and VMAT-2 images were obtained from four

regions: the caudate (left and right), the posterior putamen (left and

right), the anterior putamen (left and right), and the occipital cortex

(the reference tissue). Note that the posterior putamen is also

referred to as putamen in other sections of this study. The DAT

or VMAT-2 count densities extracted from each region were used to

calculate the SBr for the striatal regions using the following formula:

SBr = (target region/reference) - 1, where the DAT count densities

of the occipital cortex were used as the reference.
2.5 Data preprocessing

Data files were of 462 GB (total size). We used four NVIDIA

Geforce RTX 3090 GPU memories each with 24 GB (RAM) to

leverage their memories and high-performance computing

capability (with Cuda v12). The data were organized in our
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server, offering 16T (storage space). We created an environment for

R v.4.3.1 for the purpose of data organization and statistical

analyses. The virtual environment with Python 3.10 was also built

for subsequent data processing, including clustering, network

construction, and machine learning model fitting.
2.6 Statistical analyses (ANOVA and
Chi-square)

First, we computed the percentage of sample size for each group

in the cohort. Thereafter, we conducted Chi-Square (c2) and

ANOVA tests to determine specific features (including particular

genes) associated with healthy status. The computations of the tests

were based on presumptions that specific genes might be involved

in the neurobiology or pathogenesis of Parkinson’s disease, with the

further hypothesis that some genes might accelerate the onset of this

disorder more than others. The significance level was set to P < 0.05,

implying that the null hypothesis (H0) was rejected when P < 0.05,

suggesting that there is enough evidence to accept the alternative

hypothesis (H1), which supports the existence of a strong

relationship or association between the variables being evaluated.

Of note is that c2 is a non-parametric test, examining the

differences between observed and expected values to determine

potential associations between categorical variables (here we

included variables such as sex and APOE genotype). We

specifically used c2 test algorithm implemented in the chisq.test

() function in R and further applied Fisher’s exact test to enhance

the validity of the results where the chi-square approximation might

have been inaccurate. With regard to ANOVA, we specifically used

it to determine whether the means of multiple independent groups

(i.e., PD, SWEDD, and HC) were different. This was done by

leveraging the analysis of variances between groups and within

groups. Considering that factors such as age might affect the results,

we introduced ANCOVA, typically implemented in R as ANOVA

Type III, to account for the effect of age when assessing the

differences across groups and their possible interactions.
2.7 Clustering and machine learning

2.7.1 Dimensionality reduction
From observation, we noticed that some features from brain

structures were highly correlated, which might affect the K-means

clustering algorithm. Thus for simplicity and for highlighting the

features that are highly distinct, we recruited the dimensionality

reduction strategy. Here we used Principal Component Analysis

(PCA) to identify the highly distinct dimensions of the features that

would aid the K-means algorithm to perform fairly better.

Components were generated and each set of components was

later tested in the K-means algorithm to see how many clusters

would be generated (groups of similar patterns). In fact, we

capitalized on the PCA class and its method (fit_transform) given

by sklearn.decomposition module to generate the PCA components

of our interest. Given that PCA decomposition works well on the

standardized data, we accordingly standardized our data (using z-
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score, i.e., subtracting the sample mean from each feature point and

scaling to unit s) prior to PCA decomposition using the method

called fit_transform implemented in StandardScaler class in the

sklearn.preprocessing module. We then run the PCA algorithm

four times to obtain four sets of PCA components(z1 = 2, z2 = 3, z3
= 4, and z4 = 5) that would be later tested to find out which set of

PCA components would yield better clustering of the data in K-

means clustering.

2.7.2 K-means clustering
Here, the goal was to identify subjects within the PD and

SWEDD groups that exhibit similar patterns and compare them

with others that exhibit different patterns despite all being in the PD

or SWEDD groups. The identification of subjects that display

similar patterns against others that display different patterns

could aid in the discovery of the different manifestations of

Parkinson’s disease or reveal other dimensions of Parkinson’s

disease subtypes based on these patterns originating from brain

structures. To this end, we employed the K-means clustering

method, which has been widely used in earlier studies.

Specifically, we first grouped all subjects (whole sample, i.e., HC

+PD+SWEDD) and subject their structural information of the

brain into the K-means algorithm. These techniques not only

help avoid biases in the data but also enable us to understand the

individual variations of the features and severity of the brain

changes. It is possible that despite the majority of people being

healthy or unnoticed with illness, they are likely to undergo changes

that may be similar to those seen within PD or SWEDD. In a similar

fashion, in some of those with PD, or SWEDD, there may be

structures that remain intact despite disease (at least sharing similar

patterns with those who are healthy). The K-means clustering

algorithm is the best candidate for answering these questions and

understanding such phenomena. We thus harnessed the K-means

capability implemented in sklearn.cluster module. We performed

K-means on the sets of PCA components described in section 2.3.2.

