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with developmental disorders
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and Makoto Wada 1*

1Developmental Disorders Section, Department of Rehabilitation for Brain Functions, Research
Institute of National Rehabilitation Center for Persons with Disabilities, Saitama, Japan, 2International
Research Center for Neurointelligence, The University of Tokyo, Tokyo, Japan, 3Next Generation AI
Research Center, The University of Tokyo, Tokyo, Japan, 4Graduate School of Information Science
and Technology, The University of Tokyo, Tokyo, Japan
Introduction: An everyday challenge frequently encountered by individuals with

developmental disorders is auditory hypersensitivity, which causes distress in

response to certain sounds and the overall sound environment. This study

developed deep neural network (DNN) models to address this issue. One

model predicts changes in subjective sound perception to quantify auditory

hypersensitivity characteristics, while the other determines the modifications

needed to sound stimuli to alleviate stress. These models are expected to serve

as a foundation for personalized support systems for individuals with

developmental disorders experiencing auditory hypersensitivity.

Methods: Experiments were conducted with participants diagnosed with autism

spectrum disorder or attention deficit hyperactivity disorder who exhibited

auditory hypersensitivity (the developmental disorders group, DD) and a

control group without developmental disorders (the typically developing

group, TD). Participants were asked to indicate either “how they perceived the

sound in similar past situations” (Recollection task) or “how the sound should be

modified to reduce stress” (Easing task) by applying various auditory filters to the

input auditory stimulus. For both tasks, the DNN models were trained to predict

the filter settings and subjective stress ratings based on the input stimulus, and

the performance and accuracy of these predictions were evaluated.

Results: Three main findings were obtained. (a) Significant reductions in stress

ratings were observed in the Easing task compared to the Recollection task. (b)

The prediction models successfully estimated stress ratings, achieving a

correlation coefficient of approximately 0.4 to 0.7 with the actual values. (c)

Differences were observed in the performance of parameter predictions

depending on whether data from the entire participant pool were used or

whether data were analyzed separately for the DD and TD groups.

Discussion: These findings suggest that the prediction model for the Easing task

can potentially be developed into a system that automatically reduces sound-
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induced stress through auditory filtering. Similarly, the model for the Recollection

task could be used as a tool for assessing auditory stress. To establish a robust

support system, further data collection, particularly from individuals with DD,

is necessary.
KEYWORDS

auditory hypersensitivity, sensory support system, subjective sensations, machine
learning, deep neural network, filtering
1 Introduction

One of the most commonly reported challenges in the daily lives

of individuals with autism spectrum disorder (ASD) is their unique

sensory processing characteristics. These differences have been

documented since the early stages of autism research (1) and are

observed across all sensory modalities, including auditory (2, 3),

visual (4), tactile (5), taste (6), olfactory (7), proprioception (8), and

vestibular (9) processing. The Diagnostic and Statistical Manual of

Mental Disorders (DSM-5) (10) includes hypersensitivity to sensory

stimuli as a diagnostic criterion for ASD. A study using the

Adolescent/Adult Sensory Profile (AASP) (11), a measure of

sensory processing, found that 94.4% of individuals with ASD

exhibited extreme sensory characteristics that persisted

throughout their lives (12). Furthermore, atypical sensory traits

have been reported in approximately 80% of children with ASD

(13). Sensory sensitivity has also been shown to influence the

participation of individuals with ASD in social environments (14,

15). In addition, individuals with attention deficit hyperactivity

disorder (ADHD) have been found to experience both sensory

hypersensitivity and hyposensitivity (16), and studies have

suggested a shared neural basis between sensory symptoms in

ASD and ADHD (17).

Among the various sensory challenges associated with ASD,

auditory hypersensitivity is one of the most prominent. A recent

meta-analysis estimated that 40%–60% of individuals with ASD

experience persistent or lifelong auditory hypersensitivity (18). A

survey of individuals with developmental disorders, including ASD,

found that more than 50% of respondents identified auditory

problems as the most distressing sensory modality (19).

Individuals with auditory hypersensitivity often adopt coping

strategies such as wearing earplugs or earmuffs or leaving the

environment to reduce discomfort (20). Some studies have shown

that allowing children with ASD to use noise-canceling headphones

or earmuffs can lead to improved behavior (21) and reduced stress

(22). However, commercially available auditory protection devices,

such as earplugs and earmuffs, are not specifically designed for

individuals with ASD and may not be effective, particularly when

tactile hypersensitivity is also present. Additionally, withdrawing

from a noisy environment can limit social engagement and create

further challenges in social participation.
02
Sensory characteristics in ASD are highly variable among

individuals and can also fluctuate within the same individual

depending on their physical condition and environmental

context. Research has shown that scores on the Autism Spectrum

Quotient (AQ) (23), a measure of ASD traits, significantly correlate

with AASP scores (24). Other studies, using a revised version of the

Sensory Perception Quotient (SPQ) (25), suggest that sensory

characteristics vary according to ASD traits (26). Clustering

studies of individuals with autism spectrum conditions (ASC)

based on sensory characteristics have categorized them into low-

frequency, moderate-frequency, and high-frequency sensory

sensitivity groups (27). Furthermore, sensory responses can vary

due to situational factors. For example, a survey of individuals with

DD, including ASD, found that quiet environments amplify

sensitivity to even subtle sounds, and individuals tend to be more

sensitive to noise when they are feeling unwell or anxious (28).

