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Neurological disorders (e.g., Alzheimer’s disease and Parkinson’s disease) and

mental disorders (e.g., depression and anxiety), pose huge challenges to global

public health. The pathogenesis of these diseases can usually be attributed to

many factors, such as genetic, environmental and socioeconomic status, which

make the diagnosis and treatment of the diseases difficult. As research on the

diseases advances, so does the body of medical data. The accumulation of such

data provides unique opportunities for the basic and clinical study of these

diseases, but the vast and diverse nature of the data also make it difficult for

physicians and researchers to precisely extract the information and utilize it in

their work. A powerful tool to extract the necessary knowledge from large

amounts of data is knowledge graph (KG). KG, as an organized form of

information, has great potential for the study neurological and mental

disorders when it is paired with big data and deep learning technologies. In this

study, we reviewed the application of KGs in common neurological and mental

disorders in recent years. We also discussed the current state of medical

knowledge graphs, highlighting the obstacles and constraints that still need to

be overcome.
KEYWORDS
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1 Introduction

Neurological disorders and mental disorders are diseases that pose a large burden on

worldwide health. Neurological disorders are a heterogeneous group of diseases that are

characterized by the loss or dysfunction of the neurons in the central nervous system or

peripheral nervous system (1), among which are epilepsy, common neurodegenerative

disorders including Alzheimer’s disease (AD), Parkinson’s disease (PD) and multiple

sclerosis, as well as cerebrovascular diseases such as stroke, migraine and other headache
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disorders. Neurodegenerative diseases can be classified according to

primary clinical features (e.g., dementia, parkinsonism, or motor

neuron disease), anatomic distribution of neurodegeneration (e.g.,

frontotemporal degenerations, extrapyramidal disorders, or

spinocerebellar degenerations), or principal molecular

abnormality (2). Mental disorders are usually characterized by a

clinically significant disturbance in an individual’s cognition,

emotional regulation, or behavior. The common types of mental

disorders include depression, anxiety disorders, post-traumatic

stress disorder (PTSD) and schizophrenia. Naturally intertwined

and related to many common genetic, environmental and lifestyle

factors, neurological disorders and mental disorders share some

neurocognitive and pathophysiological mechanisms and are often

suggested to be merged by some researchers (3–6).

The pathophysiology of neurological disorders and mental

disorders is quite complicated and various factors may be

involved, which greatly complicates their prognosis and clinical

therapy. Over the years, a vast amount of medical data related to

these diseases has been collected, which has become an invaluable

resource for their basic and clinical study. However, the large

volume, high variety and fast updating of the disease-related data

also pose great challenge as disease research progresses,

necessitating the development of novel strategies for big data

processing, storage, and management. In such a situation,

creation of new, scalable big data infrastructures and data analysis

technique is urgently needed, which can help physicians to improve

the efficiency of decision-making and outcome of patient care by

extracting the information they need from medical data (7). Also,

medical literature is frequently dispersed across multiple knowledge

sources in various formats (e.g., websites compiling biomedical

literature, databases of medical or clinical trial reports, electronic

medical records), which causes difficulties to find pertinent data.

Furthermore, it becomes more and more difficult to get trustworthy

information to direct practice, research or clinical trials as the body

of knowledge about diseases grows rapidly and some noises are

inevitably included. Recently, knowledge graph (KG) has gained

significant interest from both academia and industry as a type of

structured knowledge. By visualizing complex concepts and

creating links between them, KG can make data analysis and

mining easier, and plays more and more important roles in

biology, clinical treatment, data analysis, and other domains (8, 9).
1.1 What is knowledge graph

Knowledge graph, also known as a semantic network, is a

directed labeled graph in which domain-specific meanings are

represented by nodes and edges, with a node defining a real-

world entity, such as objects, events, situations or concepts, and

an edge capturing the relationship between two nodes. Such kind of

graph-based representations of data are employed widely in

computer science, especially in the field of artificial intelligence

(AI). Indeed, choosing suitable representations to store information

and derive new knowledge is central to AI and has drawn much

interest in the past decades.
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The concept foundation for KG development is related to the

idea of semantic networks proposed in the 1960s. Semantic

networks are graphical representations of knowledge based on

meaningful relationships of text, structured as a network of words

cognitively related to one another (10). Similar to KG, concepts are

also represented by nodes and the connections between them are

represented by edges in semantic networks, which allow the

extraction of meaningful data by identifying emergent clusters of

concepts rather than analyzing frequencies of isolated words (11).

In the 1970s, the idea of ontology was first proposed for knowledge

organization. The addition of ontology to semantic networks can

encourage individuals to focus on the underlying relationships

between entities rather than simply summarizing semantic data

(12). Then, in 1989, Berners-Lee presented the idea of the World

Wide Web, which adopts an interactive global information

architecture that uses keywords to connect various sections of a

document and enable interactive search (13). This system can

recognize the connections between texts, enabling information

retrieval beyond the constraints of merely following a path step-

by-step. Additionally, the semantic web was proposed in 1998,

which makes it possible for computers to process data from the web

and analyze it (14). Consequently, search engines are now able to

search content directly instead of merely on websites and greatly

increases the effectiveness of searches. The concept of linked data

was proposed in 2007, which enables us to construct typed linkages

between data from various data sources via the Web. Resource

description framework (RDF) is used to generate typed assertions

that connect any two arbitrary objects in the world (15).

In order to improve search quality, Google launched the

concept of the KG in 2012 based on the aforementioned

technology (15). A KG is essentially a semantic network that

reveals relationships between entities and allows for a formal

description of real-world entities and their interrelationships. By

building the “entity-relationship-entity” triangle, along with entities

and associated attribute-value pairs that are connected by

relationships to form a net-like knowledge structure, KG has

some unique advantages in data representation and applications,

and also makes it easier to conduct some interactive actions, such as

inference, error correction and annotation. With the development

of artificial intelligence technology, KG technology has played a

vital role in fields such as intelligent search, intelligent Q&A, big

data processing, and personalized recommendation (16). KG is also

widely used in the medical field and is a hotspot of global artificial

intelligence research.