We first initialized the centroid seeds and ran the K-means

algorithm. For each run, the K-means algorithm performed 500

iterations to reach its final decision. We also allowed the K-means to

run 5000 times with different centroid seeds to ensure the

reproducibility of the results, while the random state was

constant. This process was repeated for each set of PCA

components drawn from the primary features. In the process of

assigning each point to a particular cluster, the Euclidean distance

was computed and points with min Euclidean distance from each

other were considered to belong to the same cluster. Three criteria

were used for the evaluation of an optimal number of clusters, i.e.,

Silhouette, Calinski-Harabasz, and Davies-Bouldin-based criteria.

Each method employed in these criteria contributed to the average

optimal number, which was set to be the final optimal cluster

number for each set of the PCA components subjected to the K-

means algorithm.

2.7.3 Hierarchical clustering
We also explored the capability of a hierarchical clustering

model for data clustering in our study. We gained two benefits from

this model. First, under this model, we did not need to initialize the
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centroids before conducting the clustering, which is typical in the K-

means algorithm. Second, we learn a separate learning process of

the features using a recursive process, which is likely to end up in

learning different aspects of information that are unlikely to be

captured by the K-means algorithm.

Similar to the K-means algorithm, we trained two separate sets

of features into the hierarchical clustering algorithm. The first set of

features contained the structural information of the six brain

features, and the second set of features contained the structural

information of the four brain structures, leaving away the

information of the brain structures that seemed to be less distinct

from other brain structures (highly correlated). Since our goal is to

determine and cluster the observations that are highly associated,

we thus transposed our initial matrices of data (N×M) for both sets

of data (i.e., 4-dimension and 6-dimension structural features) to

obtain M×N data, where N is the number of observations (subject

number in this case), and M is the number of features. Next, we

performed the Pearson correlation algorithm to obtain the

correlation coefficients (in N×N matrices), signifying the extent of

similarity in features across the subjects.

We next leveraged the agglomerative clustering approach to our

new N×N matrices for data clustering. We first computed the

proximity (similarity) matrix using Euclidean distance, after

initializing each data point as a cluster. We then used the “ward”

linkage strategy to merge the clusters based on the metric of

similarity between the clusters. This was followed by updating the

similarity matrix after each time the two clusters merged. We

repeated the process until a single cluster remained.

The complete algorithm for Ward’s variance minimization

strategy is given by

d(u, v) =  

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uj j + sj j
T

d(v, s)2 +
vj j + tj j
T

  d(v, t)2 −
vj j
T

d(s, t)2
r

Where ‘u’ is the new cluster consisting of ‘s’ and ‘t’, and ‘v’ is the

unused cluster in the forest. ‘t’ is equal to the sum of the number of

elements in clusters ‘v’, ‘s’, and ‘t’.

Each iterative update combines clusters ‘s’ and ‘t’ from n

samples that are similar to each other, removes them from the

cluster group, and uses a new cluster ‘u’ instead. The decision to

determine the number of clusters was based on the cut-off

(threshold) we set for the Euclidean distance, which determined

how many clusters were formed under such a threshold. For that

case, we set two thresholds for our data, each threshold for a

separate clustered-N×N-correlation matrix depending on the

nature of an original number of brain structures used to construct

the matrix. The full process of hierarchical clustering is automated

by the linkage function offered by the hierarchy module

(scipy.cluster.hierarchy class) in the scipy package in Python. The

function returns a (N-1) × 4 matrix that contains information on

the clustering tree. The information regarding the first and the

second clusters that are merged are encoded in the first two

columns, the Euclidean distance for merging the two clusters is

encoded in the third column, while the fourth column encodes the

number of elements present in this newly formed cluster.
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2.7.4 Machine learning models
We used three ML models (SVM, Logistic Regression, and

Random Forests) to investigate the diagnostic powers of the brain

features for distinguishing the SWEDD and PD from HC controls,

and for distinguishing different sets of clusters associated with

SWEDD, PD, or PD subtypes from those associated with HC. For

the first goal, we organized the data in such a way the features from

brain structures can be used to distinguish PD and SWEDD from

the controls. Herein we initially utilized the Logistic Regression

Model provided by the linear model module of sklearn package. We

split the data, 80% for training and 20% for testing. We trained the

Logistic Regression with the default parameters and later tested it;

the model performance was evaluated based on the estimates of

AUC and Accuracy. We repeated these steps for SVM and Random

Forest models. The Random Forest model was initialized with 100

decision trees while the SVM model was initialized with linear

kernels for hyperplane estimation.

During the learning process of the models, we identified the

features that have higher predicting power for differentiating

targeted classes using the feature importance identification

function. For the second goal, i.e., differentiating the sets of

clusters (networks) associated with SWEDD, PD, and PD

subtypes from those associated with HC, we trained the models

in such a way that features from the brain structures targeted

predicting the clusters obtained initially from K-means algorithm.