Given the complexity of sensory hypersensitivity, a one-size-

fits-all approach to managing auditory hypersensitivity is unlikely

to be effective. Therefore, developing a personalized system that

adapts to each individual’s sensory profile and autonomously

assesses auditory sensitivity or modifies sound stimuli to reduce

stress based on situational factors—such as physical condition and

environmental context—could significantly enhance the quality of

life (QoL) of individuals with DD, including ASD.

This study aims to design an artificial intelligence-driven system

for assessing and mitigating auditory hypersensitivity using

machine learning techniques, specifically deep neural networks

(DNNs) (29). A DNN is a machine learning model that predicts

output variables based on input data. It consists of multiple layers

between input and output, allowing it to learn hierarchical

representations of data and capture complex relationships

between variables. A trained DNN can also extract meaningful

relationships between inputs and outputs, making it a valuable tool

for modeling sensory responses.

Previous studies have examined sensory perception by asking

participants to modify sensory stimuli to match their past

experiences (30–32). The present study adopts a similar approach,

using auditory stimuli to collect data on auditory sensitivity and

train machine learning models. However, while previous research

focused primarily on sensory reproduction, the present study

extends this work by also conducting an experiment in which
frontiersin.org
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participants modify auditory stimuli to alleviate stress caused by

auditory hypersensitivity. Based on these findings, this study

develops a model capable of predicting optimal filter settings to

mitigate auditory stress. Specifically, we evaluate (1) the

performance and accuracy of the auditory sensitivity prediction

model and (2) the effectiveness, performance, and accuracy of the

filter-setting prediction model for stress relief.
2 Materials and methods

2.1 Participants

This study included 28 individuals with developmental

disorders (DDs) (ASD: 14, ASD+ADHD: 7, ASD+ADHD

+Specific Learning Disorder: 2, ADHD: 4, ASD suspicion: 1) and

29 typically developing (TD) individuals. One ASD participant was

suspected of having comorbid ADHD and two ADHD participants

were suspected of having comorbid ASD. In the DD group, two

participants were also diagnosed with obsessive-compulsive

disorder (OCD), one had developmental coordination disorder

(DCD) with orthostatic dysregulation, two had bipolar disorder,

and three had depression. In the TD group, one participant had

been diagnosed with an adjustment disorder, and another had been

diagnosed with depression. Participants were informed of the

purpose of the study after the debriefing process. Written

informed consent was obtained from all participants before they

engaged in the experiment. In cases where responses took more

than 3 hours, the experiment was divided into 2 days. Two DD

participants completed the experiment over 2 days. In addition to

the 57 participants in total, due to technical issues, one participant

joined the experiment, but data could not be obtained. Another two

participants could not complete the experiment.

Many participants were residents near the institute or students

at the College of the National Rehabilitation Center for Persons

with Disabilities. Participants were recruited under the following

conditions: (1) diagnosis: (a) diagnosed with (or suspected to have)

a developmental disorder (ADHD, ASD) and self-reported

experience of auditory hypersensitivity in daily life (DD group) or

(b) no diagnosis of a developmental disorder (TD group); (2)

independence and consent: able to live independently and capable

of providing informed consent; (3) age range: between 20 and

64 years.

This study was approved by the Ethics Committee of the

National Rehabilitation Center for Persons with Disabilities

(approval number: 2023-094).
2.2 Apparatus and stimuli

The experimental program was developed using Swift 5 on Xcode

and installed on an iPad (9th generation, iPad OS 15.6). AudioKit1, an
1 https://audiokitpro.com/
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open-source audio framework for Swift, was used to implement audio

playback and filtering. Audio stimuli were presented to participants

using Bluetooth headphones (Logicool, Zone Vibe 100). All

experimental procedures, except for explanations and informed

consent, were conducted in a soundproof room.

The audio stimuli used in the experiment are (1) available for

free under the Pixabay license from Pixabay2 (45 out of 62 audio

files) and (2) were collected using an iPhone XR microphone (17

out of 62 audio files). Each audio file was sampled at 44,100 Hz, and

the duration of each file was adjusted to 20 seconds. If the original

file exceeded 20 seconds, it was trimmed at that length. If it was

shorter, it was looped until it exceeded 20 seconds, after which it

was trimmed to the required duration. Each audio stimulus was

paired with a corresponding photo, collected from the following

sources: (1) Pixabay (43 out of 62 photos), (2) CC0 (Creative

Commons 0) license (1 out of 62 photos), and (3) an iPhone XR

camera (18 out of 62 photos). One of the stimulus pairs consisted of

an audio file from Pixabay combined with a photo taken by the

researchers. A total of 62 audio-visual stimulus pairs were used.

Each pair was categorized into four types:
2 h
a. Training set (30 pairs): used for collecting data to train

the model.

b. Training reserve (10 pairs): used when a participant was

unfamiliar with an audio stimulus in (a), allowing for an

alternative selection.

c. Test set (12 pairs): used for model evaluation; these data were

excluded from the training dataset.

d. Test reserve (10 pairs): used when a participant was

unfamiliar with an audio stimulus in (c), allowing for an

alternative selection.
To ensure comprehensive coverage of auditory sensitivities,

stimuli were selected based on characteristics known to induce

stress in individuals with auditory sensitivity (19). The selected

stimuli exhibited at least one of the following characteristics:

“Sudden sounds,” “Steady noise that interferes with selective

hearing,” “Environment with multiple sounds,” or “Strong sound.”