In the medical field, KG has become one of the key factors for

intelligent health care. By dealing with the uncertainty and

ambiguity in medical data, KG is able to derive new knowledge

and relationships, and has been used in a variety of intelligent

medical applications. For example, KG is often used as the basis for

medical knowledge retrieval, assisted diagnosis and treatment, as

well as electronic medical records (17), which has greatly promoted

the development of intelligent medical assistance (18). Actually, KG

has become a fundamental component for AI aided medical

systems such as the clinical decision support systems (CDSSs) for

diagnosis and treatment, and the self-diagnosis utilities used to
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assist patients to monitor their health conditions (19). Recent years,

KG has also been adopted in tasks like elucidation of molecular

mechanisms of disease, pathway exploration, and drug discovery

(20–23). With the development of KG and related technologies, KG

will be crucial for future research in the biomedical field.
1.2 KG for the study of neurological and
mental disorders

As we know, the knowledge required to capture the features of a

certain disease or medical condition is not sufficiently represented

in generic knowledge maps, which merely offer a general overview

of medical or disease knowledge. In such a situation, disease-specific

and targeted KG is necessary. Compared to generic KGs, the specific

KGs are more accurate since they emphasize the coverage of entities

related to a certain topic and concentrate on depth. However,

creating medical KG for a specific disease takes a lot of time

because of the complexity and volume of information in the

medical area. There are two primary methods for creating KGs,

i.e., a top-down approach and a bottom-up one. For the top-down

approach, the knowledge base of already-existing and organized

knowledge is constructed and the ontology and data schema for the

KG are predefined before adding the entities. The majority of

available medical KGs are created via the top-down approach.

However, the KGs built this way have difficulties in providing a

comprehensive picture of a specific component of the

medical sector.

On the other hand, the bottom-up is a process of starting from a

large amount of raw data, extracting entities, attributes and

relationships through automated or semi-automated methods,

and gradually constructing a KG. This approach is suitable for

constructing open-domain KGs because it can handle massive data

and extract information from it. Several different specialized

medical KGs can even be connected to create a full-domain

medical KG, which is beneficial for complex medical conditions

in specialized domains (24). For example, we may create a KG of

neurological and mental disorders based on the KGs of each

common neurological disorder or mental disorder.
1.3 Medical knowledge graphs

A medical KG is also made up of nodes and edges, with nodes

representing medical entities like illnesses, symptoms, and

therapies, and edges representing interactions or pertinent

connections between nodes. Specific subject-related expertise is

needed to build a medical KG, some of which can be acquired

automatically from a range of data sources such as scientific

publications, websites, textbooks, and real patient records, and

some of which can be acquired manually (Table 1) (25).

Regarding the healthcare domain, the non-interpretability feature

of big language models, and their relatively poor performance on

tasks involving contextual knowledge recall, correlation analysis,

and decision-making, implicates that they cannot be used as a
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reliable artificial intelligence system. In such cases, medical KG

provides another option that is able to improve in the efficacy of the

healthcare industry at lower costs. A medical KG usually

encompasses information from a large number of medical

knowledge domains (26) (Figure 1).

Medical KG can be used to visualize the subject-predicate-

object triple content found in biomedical literature and databases,

facilitating in-depth examination and the detection of connections

between various diseases (27). In recent years, medical KG has been

adopted in the study and clinic practice and has shown great

potential for neurological and mental disorders, such as

Alzheimer’s disease (AD) (28), Parkinson’s disease (PD) (29),

attention deficit hyperactivity disorder (ADHD) (30) and

depression (31).
2 Building medical KGs for
neurological and mental disorders

In recent years, a number of knowledge graphs for neurological

and mental disorders have been built by different groups (Table 2).

In the following sections, we will provide an overview of these

valuable resources.
2.1 Data collection

As health information systems often accept data in both

organized and unstructured formats, extracting and mining the

irregular information from the specialized sources is always a

challenge. There are some valuable and popular sources of

medical knowledge data. Research articles deposited in PubMed

or Web of Science are widely used in some studies. Scott et al.

derived the knowledge of AD by analyzing the articles deposited in

the PubMed database (28). Nian et al. collected biomedical entities

and their interactions from the literature in PubMed, including the

connections between chemicals, medications, and dietary

supplements and AD (39). Pu et al. constructed an AD corpus of

over 16,000 articles published between 1977-2021, which was

automatically annotated with concepts and relations covering

eleven AD-specific semantic entity types (42). The articles were

collected by an expert in AD study, who conducted a biweekly

literature search on the Web of Science using keywords related to

AD. From the search results, publications were chosen based on the

knowledge of the expert. To study postural control in PD patients,

Li et al. indexed the literature in the Web of Science Core Collection

(WOSCC) by keywords postural balance, postural control, and

Parkinson’s disease, and retrieved 1347 original papers

comprising 64631 references, based on which a Citespce KG for

PD was built (41). ADHD-KG, a specific KG for ADHD, was built

by integrating data from a number of medical sources, including the

DrugBank, Clinical Trials, Side Effect Resource, PubMed, and

Medical Subject Headings (MeSH) (35). Huang et al. (26)

developed a knowledge-based actual patient data generator,

APDG (45), and concentrated on knowledge resources related to
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the use of antidepressants. They employed data sources such as

PubMed, Clinical Trials, Medical Guidelines, DrugBank, Wikipedia

Antidepressants, SIDERS, and UMLS.

Professional websites are also important data sources

for medica l KGs . Coste l lo e t a l . (24) bui l t KG for

neurodevelopmental disorders (NDD) based on text corpus from

two sources. One was the authors’ compilation of the NDD

caregiver subset consisting of community members and

organizations connected to NDD, and the other was the Inform

Alberta website (http://www.informalberta.ca). The author
Frontiers in Psychiatry 04
combined a list of pages from these two sources and other

relevant web pages using the Python Scrapy package. To create a

stroke KG, Cheng et al. gathered stroke-related medical data from

two medical websites, Dingxiangyuan and Xunyiwenyao.com (33).