How accurately the models could learn the brain feature to predict

the same patterns of the clusters was tested by the AUC and

accuracy of the models. There are two advantages to doing this

type of learning: first, this learning process enables us to assess how

close the clustering algorithm is to other ML models. Second, the

approach enables us to reveal the diagnostic power of brain

structures into understanding different patterns of the networks

associated with the majority of individuals with SWEDD, PD, and

potential PD subtypes, which may be hardly identified in

other approaches.
3 Results

3.1 Datasets and demographics

The PPMI dataset consisted of data from 4577 participants,

obtained from 50 different sites. The key data in the cohort included

prodromal (from 2,612 participants), PD (from 1,547 participants),

HC (from 328 participants), SWEDD (from 81 participants), and

AV133 (from 9 participants, with newly developed F-AV133

biomarker of PD) data. The Prodromal cohort was made of data

of individuals who were at risk of developing Parkinson’s disease

based on clinical features, genetic variants, or other biomarkers

(e.g., proteome). Please refer to Supplementary Table S7 for more

information regarding the prodromal cohort. Subjects in the PD

cohort either had early-stage, untreated sporadic Parkinson’s

disease or Parkinson’s disease caused by a genetic variant. The

HC cohort comprised subjects who did not have any neurological
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disorders and had no first-degree relatives with Parkinson’s disease.

Meanwhile, the SWEDD cohort involved the subjects who were

clinically diagnosed with Parkinson’s disease but with normal

results on visual inspection of DAT SPECT scans. Of all

participants, 2184(47.72%) were female, 2391(52.24%) were male,

while 2 individuals were with undeclared gender. After critical data

screening and processing (see Figure 1A), only a subset of this large

cohort was used for the subsequent analyses. The demographics of

the screened data are reported in Table 1 (Also, see Supplementary

Table S8 for an additional summary (in means and SD) of the

demographics). Only three groups (i.e., PD, HC, and SWEDD) were

eventually left for further analyses.
3.2 Genotypes and Parkinson’s disease

The results of the association between APOE genotype and

Parkinson’s disease are summarized in Table 1. Our analyses show

that there is significant association between APOE genotype and

healthy status (c2 = 44.818, DF =10, p < 2.345×10-06). The c2 post-

hoc analyses show that there is an almost equal distribution of APOE

genotypes across HC, SWEDD, and PD for e2/e2, e2/e3, e3/e4, and e4/
e4APOE genotypes (p > 0.05) (see Supplementary Table S3). However,
Frontiers in Psychiatry 06
there is significant evidence to suggest an association between

Parkinson’s disease and the APOE genotype, such that PD is highly

associated with APOE e2/e4 (p < 0.0004), and e3/e3 (p < 0.0011).
3.3 ANCOVA analyses and
group differences

Table 1 also offers a summary of the measurements of DAT SBr

for different brain regions across the groups (unadjusted marginal

means). Our early evidence from the analysis (prior to ANCOVA)

indicate that PD had relatively the lowest DAT SBr (Example: left

caudate; m =1.7; range: 1.32-2.09), followed by SWEDD (m =2.7;

range: 2.3-3.21), while HC had relatively the largest DAT SBr

compared to other groups (m =2.9; range: 2.52-3.35). This pattern

is observed for both left and right hemispherical regions of caudate

and putamen (see Table 1 for further details). Confirming these

preliminary observations, ANCOVA analyses (adjusted for age and

APOE genotype) indicated that the DAT SBr in these regions were

significantly different across the three groups (p < 0.001), with

subjects with Parkinson’s disease demonstrating highly reduced

DAT SBr in the regions (see Supplementary Table S1). Figure 2

elucidates these findings across different levels of APOE genotypes,
FIGURE 1

Experimental flow chart and clustering criteria. (A) Flow chart of the experimental design. We first screened the PPMI dataset from the IDA database
and split the data into different cohort categories. We next obtained records of volume measurements of the brain for each subject, which were
primarily obtained from MRI scans. We further collected their corresponding demographic characteristics and blood test results including DNA
extracted sequences. Next, we performed chi-square and ANOVA analyses for relationship assessment among the key factors (variables).
Furthermore, the clustering analyses (both K-means and Hierarchical) were performed for the identification of patterns associated with disease
against those associated with healthy status. Lastly, we conducted further experiments to determine the diagnostic powers of these features for
Parkinson's disease and subtypes using machine learning models. (B) The computed optimal number of clusters is based on a different set of PCAs
(Principal Component Analysis). Calinski Harabasz's method determined the optimal number of clusters on different sets of PCA numbers, reflecting
different dimensions of features. We obtained these sets of PCA by subjecting the raw six-dimension features from the brain to the PCA analyses.
The reduced features (PCAs) after PCA analyses were next utilized for clustering analyses. The plot (B) was a cluster number versus Calinski Harabasz
score, where for each set of clustering, the highest Calinski Harabasz score was regarded as the optimal number of clusters per Calinski
Harabasz criteria.
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TABLE 1 Descriptive statistics and tests for medical variables in PPMI data.