Additionally, to prevent bias in the training data for the machine

learning model, scenes that were unlikely to provoke auditory

hypersensitivity were also incorporated into the selection. The

determination of specific sound types was guided by existing

questionnaire studies (28). Root mean square (RMS) values were

calculated for each stimulus using Librosa v0.10.2, a Python package

for audio analysis. A comparison of RMS values between category (a)

and category (c) above was conducted using the Kolmogorov–

Smirnov test via Scipy v1.11.4 (33). The null hypothesis, which

proposed that the distributions of the two groups differed

significantly, was rejected (p <.005), confirming that the training

and test data followed statistically comparable distributions.

The auditory stimuli included in each category are shown in the

Supplementary Material (Supplementary Table S1).
ttps://pixabay.com/ja/
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The Japanese version of the AQ (34) assesses autistic traits.

Participants answered 50 questions on a scale of 1 to 4, with 1 being

true and 4 false. The questions included those that would be

answered “true” and “not true” by the DD group. The Japanese

version of the AASP (35) estimates sensory characteristics. The

AASP is a 60-question questionnaire that evaluates the frequency of

behaviors in six categories: taste/smell processing (Q1-8),

movement (Q9-16), visual processing (Q17-26), touch processing

(Q27-39), activity level (Q40-49), and auditory processing (Q50-

60). Participants were asked to answer each question on a scale of 1–

5, with 1 being the most frequent and 5 being the least frequent. The

scores were recorded in four areas: low registration, sensation

seeking, sensation sensitivity, and sensation avoidance. In

addition to these four types of scores, we recorded the total score

for the questions in the auditory field.
2.3 Procedures

After informed consent was obtained, participants entered a

soundproof room and were seated at a table. An iPad with the

experimental system installed and Bluetooth headphones were

placed on the table. Participants received a tutorial on performing

the experimental task using voice-photo pairs that were not

included in the analysis but were similar to those used in the

actual experiment. They then began the experimental task after

answering a series of preliminary questions regarding their age, sex,

subjective level of physical and mental fatigue for the day (on a scale

of 1–7), and sleep duration (in minutes).

Participants were able to adjust the sound from the

experimental system for each stimulus using various filters. They

completed two tasks: a Recollection task, in which they were asked

to “reproduce the sensation when they had heard the same or a

similar sound in their own life,” and an Easing task, in which they

were asked to “change the sound in such a way that it would be less

stressful to listen to for a prolonged period.” The filter settings in the

Recollection task were interpreted as an indirect representation of

how the participant’s subjective hearing differed from the original

sound. In contrast, the filter settings in the Easing task were

considered an indication of how the sound should be modified to

sufficiently reduce stress. Each Recollection task was followed by its

corresponding Easing task for a given sound. Participants were

presented with a total of 42 auditory stimuli: 30 stimuli from the

“Training” dataset during the first session and 12 stimuli from the

“Test” dataset. In addition, three auditory stimuli in the “Training”

data were repeatedly presented to the participants to check

the reproducibility.
2.3.1 Recollection task
Figure 1 shows a sample screen from the experimental

application during the Recollection task. While this screen was

displayed, the audio corresponding to the presented pictures was
Frontiers in Psychiatry 04
played in a continuous loop, modified using various filters. Each

audio stimulus was looped for 20 seconds, with a fade-in effect

applied during the first second and a fade-out effect during the last

second. The row of icons in the center of the screen served as a filter

selection menu, allowing participants to switch between filters by

sliding their fingers left or right across it. Below the icon row, a

slider knob was provided for adjusting filter parameters, with real-

time modifications reflected in the audio playback. The top row of

buttons on the screen had the following functions, arranged from

left to right:
a. Skipping the task for a specific auditory stimulus.

Participants were instructed to use this button only if

they were unfamiliar with the presented audio stimulus.

Upon pressing the button, a preliminary auditory stimulus

was immediately played, ensuring that the total number of

tasks performed remained unchanged. A total of 31 data

points were skipped, and corresponding spare sounds

were presented.

b. All filter settings are restored to their default settings.

c. Pausing of auditory stimuli.

d. A description of the selected filter is displayed at the center

of the screen (the description is hidden when this button is

pressed again).

e. Finish filter settings and proceed to the next screen.
Table 1 presents the types and descriptions of auditory filters

available to participants during the Recollection task. The filter

chain from the input auditory stimuli to the final output is depicted

in Figure 2. The auditory filters used in this study were based on

those from a previous study (32), with additional modifications.

The iPad volume setting remained constant throughout the

experiment. However, if the device volume was changed during

the experimental task, it was adjusted by A (dB) based on the iPad’s

initial volume setting (Equation 1) before applying the filters (see

Figure 2, adjustment of base volume). A (dB) was calculated using

Equation (1), where o is the volume setting of the iPad.

A =
2:0

0:0625
(0:5 − o) (1)

After completing the auditory filtering adjustments,

participants were asked to rate their subjective stress evaluation

for the sound on a seven-point scale, assessing the degree to which

they had experienced (a) overall stress (Overall), (b) pain in the ears

or other parts of the body (Painful), (c) loss of attention

(Distracting), (d) anxiety (Anxious), and (e) difficulty to attend

the sounds they originally wanted to do so due to the sounds in the

situation (Impeditive) when they had encountered a situation

similar to this audio in the past. In addition to these five

questions, the participants used a virtual keyboard to enter their

impressions of their voices in the free-description field. Since all the

questions were presented in Japanese, Supplementary Table S2 in
frontiersin.org
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the Supplementary Material presents the English translations of

the questions.