In order to prevent data omission, they also gathered pertinent data

from the Chinese Symptom Database of the East China University

of Science and Technology (33) and the Baidu Encyclopedia. A KG

known as MMiKG was created by Sun et al. (38) for microbe-gut-

brain axis and its intricate correlation with mental disease. They

examined PubMed, Springer, Google Scholar, and other literature
TABLE 1 Some commonly used data sources for medical knowledge mapping.

Websites Introduction Specificities

PubMed Free search system for biomedical literature
developed by the National Center for
Biotechnology Information (NCBI) of the
U.S. National Library of Medicine (NLM)

PubMed is usually accompanied by a link to the full text, and the PubMed system features a toolbar that
provides auxiliary search functions, a sidebar that provides other searches such as journal database search,
subject term database search and feature literature search. The original text access service provides free
titles and abstracts, which can be linked to the URL of the original text, and the search terms are
automatically converted and matched, which is easy and fast to operate.

google
scholar

A Google Web App for Searching Academic
Articles for Free

The index includes most of the world’s published academic journals, providing an easy way to search a
wide range of academic literature.

MeSH The MeSH Medical Subject Headings
database, known as Medical Subject
Headings, was established by the U.S.
National Library of Medicine.

MeSH is the authoritative subject headings list. It is a normalized, expandable and dynamic narrative
thesaurus. It is used to include a vocabulary of biomedical terminology, which is used to describe the
subject matter of each journal article in the medical literature database MEDLINE.

ClinicalTrials It is currently the most important
international registry for clinical trials.

Its registration and search for clinical trials are free of charge, and it is regarded as a model of open and
international clinical trial registration.

WOSCC The Web of Science Core Collection is the
world’s leading citation database.

The Web of Science Core Collection database contains more than 12,000 of the world’s most
authoritative, high-impact academic journals in the natural sciences, engineering, biomedical sciences,
social sciences, arts and humanities, and other fields, dating back to as early as 1900.

DisGeNET The DisGeNET database is a database of
disease-related genes.

DisGeNET integrates data from multiple sources, including expert-managed repositories, GWAS catalogs,
animal models, and the scientific literature. DisGeNET provides metrics and tools to help researchers
explore and analyze the genetic basis of human disease. DisGeNET can be accessed through a web
interface, Cytoscape App, RDF SPARQL endpoints, scripts, and R packages to access it.

SemMedDB A PubMed-scale biomedical semantic
prediction library.

A repository of semantic predictions (subject-predicate-object triples) extracted from the entire PubMed
citation set. Serves as a knowledge resource to aid hypothesis generation and literature-based discovery in
biomedicine, as well as clinical decision support.

LINCS The Library of Integrated Network-Based
Cellular Signatures

NIH’s database of perturbing cells by various means (e.g., knocking out, overexpressing certain genes, but
mainly drug effects on cells) and then comparing cell expression profiles or other cellular processes before
and after the cell perturbation.

IDG International Data Group is the world’s
largest information technology publishing,
research, events and venture capital firm.

It has established a fast and comprehensive worldwide information network by adopting modern means
of information processing and transmission, such as electronic mail, databases, telex and on-line services.

DrugBank DrugBank is a free-to-use web-based
database that provides bioinformatics and
cheminformatics information, including
detailed drug data and comprehensive
information on drug targets and
drug actions.

It combines detailed drug data with comprehensive drug target information, and the results are
experimentally validated, authentic and reliable bioinformatics and cheminformatics databases.

UMLS The Unified Medical Language System is a
giant medical terminology system that has
been under continuous development by the
U.S. National Library of Medicine for over
20 years.

It contains about 2 million medical concepts and an unprecedented number of medical vocabularies,
amounting to more than 5 million. UMLS has been applied in the areas of electronic medical records,
health services, public health statistics, biomedical literature classification, and basic clinical and health
services research.

KEGG KEGG is a database resource for exploring
high-level functions and utilities of the
biological system (e.g., cell, organism and
ecosystem) from molecular-
level information.

The KEGG includes a series databases for biological information systems in the cell, the organism and the
biosphere represented in terms of molecular interaction and reaction networks. It is a highly organized
structure of data and knowledge aiming to model the real world. The KEGG is curated manually by
capturing and organizing experimental knowledge reported in selected publications.
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search databases using the terms depression, schizophrenia, anxiety,

autism, and bipolar illness, and collected a total of 907 pertinent

publications on the gut-brain axis and mental disorders (38).

Electronic health records (EHRs) are another frequently used

data source. Electronic patient medical records gathered at the

University of California, San Francisco (UCSF) between 2010 and

2020 were used by Soman et al. (29) to develop a KG for PD. To

verify the accuracy of the data, patients were divided into two

groups based on the PD diagnostic codes found in the EHR

diagnostic table. Additionally, instances of both genetically and

drug-induced PD were removed.
2.2 Entity extraction &
relationship identification

2.2.1 Entity extraction using databases and
documentation tools

Creating KGs for content in unstructured texts involves

extracting concepts, events, and relationships. To increase

accuracy, entity identification should take into account both new

and previously stated concepts, events, and illnesses in the

vocabulary. Because most medical entities have synonyms and

practitioners may use different names to refer to the same item,

entity creation is an important step, which requires mapping each

entity to a uniform entity set (46).

Unified Medical Language System (UMLS) is a set of files and

softwares that brings together many health and biomedical

vocabularies and standards to enable interoperability between

computer systems (47). With more than 3 million concepts based

on nearly 200 sources, it integrates and distributes key terminology,

classification and coding standards, and associated resources to
Frontiers in Psychiatry 05
promote the development of more effective and interoperable

biomedical information systems and services, including electronic

health records. SNOMED-CT (Systematized Nomenclature of

Medicine-Clinical Terms) and MeSH (Medical Subject Headings)

are also commonly used resources. To extract UMLS entities from

text, Costello et al. (24) employed the UMLS Entity Linker in the

open-source framework SciSpaCy. In building a KG for attention

deficit hyperactivity disorder (ADHD), Papadakis et al. (35)

recognized the meaningful terms and associated them with

MeSH concepts through ScispaCy, which had the ability to parse

medical abbreviations and provided entities directly linked to

MeSH concepts. As MeSH concepts are systematically linked to

different resources, their approach is able to capture conceptual

associations between entities and can enhance and accelerate

information retrieval.