PD HC SWEDD

N=2037 N=222 N=137

Factors No. (%) No. (%) No. (%) p-Value

SEX

Female 759 (37.3%) 71 (32.0%) 55 (40.1%) 0.219

Male 1278 (62.7%) 151 (68.0%) 82 (59.9%)

HANDED

Right 1761 (86.5%) 179 (80.6%) 115 (83.9%) 0.034

Left 217 (10.6%) 28 (12.6%) 16 (11.7%)

Mixed 59 (2.9%) 15 (6.8%) 6 (4.4%)

RAWHITE

No 84 (4.1%) 12 (5.4%) 5 (3.6%) 0.628

Yes 1953 (95.9%) 210 (94.6%) 132 (96.4%)

APOE

E2/E2 18 (0.9%) 4 (1.8%) 4 (2.9%) <0.001

E2/E3 257 (12.6%) 21 (9.5%) 18 (13.1%)

E2/E4 33 (1.6%) 9 (4.1%) 10 (7.3%)

E3/E3 1287 (63.2%) 139 (62.6%) 63 (46.0%)

E3/E4 408 (20.0%) 42 (18.9%) 37 (27.0%)

E4/E4 34 (1.7%) 7 (3.1%) 5 (3.7%)

LRRK2_POS

Normal 117 (5.8%) 11 (5.0%) 2 (1.5%) 0.184

Variant 1918 (94.2%) 211 (95.0%) 135 (98.5%)

ONLINE_ENROLL

No 1838 (90.2%) 191 (86.0%) 131 (95.6%) 0.012

Yes 199 (9.8%) 31 (14.0%) 6 (4.4%)

Median (IQR)

AGE_AT_VISIT 63.9 (56.6-70.5) 61.45 (54.6-68.675) 63.5 (52.6-68.3) <0.001

CAUDATE_L 1.7 (1.32-2.09) 2.915 (2.52-3.35) 2.7 (2.3-3.21) <0.001

CAUDATE_R 1.67 (1.3-2.1) 2.825 (2.51-3.278) 2.77 (2.36-3.09) <0.001

PUTAMEN_L 0.62 (0.48-0.83) 2.05 (1.765-2.48) 1.94 (1.57-2.37) <0.001

PUTAMEN_R 0.63 (0.48-0.84) 2.08 (1.723-2.52) 1.96 (1.63-2.31) <0.001

PUTAMEN_L_ANT 1.05 (0.81-1.34) 2.49 (2.19-2.928) 2.31 (1.99-2.76) <0.001

PUTAMEN_R_ANT 1.06 (0.83-1.37) 2.52 (2.15-2.978) 2.4 (2.02-2.85) <0.001

RNASEQ_VIS 4 (3-5) 5 (4-5) 4 (3-4) 0.142

EDUCYRS 16 (14-18) 16 (14-18) 15 (12-17) 0.526
F
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PD, Parkinson disease; HC, healthy control; SWEDD, scan without dopaminergic deficit; HANDED, handedness; RAWHITE, the white race; APOE, apolipoprotein E; LRRK2_POS, leucine-rich
repeat kinase 2; CAUDATE_L, striatal binding ratio of the left caudate small brain region of interest; CAUDATE_R, striatal binding ratio of the right caudate small brain region of interest;
PUTAMEN_L, striatal binding ratio of the left putamen small brain region of interest; PUTAMEN_R, striatal binding ratio of the right putamen small brain region of interest;
PUTAMEN_L_ANT, striatal binding ratio of the left anterior putamen small brain region of interest; PUTAMEN_R_ANT, striatal binding ratio of the right anterior putamen small brain
region of interest; RNASEQ_VIS, count of RNA-sequencing visits with data; EDUCYRS, number of years of education. The upper part includes categorical variables and the others are
continuous variables.
The bold values in Table 1 represent the P-values that are statistically significant at P < 0.05.
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showing that subjects with PD exhibit significantly reduced DAT

SBr compared to healthy controls, who demonstrate higher DAT

SBr across all six levels of the APOE genotype (see Supplementary

Figure S1 for more details). We also observed that subjects with PD

demonstrated a significant DAT deficit compared to subjects with
Frontiers in Psychiatry 08
SWEDD at all levels of the APOE genotype, except for those who

were e2/e4 carriers. The findings also show that subjects with

SWEDD exhibit a significant DAT SBr reduction compared to

healthy controls, especially for subjects with the e3/e4
APOE genotype.
FIGURE 2

Changes in dopamine transporter striatal binding ratio ((DAT SBr) across different groups stratified by APOE genotype. The red, green, and blue bar
plots represent the PD, HC, and SWEDD groups, respectively, across six APOEs. The three groups—PD, HC, and SWEDD—were compared for DAT
SBr deficit levels across the six APOEs using estimated marginal means adjusted for APOE genotype levels. For each pair of the groups compared for
each APOE genotype, the p-values adjusted for multiple comparisons (Bonferroni correction) are reported. A p-value set at p < 0.05 is considered
significant. (A) Comparisons of DAT SBr across groups for different APOE genotypes in the left hemispheric caudate nucleus. (B) Shows the DAT SBR
in the right hemispheric caudate nucleus. The DAT SBr levels for the left putamen and the left anterior putamen are also reported in (C, D),
respectively. Generally, these findings demonstrate that subjects with PD exhibit a significant reduction in DAT SBr compared to healthy controls
(HC) across all six levels of the APOE genotype. Subjects with SWEDD also exhibited a significant DAT SBr reduction compared to healthy controls,
especially for those with the e3/e4 APOE genotype. The DAT deficit level was higher in subjects with PD compared to those with SWEDD at all levels
of the APOE genotype, except for e2/e4 carriers.
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3.4 Clustering analyses

Clustering using the K-means algorithm, followed by

adjustments based on criteria from the elbow method, Silhouette

Coefficient, Calinski-Harabasz index, and Davies-Bouldin index,

resulted in three distinct clusters, suggesting that brain features in

cohort can be viewed as a set of three distinct patterns of features.