After the experiment, the parameters of the auditory filters were

scaled between 0 and 1 using min-max normalization, where the

maximum and minimum values for each filter were applied as

shown in Table 2. The same min-max normalization process was

applied to the five subjective stress evaluation ratings, with the

maximum value set to 7 and the minimum value set to 1.
Frontiers in Psychiatry 05
2.3.2 Easing task
The screen structure and operation of the Easing task were

largely similar to those of the Recollection task, with a few

modifications. (1) Since participants had already completed the

Recollection task, the option to skip the audio stimulus was

removed. (2) Certain effects and filters differed from those in the

Recollection task. Specifically, participants were now able to

suppress or amplify audio, either globally or by frequency.
FIGURE 1

The screen of the experiment application. On this screen, the sound is played in a continuous loop. There is a picture that was paired with the sound
and the text above the picture provides a brief explanation of the sound (in English, “This is now the fifth of a total of 45 trials: Crosswalk with
warning tones”) and what the participants are asked to do (in English, “Please recall a situation resembling this sound from your memory and
reproduce how it felt”). Participants could select a filter by swiping through the icons in the middle of the screen and adjust the filter parameters by
using the slider below the icons (On this screen, there are “Water effect”, “Amplify (All)” and “Amplify (Low)” filters). Parameter adjustments were
applied to the sound in real time. To finalize filter settings, participants pressed the button in the top right corner of the screen. In the Recollection
task, participants who had no prior experience with a similar sound could press the button in the top left corner to skip the stimulus.
frontiersin.org
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TABLE 1 List of auditory filters used in the Recollection task.

Filter name Filter description Default value Range of value

Amplify (All) This filter applies a stereo fader which amplifies a whole volume of sound.
Participants can change the gain.

1.0 1.0 – 5.0

Amplify (Low) This filter amplifies sounds at lower frequencies (Below 200Hz).
A second-order tunable equalization filter that provides a peak/notch filter for
building parametric/graphic equalizers (36). Bandwidth is 100Hz and the center

frequency is 100Hz. Participants can change the gain (dB).

1.0 1.0 – 5.0

Amplify (Medium) This filter amplifies sounds at medium frequencies (200 – 2,000Hz).
A second-order tunable equalization filter that provides a peak/notch filter for

building parametric/graphic equalizers. Bandwidth is 900Hz and the center frequency
is 1,100Hz. Participants can change the gain (dB).

1.0 1.0 – 5.0

Amplify (High) This filter amplifies sounds at higher frequencies (above 2,000Hz).
A second-order tunable equalization filter that provides a peak/notch filter for
building parametric/graphic equalizers. Bandwidth is 9,000Hz and the center

frequency is 11,100Hz. Participants can change the gain (dB).

1.0 1.0 – 5.0

Noise This filter adds white noise to the original sound. Participants can change
the amplitude.

0.0 0.0 – 0.05

Tinnitus This filter adds a tinnitus-like sine wave sound to the original sound. Participants can
change the amplitude and frequency.

0.1 (Amplitude)
1,000.0 (Frequency)

0.0 – 0.05 (Amplitude)
20.0 – 5,000.0 (Frequency)

Band reject This filter applies a Butterworth second-order IIR filter. Participants can change the
width and center frequency.

0.1 (Width)
1,000.0 (Center)

0.0 – 5,000.0 (Width)
20.0 – 5,000.0 (Center)

Echo This filter applies reverb to the sound to make it sound like it is emanating in an echo
chamber. Participants can change the dry/wet mix rate (a larger rate means

stronger reverb).

0.0 0.0 – 1.0

Flanger This filter applies a stereo flanger, which is a filter that adds a slightly delayed original
audio signal to the sound. Participants can change the dry/wet mix rate and

frequency (modulation frequency in Hz).

0.0 (Power)
0.1 (Frequency)

0.0 – 1.0 (Power)
0.1 – 10.0 (Frequency)

Water effect This filter modifies the sound so that it is as if the participants are listening to it
underwater.

This filter consisted of two second-order tunable equalization filters: (1) with a center
frequency of 260Hz and bandwidth of 240Hz, (2) with a center frequency of 4,400 Hz

and bandwidth of 3,600Hz. Participants can change the gain to (1) larger or
(2) smaller.

0.0 0.0 – 1.0
F
rontiers in Psychiatry
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Words in bold in each description highlight the type of parameters that participants can change for each filter.
FIGURE 2

A graphical representation illustrating how the input auditory stimulus is modified by various filters in the Recollection task.
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Additionally, two new filters, “Pitch shift” and “Change

suppression,” were introduced. The modified filters, newly added

filters, and their detailed descriptions are presented in Table 2. The

filter settings applied in the Recollection task were carried over to

the Easing task, ensuring that participants could adjust the audio in

a way that most effectively mitigated their sensory discomfort. After

adjusting the filter settings, participants reassessed the subjective

stress evaluation for the audio, reflecting the changes experienced
Frontiers in Psychiatry 07
due to the applied filter settings in the Easing task. A graph

illustrating the chain of filters from the original auditory stimulus

to the final output is shown in Figure 3.

After the experiment, all auditory filter parameters were scaled

between 0 and 1 using min-max normalization, with the minimum

and maximum values of each filter parameter applied as shown in

Table 2. Min-max normalization was also performed on the sound

ratings, as in the Recollection task.
TABLE 2 List of auditory filters used in the Easing task.

Filter name Filter description Default value Range of value

Volume
change (Low)

This filter changes the volume of sounds at lower frequencies (Below 200Hz).
Applying stereo fader, after applying low-pass Butterworth second-order IIR filter

with 200Hz of cutoff frequency to the original sound.
Participants can change the gain.