Using SemMedDB, Nian, et al. collected biomedical annotations

and extracted their relations and filtered 1,672,110 AD-related

semantic triples, which were used to train with multiple KG

completion algorithms to predict candidates that might be helpful

for AD treatment or prevention (39). Scott et al. (28) introduced a

novel KG application enabling causal feature selection by

combining computable literature-derived knowledge with

biomedical ontologies. They retrieved computable knowledge

from a literature corpus using machine reading systems SemRep

(48, 49) and INDRA (50) to extract triples, and mapped the output

to target terminologies and combined with ontology-grounded

resources. Then, the model was used to estimate the total causal

effect of depression on the risk of developing AD from observational

data. To build a KG for depression, Huang et al. (26) collected

information related to depression from various resources, e.g.,

publications deposited in PubMed, clinical trials (https://

clinicaltrials.gov/) and drug and target information in DrugBank
FIGURE 1

Application of knowledge graphs in medical filed. A medical knowledge graph may encompasses information from a large number of medical
knowledge domains, and thus may play important roles in various domains of healthcare, such as biomedicine, drug discovery, medical information
search, and other miscellaneous applications.
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(https://go.drugbank.com/). Then, the collected data were

integrated based on identifications such as PMID, MeSH or

medical terminologies.

Sun et al. developed a knowledge graph MMiKG for the

microbiota-gut-brain axis (38). As knowledge related to the
Frontiers in Psychiatry 06
regulation of the host central nervous system by gut microbiota is

fragmented and usually included in disorganized or semi-structured

unrestricted texts. They collected the information by scrutinizing

literature and merged various associated resources and deducing

prospective connections between gut microbiota and the central
TABLE 2 Knowledge graphs constructed for neurological and mental disorders.

Authors Name of KG Data Source Objective

Goodwin et al. (32) QMKG 95,703 de-identified EMRs from multiple hospitals during 2007
To provide a method for automatically
constructing a clinically relevant concept map
based on belief states.

Cheng et al. (33) SMKG
Medical thesaurus, ICD-10 coding, and other medical terms as
entities in the entity resource database

Assisting in the construction of a smart question
and answer and medical assisted decision making
system for stroke.

Wytze et al. (34) none Euretos Knowledge Platform
Using predictive information to determine
disease trajectories.

Papadakis et al. (35) ADHD-KG MeSH, PubMed, Clinical Trials, Side Effect Resource, DrugBank
To provide valuable assistance to researchers and
clinicians in the study, training, diagnosis, and
treatment of ADHD.

Kaur et al. (36) none PubMed, healthboards.com, psychforums.com, reddit
To improve knowledge mobilization,
communication, and care for individuals with
ADHD and ASD.

Costello et al. (24) none

Included individuals with lived experiences who were part of the
family advisory board or were recruited through advertisements for
the project and community support groups focused on NDDs, the
Inform Alberta

To help health professionals, support groups, and
families share, combine, and access the resources
of NDDs.

Huang et al. (26) DepressionKG
PubMed, Clinical Trials, Medical Guidelines, DrugBank, Wikipedia,
DrugBook, SIDER, UMLS

To gain a more comprehensive understanding
on depression.

Liu et al. (37) MiKG4MD PubMed, Google Scholar
Identifying, exploring, and predicting the
relationship between the gut microbiota and
mental disorders.

Sun et al. (38) MMiKG PubMed, Springer, Google Scholar
As a guideline for clinical and biological
experiments, it opens up new avenues for
therapeutic strategies for psychiatric disorders.

Nian et al. (39) none PubMed, SemMedDB
Predict reliable new relationships between AD
and other entities.

Scott et al. (28) none PubMed, UMLS
Combining machine reading and KG can
augment human expertise in causal
feature selection.

Soman et al. (29) SPOKE EHR data of patients who visited UCSF between 2010 and 2020
Can provide early prediction of Parkinson’s
disease in a clinically interpretable manner.

Yang et al. (40) KGAP LINCS, NCBI Gene Expression Omnibus (GEO), IDG

For efficiently searching and summarizing
evidence pathways based on disease queries to
identify, score and rank relevant genes as drug
target hypotheses.

Li et al. (41) none
Web of Science Core Collection (WOSCC), Social Science Citation
Index (SSCI), Current Chemical Reactions (CCR-EXPANDED),
Index Chemicus (IC)

Explore the current state of Parkinson’s disease
research, research hotspots, and cutting-
edge areas.

Pu et al. (42) None
PubMed, bibliography of Alzheimer’s Disease literature,
Neuropsychological Integrative Ontology (NIO), Pubtator Central

A literature-based discovery (LBD) model for
link prediction and graph embedding learning
for Alzheimer’s Disease.

Fu et al. (43) MDepressionKG KEGG, MENDA, Microbe-Disease Knowledge Graph (MDKG)
A knowledge graph linking metabolism entities
of human and their microbes to
depression disorder.

Fu et al. (44) Food4healthKG
FoodData Central dataset (FDC), FoodOn, Chinese Food Ontology,
KEGG, NCBI taxonomy, MENDA, and SNOMED CT

A comprehensive knowledge graph focusing on
food, gut microbiota, and mental diseases.
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nervous system. They gathered 1,257 triads through human data

integration and assessment (38). To explore literature-based

knowledge for AD and predict new knowledge, Pu et al. built a

KG for the disease (42). They collected an AD-specific corpus from

over 16,000 publications and two biomedical knowledge resources,

Neuropsychological Integrated Ontology (NIO) (51) and Pubtator

Central (52), to construct an AD KG consisting of about 11,000

entities and 394,000 relations, which could be used to infer new

knowledge with graph embedding-based link prediction methods.