The number of clusters generated by K-means was independent of
Frontiers in Psychiatry 09
number of PCA components fed into the algorithm as long as the

PCA components were generated from 6 regions of the brain.

However, when feeding the algorithm with PCA components

generated from four features of the brain, the resulting optimal

number of clusters varies depending on the number of PCA

components. Two PCA components result in four optimal

clusters, while three PCA components result in three optimal

clusters (See Figure 1B). Figure 3 provides a visualization of the
FIGURE 3

K-means and Hierarchical clustering results. (A, B) K-means results in (A) 2-dimension and (B) 3-dimension representations. The K-means analyses
depict 3 as an optimal number of clusters, obtained by averaging the optimal numbers of the three clustering criteria [Silhouette (k=2), Calinski
Harabasz (k=4), and Davies Bouldin (k=2)]. (C, D) The hierarchical analysis results. The analyses also depict 3 as the optimal number of clusters at the
threshold of 175 to 200(h=175 for four features analyses; and h=200 for six features analyses) as illustrated in both (C) matrix and (D) dendrogram
representations. Note the left panel and the right panel present the results conducted with four features and six features, respectively.
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three consistently generated clusters after feeding the algorithm

with PCA components derived from brain features. On the other

hand, applying hierarchical clustering to our data, we obtained

three optimal clusters at thresholds of 175 and 200 (see Figure 3D).

The threshold of 175 was for clusters derived from four brain

features, while the threshold of 200 was for clusters derived from six

brain features. Of 2396 participants (PD=2037, HC=222,

SWEDD=137), the first two clusters accounted for 47% and 39%

of the entire dataset, while the third cluster accounted for 14% of the

entire dataset.
3.5 PCA components and brain features

We performed correlation analysis to identify which patient’s

features correlate most strongly with PCI. In the analysis involving

six features (see Supplementary Table S4), we learn that the PC1 is

most highly correlated with putamen-anterior features, while in the

analyses involving 4 brain features, PC1 is fairly correlated with

features from both caudate nucleus and putamen (all with r > 0.92),

see Supplementary Table S4), although the degree of correlation

strength differs across clusters. Supporting this observation are the

results from the analysis of feature contribution to each principal

component. Wherein, we observed that features from both the

caudate nucleus and putamen in both hemispheres contribute

almost equally to PC1 and PC2. The only difference is that PC1

has a positive relationship with these brain features, while PC2 is

formed with both positive and negative combinations of the features

(see Supplementary Table S5 for feature contribution).
3.6 Correlation analyses and patterns
of networks

Following identifying the optimal number of clusters using K-

mean algorithm, we performed a Pearson correlation on the data for

participants within the same clusters to observe the patterns of

features that each cluster would disclose. The heatmap

representation shows that cluster 1 is characterized by brain

features that exhibit highly dense and strong connectivity in the

network (Figure 4A, top panel, left). The highly dense and strong

connectivity in the global network of features in cluster 1

(constituting data from HC+SWEDD+PD), as depicted by

correlation coefficients, appears to be significantly contributed by

HC (187 of 222 (84.23%) HCs contribute to this cluster). This can be

clearly observed through HC’s network (Figure 4A, top panel,

middle) obtained by using data from only HC participants that

belong to cluster 1. The heat map representation (Figure 4A, top

panel, right) shows that subjects in the SWEDD group that belong

to cluster 1 are characterized by strong connectivity within the

structural sub-regions, with a particularly significant reduction in

putamen and caudate structural connectivity compared to HCs in

the same cluster. While both clusters—cluster 2 and cluster 3— are

dominated by data from Parkinson’s disease (1126 out of 2037

(55.28%) for cluster 2 and 867 out of 2037 (42.56%) for cluster 3),

heat map representations reveal distinct structural network patterns
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in the global network for each cluster. Subjects with PD in cluster 2

exhibited a sparse network, suggesting a moderate loss of structural

integrity (Figure 4A, middle panel, left, also see Supplementary

Table S6 for sparsity), while subjects with PD in cluster 3

demonstrated an even more intensive sparsity than those in

cluster 2 (Figure 4A, middle panel, middle), likely reflecting a

more advanced loss of structural integrity due to the advanced

level of PD neuropathology. We also observed that these PD

subtypes, described by the two network states of distinctive

patterns, were independent of APOE genotype (c2 tests, P > 0.05).