1.0 0.0 – 5.0

Volume
change (Medium)

This filter changes the volume of sounds at medium frequencies (200 – 2,000Hz).
Applying stereo fader, after applying band-pass Butterworth second-order IIR filter
with 1,100Hz of center frequency and 900Hz of bandwidth to the original sound.

Participants can change the gain.

1.0 0.0 – 5.0

Volume
change (High)

This filter changes the volume of sounds at higher frequencies (above 2,000Hz).
Applying stereo fader, after applying high-pass Butterworth second-order IIR filter
with 2,000Hz of cutoff frequency to the original sound. Participants can change

the gain.

1.0 0.0 – 5.0

Pitch shift This filter applies a Faust-based pitch shifter and makes the pitch of the sound higher
or lower. Participants can change the amount of pitch shift (in semitones).

0.0 -12.0 – 12.0

Change suppression This filter is activated when it detects the sound gets louder suddenly and suppresses
the sound temporally by applying a stereo fader.

Participants can change the threshold to activate this filter, how much gain will be
applied when this filter suppresses the sound (Suppression), and how long it takes

for the suppression to fade completely [Back time (s)].
The rate at which the sound becomes louder is determined by finding the amplitude
difference from one frame to the previous frame over 16 frames (approximately 372
milliseconds), and calculating their average. If the average is more than the threshold,
this filter is activated and applies suppression gain to the sound. An indicator of how
the sound is getting louder is shown to participants (Due to differences in versions of
AudioKit, one participant experienced different behavior from the indicator. Since

there were no effects on the sound, we did not exclude the data from that participant).

0.0015 (Threshold)
1.0 (Suppression)
0.05 (Back time)

0.0 – 0.015 (Threshold)
0.2 – 1.0 (Suppression)
0.05 – 10.0 (Back time)

Volume change (All) This filter applies a stereo fader that changes the whole volume of the sound.
Participants can change the gain. Unlike in the Recollection task, participants can

decrease the gain to below 1.0.

1.0 0.0 – 5.0

Noise Same as that in the Recollection task.
Participants can change the amplitude.

0.0 0.0 – 0.05

Tinnitus Same as that in the Recollection task.
Participants can change the amplitude and frequency (Hz).

0.1 (Amplitude)
1,000.0 (Frequency)

0.0 – 0.05 (Amplitude)
20.0 – 5,000.0 (Frequency)

Band reject Same as that in the recollection task.
Participants can change the width (Hz) and center frequency (Hz).

0.1 (Width)
1,000.0 (Center)

0.0 – 5,000.0 (Width)
20.0 – 5,000.0 (Center)

Echo Same as that in the Recollection task.
Participants can change the dry/wet mix rate.

0.0 0.0 – 1.0

Flanger Same as that in the Recollection task.
Participants can change the dry/wet mix rate and frequency (modulation frequency

in Hz).

0.0 (Power)
0.1 (Frequency)

0.0 – 1.0 (Power)
0.1 – 10.0 (Frequency)

Water effect Same as that in the Recollection task.
Participants can change the gain.

0.0 0.0 – 1.0
Words in bold in each description highlight the type of parameters that participants can change for each filter.
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2.4 Analysis

2.4.1 Reproducibility check
Following previous research (32), We examined the auditory

filters whose parameters were changed from the initial values for the

first and second trials in the three auditory stimuli that were

repeatedly presented. We calculated the ratio of the total number

of filters changed in the first and second trials to the total number of

filters changed in only one of the first and second trials for each

participant as the reproducibility value. The reproducibility values

were 0.39 ± 0.023 (mean ± standard error) in the Recollection task

and 0.41 ± 0.024 in the Easing task, respectively.

2.4.2 Deep learning model for predicting results
of each task

The deep learning model for each task was trained using the

following data inputs:
Fron
a. Features of auditory stimuli. We utilized YAMNet, an

existing speech classification model based on MobileNet

(37), and trained on the AudioSet dataset (38). A pre-

trained model based on TensorFlow (39) was obtained from

TensorFlow Hub, a repository of existing models. The
tiers in Psychiatry 08
auditory stimulus was converted to a sample rate of

16,000 Hz and fed into YAMNet, producing output

features. Consequently, 41 feature frames were extracted

from 20 seconds of audio, with each frame containing

1,024 features.

b. Condition of participants. The model incorporated

participant-specific variables, including sleep duration (in

minutes) and subjective ratings of physical and mental

fatigue (1–7 points). The sleep duration was normalized

within the range of 0 to 1,440 minutes, while physical/

mental fatigue scores were scaled between 1 and 7.

c. Participant characteristics. This included age, one-hot

encoded sex, AQ score, AASP scores across four domains,

and the total AASP score for auditory processing (Q50–60).

d. Experimental environment data. The volume correction

parameter from Equation (1) was normalized using min-

max scaling, with the maximum set to 16 and the minimum

to −16. Additionally, the Bluetooth profile type used during

the task (BluetoothA2DP or BluetoothHFP) was included

as an input feature.

e. Additional inputs exclusive to the Easing task model. For the

Easing task, the model also received filter settings and
FIGURE 3

A graphical representation illustrating how the input auditory stimulus is modified by various filters in the Easing task.
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Fron
subjective stress evaluations from the Recollection task as

additional input features. The output of the model

consisted of predicted values for each task, including

filter-setting parameters and subjective stress evaluations

for the auditory stimulus.
To ensure consistency, input data from categories (b) and (c)

and the volume correction parameter were scaled to the range of 0–

1 using their respective minimum and maximum values. For age

normalization, the maximum and minimum values were set to 64

and 20, respectively, following the experiment’s participant

recruitment guidelines.
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The model was trained using data from the Training and

Training (Reserve) auditory stimuli and evaluated on the Test and

Test (Reserve) auditory stimuli. To ensure that the model generalizes

to novel auditory stimuli rather than memorizing participant-specific

characteristics, the dataset was split by stimulus rather than by user.