Another popular source of information is corpus collection

from community-based forums. To explore the relationship

between depression and consumption of cannabis, Roy and

colleagues gathered 11,000 tweets using the Twitter API (53). The

information was analyzed by natural language processing

techniques to generate a targeted social media corpus involving

personal use of cannabis with the intent to derive its potential

mental health benefit. Then, the data was combined with domain

knowledge from the Drug Abuse Ontology (54) and Diagnostic and

Statistical Manual of Mental Disorders (DMS-5). Their experiments

showed the method could significantly extract cannabis-

depression relationships.

2.2.2 Relationship identification using AI tools
Even if the intricate relationships between diseases are beyond

the current capabilities of natural language processing techniques,

these techniques can nevertheless be useful in the construction of

KGs, and large language models can often make relationship

extraction easier and more effective.

Roy et al. proposed a framework based on supervised

contrastive learning and GPT-3 to extract entities and their

associations, which was adopted to explore the relationship

between depression and consumption of cannabis in a targeted

social media corpus and built a domain-specific drug abuse

ontology (DAO) (53). With the new tool, they retrieved a corpus

from community websites with improved performance and high-

quality annotations, which made it possible to comprehend the

connection between marijuana and sadness. Natural language

processing methods were employed for semantic annotation by

Huang et al. (26), in which Xerox’s NLP tool XMedlan was used to

semantically annotate medical texts using medical terminology like

SNOMED CT.
2.3 Entity completion and
knowledge fusion

In building KG, knowledge fusion is essential when there are

multiple data sources. By combining data in distinct formats into a

single entity, knowledge fusion can facilitate the unification of data

gathered from different sources.

Knowledge fusion for the stroke MKG was handled from two

angles by Cheng et al. (33), i.e., entity attribute alignment and entity

linking. The process of aligning entities from knowledge bases of

disparate data sources into unique identifiers for real-world entities

is known as entity alignment. The aligned entities are then
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connected to the KG for stoke. The diagnosis of depression

usually depends on subjective assessments and clinical interviews,

which often causes potential biases and inaccuracies. Yang et al.

proposed a new framework using multimodal data for depression

diagnosis (55). To integrate the diverse data modalities like textual,

imaging, and audio information, and tackle the challenges of data

heterogeneity and high dimensionality, representation learning was

adopted to autonomously discover meaningful patterns and

features from the data, and knowledge transfer was adopted to

transfer knowledge from related domains. Results indicated the new

approach significantly improved the diagnosis of depression.
2.4 Data processing

Data that is kept in a set format and organization is referred to

as structured data. Database tables, fields, and data types can be

used to describe the relationships between data items, which are

characteristics of structured data. Structured data also has a well-

defined organizational structure. On the other hand, unstructured

data refers to data that do not have a fixed format or structure,

which cannot be easily stored and processed using traditional

relational databases. Since unstructured data is characterized by a

free and irregular format, which usually requires special processing

to extract useful information.

In building the KG for stroke, a distributed crawler was utilized

by Cheng et al. to autonomously collect medical data (33). To do

this, lightweight JSON files were created from structured data

gathered from three databases, i.e., vertical medical websites,

crowdsourcing websites and public knowledge base. Additionally,

the data was checked to eliminate any characters that were missing,

jumbled, or prohibited. In building their KG for ADHD, Papadakis

et al. converted the data in XML or CSV formats into RDF

(Resource Description Framework) (35). In order to overcome

structural discrepancies, Murali et al. employed representation

learning to accurately represent multimodal data with structured

knowledge and language from numerous sources (56, 57).

Multimodal learning was employed for improved inference,

classification, and prediction, depending on the nature of the data

representation (46). Costello et al. (24) used the Python BoilerPy3

package to extract the HTML text from each page and then cleaned

it up by deleting sample text. The document corpus utilized to

construct the KG-based NDD repository was made up of the clean

HTML content that was extracted from the pages.
2.5 Information linking

Missing linkages in the KGs for diseases are often important for

their diagnosis and treatment. For example, diagnostic predictions

require the extraction of new and meaningful relationships utilizing

a variety of techniques from existing entities and relationships.

To link the entities, Costello et al. assigned a weight to each

entity based on how frequently the entity occurs in the data

collected for NDD (24). These weights were known as entity-
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related weights, and Latent Dirichlet Allocation (LDA) was used to

determine the topics for the data source, and the hierarchical

structure of subjects was employed in topic modeling to create an

NDD knowledge graph by extracting related topics from the corpus.

The strength of the linkages between themes and entities was

determined using the LDA algorithm.

Based on the article title and abstract, Pu et al. established a

relationship between two entities through co-occurrence (42). They

claimed that rather than using causality as a relationship, they opted

to use co-occurring associations because the first attempts at

extracting semantic triples using SemRep produced errors and

had inadequate coverage of concepts and relationships related to

AD. In order to address this issue, Scott et al. conducted a study on

the causal link between depression and AD (28). Refining ontology-

based knowledge in a knowledge graph helped to partially address

the shortcomings of structured knowledge generated from books.

Additionally, they demonstrated how semantic reasoning could

improve causal inference while also offering an effective means of

representing knowledge and automating reasoning to produce

mechanistic hypotheses about biomolecular processes of

confounding factors. A reweighting process was employed by

Scott et al. to condense the knowledge graph into biologically

significant things that were helpful for AD research.