Using information from hierarchical clustering, we observed

that subjects in HC classified into cluster 3 were characterized by

intensified connectivity among brain structures and age at visit

(Figure 4A, bottom panel, right). Subjects with SWEDD (Figure 4A,

middle panel, right), on the other hand, demonstrated the same

level of strong connectivity across brain structures but with a slight

decrease in connectivity with age at visit compared toHC subjects of

the same cluster. Subjects with PD were highly distributed within

cluster 1 and cluster 2, as determined by hierarchical clustering (The

order of clusters should not cause confusion; the focus should be on

the patterns of features demonstrated by each group within and

across clusters). Subjects with PD in cluster 1 were characterized by

slightly lower connectivity strength in brain structures and between

brain structures and age at visit compared to subjects in either

SWEDD or HC (see Figure 4A, bottom panel, left). PD subjects in

cluster 2, however, displayed a network typified by a more reduced

connectivity with age, although the structural connectivity across

the brain regions remained relatively intact (see Figure 4A, bottom

panel, middle).
3.7 DAT and total grey matter levels in PD
subtypes/clusters

Further characterization of the two clusters of PD, cluster 2 and

cluster 3, reveals that the PD subjects in cluster 3, characterized by a

highly sparse brain DAT network, had lower DAT levels (severe

DAT deficit, as quantified by DAT SBr) compared to PD subjects in

cluster 2 in almost all six striatal regions assessed across APOE

genotypes (see Supplementary Figure S2). Similarly, the PD subjects

in cluster 3, particularly those with e3/e3, e3/e4, e4/e4 genotypes,

appeared to have significantly lower total grey matter volume

compared to PD subjects in cluster 2 (see Supplementary Figure

S3). The results support the potential role of the two identified

clusters as representations of moderate and more advanced levels of

PD neuropathology.
3.8 Machine learning and
diagnostic performance

To determine whether the features extracted from brain

structures or those derived from them could serve as reliable

biomarkers of early, intermediate, and late stages of PD, we

employed machine learning models (SVM, Logistic Regression, and

Random Forest) and evaluated the diagnostic performance of each
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model. Our results showed that 6 features of the brain structures can

serve as important predictors of PD subtypes (Figure 4B), with

rankings of 21.4%, 18.1%, 15.8%, 13.5%, 12.3%, and 8.4%, for

CAUDATE_R, CAUDATE_L, PUTAMEN_L-ANT, PUTAMEN_R-

ANT, PUTAMEN_R, and PUTAMEN_L, respectively.

Upon comparison, we observed that of the threeMLmodels, the

SVM had the highest predictive performance with an AUC of 0.97,

which is only 0.01 lesser than if all features (excluding source) were

included in the prediction (Figures 4B, C). The mean accuracy and F1

scores of this model were as high as 93.3% and 91.45%, respectively.

On the other hand, when predicting the different states (clusters

generated by K-means algorithm) at which the PD exists, it was

found that SVM outperformed the others by a small margin

(including, Random Forest and Logistic Regression, see

Supplementary Table S2, also see Figures 4B, C). The SVM fine-

tuned with a linear kernel showed an AUC of 0.99996, with an
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accuracy of 99.38% and an F1 score of 0.9937. Compared to the

Linear Kernel-SVM, the SVM fine-tuned with the RBF kernel

showed slightly lower performance, with an AUC of 0.9875 and

an F1 score of 0.9875. Predicting the states derived from the

hierarchical clustering algorithm, we observed that we could

achieve a maximum performance of 0.9949 AUC and an F1 score

of 0.9687 using an SVM fine-tuned with a linear kernel. Notably, the

bestML prediction of the states occurred on clusters that underwent

redundant feature control (i.e., 4 feature-derived clusters rather

than 6 feature-derived clusters).