As a potential future use case, we envision fine-tuning a pre-trained

model on a large dataset of users and applying it to new users to

predict stress responses and optimize filter settings for unfamiliar

auditory stimuli encountered in daily life.

Model training was performed using the error backpropagation

method. For each training iteration, a batch of data was input into

the model, which generated predictions. Model parameters were
FIGURE 4

The architectural structure of the deep learning model designed to predict filter settings and subjective auditory stress evaluations.
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then updated in a chain from the output layer back to the input

layer based on the computed loss. The mean squared error (MSE)

loss function was used to calculate losses, while the Adam optimizer

(40) determined parameter updates. Training was conducted for

300 epochs, with a batch size of 24.

The model architecture is depicted in Figure 4. The auditory

stimulus features were first transformed into one-dimensional

representations using a recurrent neural network (RNN), a

structure designed for processing time-series data. Specifically,

this study employed Bi-LSTM—a bidirectional version of long

short-term memory (LSTM) (41). By combining LSTMs

operating in forward and reverse directions, Bi-LSTM enables the

model to capture temporal dependencies more effectively (42).

The Bi-LSTM hidden state was then combined with the inputs

from (b), (c), and (d). For the Easing task prediction model, the

filter settings from the Recollection task and the five subjective

sound evaluation ratings were also included. This combined feature

set was then fed into the dense layer. The sigmoid-weighted linear

unit (SiLU) function was used as the activation function for each

dense layer (43). To prevent overfitting, dropout regularization (44)

was applied, randomly disabling a specified percentage of neurons

in each training session. Additionally, batch normalization (45) was

introduced, which normalizes the mean and variance of incoming

data per batch, facilitating more stable and efficient model learning.

After model training, all test data were input into the trained

model, and correlation coefficients were computed between the

predicted values and the true values to assess model performance.

The mean absolute error (MAE) was also calculated as a measure of

accuracy. The Pearson correlation was applied to the filter settings,

while the Spearman correlation was used for the five sound

evaluation scores, as they are ordinal variables. The model was

trained/evaluated in three different ways: (a) using data from all

participants, (b) using data from the DD group only, and (c) using

data from the TD group only, and the results were compared.

All model building and analyses were conducted using Python

v3.10.12. Apart from YAMNet, which was used for extracting

auditory stimulus features, all deep learning models were

implemented using PyTorch v2.1.0 (46). Statistical tests, including

the Pearson and Spearman correlations, the Shapiro–Wilk test, and

the Mann–Whitney U test, were conducted using SciPy v1.11.4 (33).

Numerical analyses were performed using Scikit-learn v1.2.2 (47), a

machine-learning library. The model training and all statistical

analyses were conducted on Google Colab, utilizing a Tesla T4 GPU.
3 Results

In total, there were 2,394 (42 auditory stimuli x 57 participants)

trials in each task (Recollection and Easing tasks). Due to technical

problems, data for two auditory stimuli could not be recorded for

one participant, reducing the total number of data points available

for analysis to 2,392. Therefore, 2,392 data points collected from 57

participants were included in the final analysis.
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Because several parameters did not follow a normal

distribution, as determined by the Shapiro–Wilk test, all

comparisons between the DD and TD groups were performed

using the non-parametric Mann–Whitney U test. The results

showed consistent significant differences across conditions: AQ

scores, low registration scores, sensory sensitivity, sensation

avoiding, and scores for auditory processing in AASP were higher

in the DD group. However, sensation seeking did not show

significant differences between groups. Supplementary Table S3 in

the Supplementary Material provides a detailed group comparison

of characteristics between the DD and TD groups.

To evaluate model performance, each filter setting was inversely

scaled back to its original minimum and maximum values

for interpretation.
3.1 Model performance for predicting filter
settings in the Recollection task

Table 3 presents the prediction accuracy of the trained model

when evaluated on data from all participants. Additionally, it

displays the number of times each filter-setting was modified

from its initial value across the entire dataset, and separately for

the DD and TD groups.

The results indicate that the model demonstrated relatively high

prediction performance for the following filters: Amplify (All,

Medium, High), Band Reject (Width), and Flanger (Frequency).

However, some filters such as Tinnitus (Amplitude) and Flanger

(Frequency) were rarely used, making their performance estimates

unreliable in this study. When evaluating performance separately

for the DD and TD groups, the model showed higher predictive

performance in the DD group for Amplify (All, Low, Medium, and

High), Tinnitus (Amplitude), and Band Reject (Width). In contrast,

predictive performance tended to be lower in the TD group.
3.2 Model performance for predicting filter
settings in the Easing task

Table 4 presents the prediction accuracy of the trained model

when evaluated on data from all participants, along with the

number of times each filter setting was modified from its initial

value in the DD and TD groups.