RDF supports semantic representation of data, allowing the

expression of complex relationships through predicates, and can be

nested to use, forming complex data structures. RDF data can be

represented in a variety of formats, such as RDF/XML, Turtle,

JSON-LD and so on. Twomethods of data linking were proposed by

Papadakis et al. (35), i.e., indirect informational linking is defined as

when various data sources contain resources that reference

common medical concepts, whereas direct informational linking

is defined as when a data source explicitly references a resource

defined in a class of external datasets. Whatever the kind of linking,

though, custom RDF statements that associate related resources

express the relationship between the data sources.
2.6 Knowledge graph embedding

A common data representation method for KG is knowledge

graph embedding, which transforms graphs into low-dimensional

vector formats. In order to compute entity similarity, graph

embedding preserves semantic information between entities in

KG and learns the entities and their relationships in the form of

distributed embeddings (58). Clinical applications have benefited

greatly from the use of knowledge graph embeddings. One of the

functions of knowledge graph embeddings, which are still in

their infancy in the clinical domain, is to perform ternary

characterization using convolutional neural networks or to

capture the underlying semantics of ternary groups for semantic

matching. Link prediction can also be treated as a binary

classification problem to construct a graph embedding model,

from which new knowledge can be inferred through graph

embedding-based link prediction methods (42). By comparing

various link prediction techniques within the framework of short-
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and long-term knowledge evolution in AD, the effects of restricting

the predictive evaluation of LBD models can be assessed. Then,

knowledge graph embedding can be used to predict candidates that

might be helpful for AD prevention or treatment (39).
2.7 Visualization of knowledge graphs

Knowledge graph representation can help understand the

entities and their relationships intuitively, and also make it easier

to find hidden information and unidentified associations (38).

Based on their visual layout and encoding, knowledge graph

visual representations fall into several categories, i.e., space filling,

heat maps, node-link diagrams, adjacency matrices, and certain

non-primary visual representations like Euler diagrams and

indented lists, among others. In order to execute semantic queries

and link prediction, Sun et al. (38) stored the triples of various

connection kinds in CSV files, loaded them into the Neo4j database,

and displayed them using GraphXR. Citespace V software was used

by Li et al. (41) to visualize and analyze the content of literature in

terms of number of publications published each year, partnerships

between institutions and countries, partnerships between authors,

cited journals, and co-cited journals, to learn about the state of the

research on postural control in people with PD.
2.8 Knowledge discovery

Knowledge mining, including knowledge content mining and

knowledge structure mining, is the process of extracting new

knowledge from already-existing entities and their connections.

Rule mining is the primary function of knowledge structure mining,

whereas entity linking (e.g., synonym discovery, disambiguation)

belong to content mining.

In their KG for microbiota–mental diseases, Sun et al. used

Graph Data Science (GDS) and GraphXR embedded graphical

algorithms to measure the relationship of edges, as well as to

analyze each entity node of microbiota, intermediates, and

diseases (38). By focusing on the representation of “facilitation”,

“inhibition” and “inhibition”, they were able to analyze the data

more thoroughly and find new paths of microbiota–mental diseases

interactions. The above steps and techniques related to the

construction of the KG are shown in Figure 2.
3 Application of KG in neurological
and mental disorders

3.1 Outcomes and impacts of KG in
neurological and mental disorders

The application of KGs in neurological and mental disorders

has increased rapidly in recent years. Scott et al. used Dijkstra’s

shortest path search to select causal features between depression

and AD from the KG based on biomedical literature and ontologies
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(28). Machine reading concepts and inferred edges were utilized to

increase the range of variables, or to make machine reading more

comprehensive. Next, KGs based on ontologies were queried. To

increase the accuracy of knowledge acquired from literature, filter

the material using ontology knowledge. Furthermore, to offer

speculative explanations for the causal association between the

detected variables and depression and AD, visual inference

pathways are developed. In order to infer implicit relationships in

the KG of AD, Pu et al. (42) used graph embedding-based link

prediction on 20 time-sliced datasets. They discovered that the link

prediction task became increasingly challenging over time as the

feature network density fell with increasing node count. In other

words, outcomes from long-term prediction contexts differed

significantly from those from short-term prediction contexts. This

underscored the importance of carefully considering LBD-based

techniques for AD evaluation.

The KG-based NDD repository created by Costello et al. was the

first resource that combined reliable web resources from different areas

into a unified database (24). The uniqueness of the database was its

domain specificity, which included various information extraction

techniques and incorporated patient-centered data from various

sources (24). They developed a knowledge base for NDD including

contributions from NDD-affected patients and caregivers, as well as

medical experts with expertise in NDD. As a result, they created an

automatic labeling pipeline for NDD-related web resources and a KG

with a wider variety of NDD information. This work showed how
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artificial intelligence (AI)-based methods (such as KGs for information

representation and natural language processing) could improve

knowledge mobilization, extraction and be applied to various

medical fields. By annotating web pages using a range of natural

language processing methods and storing them in a structured KG,

users could query the system by using text terms easily.

ADHDKG was created by Papadakis et al. (35) to streamline the

retrieval of knowledge regarding ADHD and establish the

framework for efficient medical question-and-answer sessions. In

order to shift from laborious manual reviews of the medical

literature to automated semantic searches of coded knowledge,

the authors integrated knowledge regarding ADHD into a single

resource and be searched by the powerful SPARQL queries. The

efficiency benefits depended on ADHDKG’s capacity to

comprehend the most recent developments related to ADHD

research deposited in literature, which made ADHDKG a useful

tool for research on ADHD.

To investigate the connections between chemicals, medications,

dietary supplements and AD, Nian et al. built a KG based on

information retrieved from literature (39). Their goal was to identify

potential interventions to stop or slow the course of the

neurodegenerative diseases. By using the knowledge graph-based

techniques for AD medication repurposing, they were successful in

finding data to support the potential efficacy of drugs for AD

treatment, including prednisolone, tacrolimus, vasiclovir, and

sebaceous steroids, all of which have been shown to be beneficial
FIGURE 2

The procedure to build a medical knowledge graph. Building a knowledge graph involves several steps, including data acquisition, information
extraction, information fusion, information inference, and knowledge visualization. By this procedure, data from different resources are integrated
and represented as knowledge graph.
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in the management of AD (59). Additionally, this approach could

find proof for drugs that could prevent AD, such as oxytocin,

betaine, and amphotericin (60, 61).