Of note is that employing one-vs-rest strategy in our learning

models to validate how well each model trained on features of the

specific cluster can learn to distinguish specific cluster from all

others. Our results (also see Supplementary Table S2) show that the

models trained on this strategy have improved performance

compared to the models trained on all data (a global multi-class
FIGURE 4

Characterization of state networks and diagnostic performance of ML models for distinguishing SWEDD and PD from HCs. (A) Characterization of
HC, SWEDD, and PD using state networks. Top panel-left (Img.1); the global characterization of the features’ network of the whole cohort (HC
+SWEDD+PD). The overall state network of the whole sample is typified by highly dense and strong connectivity (high level of correlations),
purportedly indicating strengthened structural integrity. This highly dense and strong connectivity appears to be highly contributed by HC, as
demonstrated by HC’s state network (top panel-middle (Img.2); HCin_K-cluster1 = 84.23% of the HC sample, N = 187 of 222). The SWEDD subjects
(top panel-right (Img.3); SWEDDin_K-cluster1 = 73.72% of the SWEDD sample, N = 101 of 137)) are characterized by strong connections but with
significant reduction of the putamen and caudate structural connectivity compared to HCs. Middle panel–left (Img.4); state network characterization
of subjects with PD in K-cluster2 (PDin_cluster2 = 55.28% of the PD sample constituting cluster 2, N = 1126 of 2037). Subjects with PD in K-cluster2
exhibit a sparse network. Middle panel-middle (Img.5); the PD subjects in K-cluster3 (PDin_cluster3 = 42.56% of the PD sample, N = 867 of 2037)
typified by a more sparse network compared to PD subjects in K-cluster3. Img.6 to 9 display the characterization of the state networks resulted after
the hierarchical clustering. Bottom panel-right (Img.9); healthy subjects (HC) in Hirar-cluster3 characterized by intensified level of connectivity
among structures and among structures and age at visit. Those who are SWEDD (Hirar-cluster3, middle panel-left, Img. 6) are typified by the high
level of connectivity across brain features and age, but the connectivity with age was slightly lesser compared to HC individuals. Subjects with PD in
Hierarchical clustering were mainly in Hirar-cluster1 and Hirar-cluster3. The PD in Hirar-cluster1 (bottom panel-left, Img. 7) shows a slightly lower
strength of connectivity in brain structures and between brain structures and age compared to SWEDD subjects. Those PD subjects in Hirar-cluster3
(bottom panel-middle, Img. 8), however, display a network typified with highly reduced structural connectivity with age, although the connections
between brain structures themselves appeared to be intact. (B, C) performances on Machine Learning algorithms. (B), Features ranked per their
contribution to the machine learning models. The features from brain structures play a vital role in the diagnosis of SWEDD, PD, and PD subtypes.
(C) Diagnostic performances of Machine Learning models for distinguishing SWEDD and PD from HC. (C), top panel-left (Img. 1); diagnostic
performance of SVM. (C), top panel-middle (Img. 2); SVM performance in distinguishing different K-mean-derived state networks describing PD
subtypes. (C), top panel-right (Img. 3); Random Forest performance for distinguishing K-means derived state Network patterns. c, bottom panel-left
(Img. 4); Logistic Regression Performance in distinguishing K-mean derived state network patterns. c, bottom panel-middle (Img. 5); SVM
performance in distinguishing 4-feature-based Hierarchical-derived state network patterns. c, bottom panel-right(Img. 6); SVM performance in
distinguishing 6-feature-based Hierarchical-derived state network patterns.
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classifier), suggesting the utility of the clusters in distinguishing

PD-subtypes.
4 Discussion

In this study, we show that PD is associated with APOE e2/e4 and
e3/e3 genotypes. Previous studies have reported the involvement of

APOE4 allele in exacerbating a-synuclein pathology in PD (12), tau

pathology, neuroinflammation, and Ab clearance disruption in AD

(13–15). The APOE4 genotype increases a-synuclein misfolding and

aggregation, forming amyloid fibrillary structures that lead to

neurodegeneration in PD (6). The misfolding or genetic mutations

in a-synuclein gene and the loss of dopaminergic neurons are

thought to be the central mechanism in PD. Increased a-synuclein
misfolding and pathology in mouse models and humans have been

shown to accelerate cognitive decline and worsen neuronal and

synaptic loss (12). This phenomenon appears to increase tenfold in

the APOE4 genotype in PD (16). Our data showing a significant

association between APOE e2/e4 genotype provide further evidence

to support these earlier findings.

Our findings also reveal a significant volume reduction in subjects

with PD compared to subjects with SWEDD or HC.We show that grey

matter atrophy of the subcortical structures, especially the putamen

and caudate, can predict the trend of PD progression from SWEDD

to an advanced level of PD. Gray matter atrophy of subcortical

structures, including the basal ganglia, has been extensively studied.

Subjects with early-stage PD without dementia reported significant

volume reductions in the putamen, nucleus accumbens, and

hippocampus, with shape deformations in the putamen. (17). In

demented PD, studies have found a more extensive atrophy in

additional regions, such as caudate and parahippocampal gyrus (18).

Our data showing a significant volume reduction in the caudate

and putamen support these early findings and align with other

longitudinal studies indicating progressive atrophy in these areas in

the early to middle stages of PD (19).

Our findings also show that a particular APOE genotype,

especially APOE e2/e4, may accelerate brain atrophy regardless of

the stage of PD or subtypes. Here, we observed that subjects with

SWEDD and PD both have reduced DAT SBr, reflecting the

reduction of dopaminergic neurons. The DAT SBr for both

SWEDD AND PD cohorts was below 2.0 (1.65 for SWEDD and

1.85 for PD). Although there are limited studies that provide a

direct link between the APOE e2/e4 genotype or APOE e4 allele and
exacerbated gray matter atrophy or loss of dopaminergic neurons in

PD, there is already enough evidence from other degenerative

disorders, such as Alzheimer’s disease, to underscore this

relationship. For example, some studies of Alzheimer’s disease

showed a greater rate of hippocampal atrophy and cortical

thinning in the presence of APOE e4 allele in both individuals

progressing from mild cognitive impairment to AD and those with

demented AD (20, 21), highlighting the role of APOE e4 in brain

atrophy regardless of the stages of AD. Exacerbated a-synuclein
pathology (22, 23), accelerated breakdown of the BBB (24), and

faster cognitive decline (22) reported in PD patients with APOE e4
allele may be early evidence of accelerated neurodegeneration seen
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in our PD patients. Along these studies is a preliminary study on

patients with primary progressive aphasia, which reported the

APOE e2/e4 genotype as a possible risk factor for the condition

(25). A subsequent study on a larger sample from the same research

group indicated that the e2/e4 genotype, particularly in women,

might represent a genetic factor for primary progressive aphasia,

with molecular positive heterosis explaining this association (26).