The results indicate that the model exhibited moderate

predictive performance for Volume Change, Pitch Shift, and

Change Suppression. The performance for Tinnitus (Frequency)

was exceptionally high, but its reliability was low due to the filter

being rarely used. Performance for Volume Change (Low and

Medium) was significantly lower when using data from only the

DD group compared to using data from all participants. Amplify

(Low and Medium) and Change Suppression (Back time)

performed better when using only the TD group’s data. However,

the MAE for each filter did not change drastically.
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3.3 Effect of the Easing task on subjective
stress evaluation of auditory stimuli

Figure 5 (Supplementary Table S4 in the Supplemental

Information) compares the average subjective stress evaluation

scores for auditory stimuli across participants, between the

Recollection and Easing tasks. A Shapiro–Wilk test was first

conducted on each subjective stress evaluation measure to

confirm whether the data followed a normal distribution. A

paired t-test was then performed on the entire Recollection/

Easing task dataset for each evaluation item. The results showed

that all five evaluation ratings were significantly lower in the Easing

task than in the Recollection task under both inclusion and

exclusion conditions (p <.001). This finding suggests that the

stress-relieving filter settings applied in the Easing task effectively

reduced participants’ perceived stress when listening to the

auditory stimuli.
3.4 Model performance for predicting
subjective stress evaluation of sounds

Table 5 presents the prediction accuracy of the trained models

for subjective stress evaluation in the Recollection and Easing tasks,
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based on data from all participants and separately for the DD and

TD groups. In the Recollection task, models trained on only the DD

group’s data showed better performance for predicting totally,

compared to models trained on data from both groups. However,

this improvement came at the cost of larger MAE values. In

contrast, models trained on only the TD group’s data exhibited

inferior prediction performance across all evaluation measures but

with smaller MAE values.

In the Easing task, lower MAE values were observed compared

to the Recollection task. However, similar to the Recollection task,

MAE values were larger when trained on only the DD group’s data,

while smaller MAE values were obtained when trained on only the

TD group’s data.
4 Discussion

In this study, participants with ASD or ADHD and auditory

hypersensitivity were asked to modify auditory stimuli using

various audio filters to either reproduce their own sensory

experience (Recollection task) or reduce stress (Easing task). They

also provided subjective stress evaluations for the filtered sounds in

both tasks. The results showed that subjective stress ratings were

significantly lower in the Easing task compared to the Recollection
TABLE 3 Performance and accuracy of the model in predicting filter settings and filter usage frequency in the Recollection task.

Filter Number of times a filter was used in Training
data/Test data

Performance for Test data Accuracy for Test data

All (1,709/
683 data)

DD (839/
335 data)

TD (870/
348 data)

All DD TD All DD TD

Amplify (All) 967/360 545/206 422/154 0.548 (***) 0.601 (***) 0.410 (***) 0.599 0.777 0.478

Amplify(Low) 775/250 409/118 366/132 0.340 (***) 0.432 (***) 0.180 (***) 0.514 0.531 0.497

Amplify
(Medium)

773/267 395/135 378/132 0.483 (***) 0.602 (***) 0.259 (***) 0.435 0.415 0.369

Amplify(High) 838/283 426/147 412/136 0.450 (***) 0.555 (***) 0.474 (***) 0.680 0.588 0.595

Noise 441/152 279/107 162/45 0.399 (***) 0.519 (***) 0.351 (***) 0.00229 0.00251 0.00212

Tinnitus
(Amplitude)

186/59 135/47 51/12 0.310 (***) 0.544 (***) 0.0678 0.000955 0.00134 0.000554

Tinnitus
(Frequency)

252/42 131/20 121/22 0.313 (***) 0.0505 0.321 (***) 106 94.3 140

Band
reject (Width)

588/156 254/76 334/80 0.665 (***) 0.862 (***) 0.479 (***) 466 404 396

Band
reject (Center)

330/65 142/22 188/43 0.223 (***) 0.269 (***) 0.214 (***) 181 102 231

Echo 455/171 282/115 173/56 0.405 (***) 0.476 (***) 0.321 (***) 0.0527 0.0598 0.0414

Flanger (Power) 209/37 161/29 48/8 0.302 (***) 0.203 (***) 0.198 (***) 0.0267 0.0422 0.00922

Flanger
(Frequency)

148/23 126/19 22/4 0.477 (***) 0.606 (***) 0.120 (*) 0.184 0.245 0.0723

Water effect 182/27 108/20 74/7 0.134 (***) 0.144 (**) 0.0452 0.0300 0.0392 0.0224
fron
(*p<0.05, **p<0.01, ***p<0.005).
The table presents the Pearson correlation coefficients between the model-predicted values and actual filter settings (representing performance) and the mean absolute error (MAE) (representing
accuracy). Additionally, it includes the number of times each filter was used during the Recollection task.
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task, suggesting that a predictive model capable of optimizing

stress-relieving filter settings could lead to a system that

automatically alleviates auditory stress in various environments.

To this end, we developed a DNN model that predicts filter settings

and subjective stress evaluations based on auditory stimuli and

participant conditions in both tasks. The model demonstrated

moderate predictive performance, particularly for individual

subjective stress evaluations, suggesting its potential application in

estimating perceived stress responses to sound.

Although our experimental system was designed primarily for

participants with ASD or ADHD and auditory hypersensitivity, the

results suggest that the model’s predictive performance in some

parameters is lower when trained only on DD group data. This

implies that differences in setting trends between the DD and TD

groups and improving prediction accuracy and performance may

require a specialized training approach that allows the model to learn

participant-specific attributes while utilizing a large dataset. A possible

approach is to first train the model on the entire dataset and then

introduce a branched network structure to fine-tune predictions for

different participant subgroups (48). Additionally, we found that MAE
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values were relatively low compared to the range offilter settings. Based

on this, if an auditory hypersensitivity alleviation system is developed

from our model rather than predicting filter settings as continuous

scalar values, a classification-based approach may yield better results.