Based on the knowledge of the microbiota-gut-brain axis, Sun et al.

constructed MMiKG, a knowledge graph-based platform for path

mining of microbiota-mental disease interactions (38). It provided

information on the connections between the gut microbiota and

mental diseases, and supplies tools to mine the detailed relationship

between the entities. Simultaneously, MMiKG could serve as a

roadmap for biological and clinical research, which may be useful for

exploring novel approaches to treating mental illnesses.

In order to reflect the current research status, research hotspots,

and future development trends in the field of postural control in

Parkinson’s disease patients in a more intuitive, effective, and

scientific way, Li et al. (41) visualized and analyzed the literature

about the field of postural control in PD patients.
3.2 KGs for depression

Major depressive disorder (MDD) is a commonmental disorder

that affects about 6% population globally (62, 63). With a lifetime

incidence of 16.6%, MDD is among the most burdensome disease

worldwide (64–67). In the United States alone, depression causes

about 400 million disability days per year and an annual economic

burden of $210 billion (68). It is estimated that MDD will become

the major cause of Years Lost to Disability (YLD) in 2030 (69).

MDD can affect many aspects of the patients, and it is also the

leading cause of suicide (70, 71). The symptoms of MDD are

complicated, including anxiety, cognitive impairment, suicidal

tendencies, as well as emotional, somatic and functional

impairments (72). The current available options for the

prevention, diagnosis or treatment of depression have limitations,

and it is still a huge challenge to develop more effective therapeutic

approaches for MDD.

In recent years, the application of KGs to MDD study has

received much attention. Huang et al. constructed KGs to describe

depression based on data collected from a variety of major public

knowledge sources, such as PubMed, Medical Guidelines,

DrugBank and Unified Medical Language System (UMLS) (26).

Li et al. proposed to use UMLS-based semantic prediction programs

SemRep and SemMedDB to construct a KG for describing

depression in a bottom-up way (73). Depression and its

association with metabolism is also an interesting topic (43). Fu

et al. developed MDepressionKG, a KG that integrates metabolic-

related data involved in human microbial metabolism network,

human diseases, as well as microbes, to build semantic-based

rational reasoning and probable relations between depression and

comorbid diseases. Yu et al. presented a hierarchical structure of

depression knowledge network based on a systematic analysis of

depression (74). By using softwares including Citespace, Ucinet,

and Pajek, they employed the bibliometric methodology to analyze

5,000 research articles concerning depression. The constructed

depression knowledge network could be helpful for understanding

the hot spots, evolutionary trends, and future related research
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directions of the disease. There are also studies that combine KGs

of depression and tools like machine learning to improve the

detection of depression (31).

While these KGs can serve as useful resources to infer the

knowledge of depression, they are usually based on a few major

public databases or focus on certain aspects of the disease. To

develop more personalized diagnostic strategies and targeted

treatments, a deep understanding of the biological mechanisms of

depression and the ability to dissect the relationship between

molecular and genetic factors and their phenotypic consequences

is necessary.

By using a variety of information gathering techniques, we

created a new depression KG that integrates both basic medical

information and clinical information. First, we conducted a

comprehensive collection of depression-related information from

a variety of public resources, such as DisGenNET (https://

www.disgenet.org/), MalaCards (https://www.malacards.org/),

KEGG (https://www.genome.jp/kegg/), Reactome (https://

reactome.org/). Then, we collected the clinic data from a cohort

of patients diagnosed with MDD. With this information, we have

built a large entity-relationship repository, including about 30

million entities and more than 1.79 million relationships. These

entities and relationships cover almost all aspects of depression,

making it a quite comprehensive knowledge map of the disease

(Figure 3). Next, we used ogdg-molpcba (OGB from MoleculeNet)

and clinical data of patients collected by us to fine-tune the model

for depression by two AI tools, Graph-ToolFormer (75) as well as

GraphGPS (76). Based on this disease-centric MDD KG, users can

quickly identify knowledge links spanning numerous knowledge

resources and investigate the connections between different sources

of information related to depression. We are developing models and

algorithms that can help to diagnose depression or develop

potential treatment plans. Hopefully, we can precisely diagnose

subjects with depression and determine effective therapies for the

new patients, including whether antidepressant medicines are

acceptable and whether psychotherapy or physical therapy is

needed, by comparing their genetic and clinic information with

that included in the MDD KG.
4 Discussion

The “entity-relationship-entity” ternary structure used by KGs

to represent knowledge is easy for computers to read and process,

which can also help the user to gain insight into the underlying

meaning of data and resolve the ambiguity and confusion while

generating new information and connections. KGs can also depict

more intricate knowledge systems at the same time, including a

real-time updates of data and knowledge status.

With the dramatic increase in the speed of data generation

along with the huge volumes of data accumulated from dispersed

sources, the medical domain has been overwhelmed by big data,

which provides a foundation for further scientific breakthroughs in

both research and clinic practice in healthcare. However, such big

data also poses challenges to mine knowledge and derive insights for
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developing more effective diagnoses and treatments for diseases. By

representing knowledge in structured and dynamic ways, KGs can

effectively represent and process complex information within a

machine-readable context, and play a central role in representing

information for AI systems. With KGs, users can go deeper into the

relationship chain, which supports complicated inquiries in the field

of medicine. These advantages make KGs an essential part of

biomedicine and health informatics, especially in the field of

neurological and mental disorders.

Large language models become more intelligent as AI develops,

and the emergence of new AI tools opens up avenues for their

application in the medical field. However, because large language

models have a black-box mechanism, there are flaws in the quality

of their output (77), and the veracity and accuracy of their sources

cannot be guaranteed, which may limit the application of AI in

healthcare. In the medical sector, it is crucial to make sure that the
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results can be tracked down and that the data sources are reliable

and trustworthy. In this situation, knowledge graphs’ white-box

mechanism can essentially explain the results generated, and the

knowledge graphs’ traceability and authentic data sources can be

used to construct better medical AI system (78). This can perfectly

complement the most recent advancements in AI and its

applications in healthcare and open up new avenues for the

field’s growth.