Meanwhile, our clustering data show the existence of three states

for brain networks. The majority of healthy subjects exist in a state

characterized by highly dense and strong connectivity, which is

expected as healthy individuals have their structural integrity intact.

On the other hand, the majority of subjects with SWEDD exist in a

state characterized by strong connectivity within the structures of the

brain but with a significant reduction in putamen and caudate

structural connectivity when compared to HCs. At the same time,

we found that the majority of subjects with PD exist in two distinct

states. The first state is typified by a mildly sparsely connected

network, suggesting a moderate loss of grey matter structural

integrity. In contrast, PD patients in the second state are

characterized by more intensified sparsity in their network, likely

signaling a more advanced level of structural integrity loss as PD

neuropathology advances. In line with our study is a study by Shakya

et al. (27) that used a clustering analysis on symptom onset, motor,

and non-motor features of PD to characterize PD subtypes and

identified two distinct PD subtypes, severe motor-non-motor

subtype (SMNS) and mild motor-non-motor subtype (MMNS) (27).

The MMNS subtype primarily includes participants who exhibited

symptom onset at a young age (25.4–80.1 years), with milder forms of

Parkinson’s symptoms and relatively less volume reduction in the

caudate, putamen, and other striatum regions compared to

participants in SMNS. In contrast, the SMNS subtype is

characterized by participants who experienced symptom onset at an

older age (35.6-83 years), with more intense motor and non-motor

symptoms and greater volume reduction thanMMNS. Taken together

these findings cement that PD exhibit significant clinical variability

among patients, suggesting the importance of considering different

these distinctive subtypes in the developing therapeutic targets.

UsingML algorithms, we have shown that features extracted from

brain structures can serve as reliable biomarkers for PD subtypes, with

varying diagnostic power. The SVM model demonstrates slightly

better performance in diagnosing PD subtypes or distinguishing PD

or SWEDD from HCs compared to other models evaluated in this

study. We observed that SVM has the potential to predict different

states of structural configuration at which PD manifests, with a

performance of approximately 100% AUC, 99.3% accuracy, and

0.993 F1. Such a level of performance is achieved through an SVM

fine-tuned with a linear kernel, and when issues of redundancy have

been addressed. ML algorithms have recently been preferred for

identifying PD subtypes, predicting disease progression, and

improving the differentiation between subjects with PD and healthy

controls (28–30). Notably, a study by Shiiba et al. (30) used SVM

models on shape features (striatal binding ratios, circularity, major axis

length for putamen and caudate regions) to improve the classification

performance of PD from HC (30). The authors demonstrated that

SVM models effectively captured the distinctive features of PD and

statistically improved the segregation ability betweenHC and PD, with
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top AUCs of 0.995 for circularity and SBRs, 0.990 for circularity alone,

and 0.973 for SBRs alone. Another study focused on identifying

patient subtypes and disease progression using an ML algorithm

identified three distinct patient subtypes (29). The authors achieved

accurate projections of disease after initial diagnosis with an average

AUC of 0.92 (95% CI; 0.95 ± 0.01) for the slower progressing group,

0.87 ± 0.03 for moderate progression, and 0.95 ± 0.02 for the fast

progression group. Taken together, these findings suggest that the use

of ML algorithms provides insights to understand PD heterogeneity

and improve efforts for therapeutic targets.
4.1 Limitation

Our data also stress that despite the high degree of similarity in

the clusters produced by both hierarchical and K-means algorithms,

there are still some differences in the patterns disclosed by the two

methods, with hierarchical clustering showing more variations in

age connectivity in the networks.
5 Conclusion

In this study, we conducted extensive analyses of brain data

from subjects with PD, provided by the notable PPMI database, and

showed that APOE e2/e4 and e3/e3 genotypes, total grey matter

volume, and subcortical dopaminergic deficit in striatal structures

(caudate and putamen) are significantly associated with PD. We

also infer that the absence of DAT deficits in some subjects with

potential clinical symptoms of PD may be linked to APOE e3/e3,
which appears to be highly associated with those subjects with scans

without evidence of DAT deficits (SWEDD). While reporting that

APOE e2/e4 may be involved in accelerating brain atrophy or

reduction of dopaminergic neurons (as quantified by DAT striatal

binding ratio (SBr)) in PD, we also report that subjects with PD

exhibit intrinsic heterogeneity, which may stem from genetic

factors. We also report that this heterogeneity can be

characterized into two distinct network states using ML

algorithms, reflecting two potential PD subtypes. These findings

contribute to the current literature on the necessity of considering

such heterogeneity when developing personalized drugs.
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