Although KGs have advantages over big language models for

their precise knowledge sources, they also have problems like

information losses due to errors in unstructured data sources. In

the medical industry, there is a significant emphasis on data source

accuracy, especially for KGs related to medicine. The validity of the

KGs will be directly impacted by inaccurate, lacking, or out-of-date

information in the data source, But it is still difficult for researchers

to determine which data sources are reliable and trustworthy. Thus,
FIGURE 3

Knowledge graph for major depressive disorder. By collecting data related to the disease, a large entity-relationship repository including about 30
million entities and more than 1.79 million relationships has been built. These entities and relationships cover almost all aspects of the disease. The
numbers in the figure represent the entities or relationships collected.
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it often takes a lot of time and resources, including specialist

expertise, technological tools, and computational resources, to

create and maintain KGs. In the meanwhile, while KGs can

combine data from multiple sources, they can help to address the

issue like data silos. With the development and adoption of data

sharing initiatives (e.g., FAIRsharing (79)), databases and

repositories with shared infrastructure that enables data

interoperability is essential for advancing research utilizing

medical KGs. However, challenges such as privacy protection,

ethical considerations, organizational culture, and differences in

legal frameworks present significant barriers (80), and privacy

protection and security measures are needed in industries like

healthcare due to the sensitive information included in KGs.
5 Future and development

In future, increasing usage of modern KGs for neurological and

mental disorders will not only significantly advance our

understanding of these complex diseases, but also be

advantageous for future clinical applications such as patient

stratification or therapy selection. However, the development and

application of KGs for neurological and mental disorders are still in

the early stages and face many challenges.

While existing knowledge graphs for mental and neurological

disorders have provided insights into understanding the diseases

and shown potential in diagnosis and treatment, most of them only

focus on individual disorders and have limited coverage. How to

extend knowledge graphs to new domains of knowledge or different

diseases poses a great challenge. This is particularly true in the

mental health sector due to the complexity of the diseases and

related data. For example, there are hundreds of mental disorders,

and each may share common symptoms and molecular

mechanisms with one or more other diseases. At the same time,

while new tools like UMLS provide great convenience processing

medical information, a large fraction of medical records are in

languages other than English, how to integrate numerous

heterogeneous data collected from multiple sources in various

languages pose huge challenges (81). In such a situation, methods

that can handle medical information with specific grammatical and

semantic features according to the professional characteristics and

medical background of different languages and cultures are highly

desired. Of course, building KGs for neurological and mental

disorders are only one aspect of creating a broad medical KG; in

the future, knowledge graphs from various medical disciplines will

work together to form generalized medical KGs. Therefore, figuring

out how to combine and connect these KGs is also a crucial

component of their development and application.

Currently, extracting entities and relations of medical

knowledge graphs requires expert review and labeling to ensure

accuracy of the data, which demands considerable time and

resources. Manual processing, however, face huge challenges

when dealing with large and wide datasets. Knowledge graphs
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that can collect information about entities and relationships

automatically and update themselves are expected. To automating

the extraction of knowledge extraction and regular updating of the

database, advanced technology such as deep learning, and

evolutionary algorithms, may be promising to overcome these

limitations. Utilizing deep learning approaches to enhance

knowledge graph representation and inference accuracy is a

recent trend in the medical industry. Since data related to diseases

like the neurological and mental disorders are dynamic and scalable,

future research should focus on filling in the gaps in medical

knowledge graph complementation. Some new techniques, such

as Link Prediction (LP), can be used to predict missing information

among entities already in a KG, and is a promising approach to

address KG incompleteness (82). By a combination of

dimensionality reduction techniques and graph neural networks,

LP can reduce the dimension of high-dimensional feature spaces in

network datasets while preserving relevant information (83). Such

an approach can improve the quality and efficiency of biomedical

KGs, and can be used to solve problems like drug repositioning (21).

Especially, the synergies of KGs and large language models may

facilitate a more in-depth integration of multimodal data and make

KGs more accurate and easier to validate (9).

Future research should also make medical knowledge graphs

more interpretable, which will boost outcomes and accuracy in

technology-assisted medical decision-making (25). In biomedical

knowledge graphs, rule-based reasoning based on knowledge graph

relationship rules is usually used (84). Since the cost of manually

obtaining these complex rules is relatively high, machine learning

and deep learning algorithms can be used to mine potential rules of

KGs. However, we still need to develop algorithms with lower

complexity and fewer computational resource requirements (85). At

the same time, new techniques related to KG should also be

integrated into the development of medical knowledge graphs.

For example, EMPWR, a comprehensive KG development and

lifecycle support platform using a broad variety of techniques

from symbolic and modern data-driven systems, has shown

potent ia l for creat ing and maintaining KGs for the

pharmaceuticals domain (86).

Also, how to apply knowledge graphs to solve problems in research

related to neurological or mental disorders is of great importance.

While available KGs for neurological and mental disorders are mainly

used for knowledge management, information retrieval and query, and

unknown relations prediction (9), some novel applications are also

under development. For example, Food4healthKG, a comprehensive

KG focusing on food, gut microbiota and mental diseases, can be used

for knowledge query and design of proper diet patterns for patients

with mental disorders (44). KGs are also important to digital twins, a

technology that aims to capture and simulate important properties and

their interaction with the environment of physical objects.

Implementing KG-based digital twins may greatly improve both

treatment and research of mental disorders, as KGs could support

more accurate capture of the wealth of information needed to perform

simulations on digital twins (9).
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In conclusion, while medical knowledge graphs have great

potentials, several important issues need to be addressed in future

work. Firstly, discovering new methods to enhance the

interpretability of medical knowledge graphs should be a top

priority. When dealing with the acquisition of missing

unstructured information from limited databases, focusing on

building a reliable information source is more crucial than simply

completing it through technical means. Especially, in the field of

neurological diseases where a professional and reliable database is

lacking, this poses a significant challenge to the construction of

professional KGs. Secondly, maintaining and updating data while

reducing costs is also a problem that demands consideration at

present. This requires exploring efficient strategies and technologies

to ensure the accuracy and timeliness of medical knowledge graphs

without incurring excessive expenses.
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