Specifically, dividing the setting range into discrete levels (e.g., 5–7

categories) and predicting the most appropriate level for each user

could improve usability and accuracy.

The analysis also revealed that filter usage frequency varied widely

across filter types in both the Recollection and Easing tasks. This

suggests that the model’s learning process is influenced by filters that

were rarely used, potentially leading to biases. One solution to this

problem is to apply the Mixture of Experts (MoE) approach (49, 50) in

which a gating network assigns different sub-models (“experts”) to

specific tasks. In our case, the gating network could first predict whether

a filter will be used. If a filter is selected, a specialized expert model

would then predict its optimal settings. This hierarchical approach

could lead to more efficient learning and improved predictive accuracy.

To ensure user trust and practical applicability, it is essential to

visualize how auditory stimuli and participant conditions influence

subjective sensations. Explainable AI (xAI) techniques, which
TABLE 4 Performance of the model in predicting filter settings and filter usage frequency in the Easing task.

Filter Number of times a filter was used in
Training data/Test data

Performance for Test data Accuracy for Test data

All (1,709/
683 data)

DD (839/
335 data)

TD (870/
348 data)

All DD TD All DD TD

Volume change (Low) 964/335 457/163 507/172 0.320 (***) 0.233 (***) 0.411 (***) 0.427 0.461 0.423

Volume
change (Medium)

864/299 388/137 476/162 0.341 (***) 0.215 (***) 0.408 (***) 0.291 0.352 0.274

Volume change (High) 1122/400 517/175 605/225 0.416 (***) 0.437 (***) 0.423 (***) 0.370 0.315 0.386

Pitch shift 558/135 290/70 268/65 0.429 (***) 0.513 (***) 0.419 (***) 1.054 1.114 1.082

Change
suppression
(Threshold)

593/191 347/107 246/84 0.560 (***) 0.624 (***) 0.465 (***) 0.000210 0.000232 0.000185

Change
suppression
(Suppression)

607/197 358/111 249/86 0.452 (***) 0.529 (***) 0.423 (***) 0.138 0.137 0.124

Change suppression
(Back time)

188/49 122/27 66/22 0.426 (***) 0.294 (***) 0.641 (***) 0.553 0.701 0.414

Volume change (All) 992/374 462/180 530/194 0.414 (***) 0.435 (***) 0.396 (***) 0.303 0.295 0.324

Noise 129/26 76/13 53/13 0.0984 (*) 0.150 (**) 0.285 (***) 0.000878 0.00137 0.000762

Tinnitus (Amplitude) 27/4 22/4 5/0 0.0230 0.060 NA 0.000258 0.000315 0.000152

Tinnitus (Frequency) 182/22 97/16 85/6 0.644 (***) 0.702 (***) 0.298 (***) 76.7 89.6 72.9

Band reject (Width) 569/191 311/104 258/76 0.652 (***) 0.712 (***) 0.401 (***) 543 653 412

Band reject (Center) 344/81 186/47 158/34 0.199 (***) 0.321 (***) 0.0385 220 159 251

Echo 145/42 84/33 61/9 0.244 (***) 0.223 (***) 0.111 (*) 0.0350 0.0431 0.0267

Flanger (Power) 47/7 36/7 11/0 0.0310 -0.0170 NA 0.0121 0.0249 0.00508

Flanger (Frequency) 32/1 26/1 6/0 0.00808 0.00799 NA 0.0861 0.162 0.0479

Water effect 205/49 98/26 107/23 0.458 (***) 0.457 (***) 0.508 (***) 0.0698 0.0773 0.0614
fron
(*p<0.05, **p<0.01, ***p<0.005).
Performance is represented by the Pearson correlation between predicted values by the model and true values and accuracy is represented as MAE. "NA" indicates "Not available".
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provide interpretable explanations of model predictions, could

enhance user confidence in system recommendations. Several xAI

methods have been proposed (51), some of which provide local

explanations for individual predictions. For example, LIME (52)

generates linear approximations to interpret nearby data points,
Frontiers in Psychiatry 13
while SHAP (53) quantifies the contribution of each feature to a

prediction. Such techniques could be used to tailor explanations

based on user characteristics and experiences. However, for these

explanations to be useful to non-expert users, they should be

presented in an intuitive and accessible format, such as natural
FIGURE 5

Comparison of subjective stress evaluations for auditory stimuli between the Recollection task and the Easing task.
TABLE 5 Performance (Spearman correlation coefficient) and accuracy (MAE) of the model in predicting the evaluation of subjective feelings to the
sound in the Recollection task and the Easing task.

Name Performance (Significance in p-value) Accuracy

All DD TD All DD TD

Recollection task

Overall 0.467 (***) 0.566 (***) 0.304 (***) 1.288 1.443 1.176

Painful 0.425 (***) 0.583 (***) 0.233 (***) 0.863 1.087 0.517

Distracting 0.475 (***) 0.517 (***) 0.440 (***) 1.619 1.621 1.308

Anxious 0.410 (***) 0.507 (***) 0.374 (***) 1.034 1.141 0.877

Impeditive 0.512 (***) 0.635 (***) 0.384 (***) 1.257 1.420 1.041

Easing task

Overall 0.654 (***) 0.651 (***) 0.551 (***) 0.407 0.502 0.309

Painful 0.413 (***) 0.511 (***) 0.205 (***) 0.244 0.300 0.0674

Distracting 0.719 (***) 0.715 (***) 0.655 (***) 0.478 0.569 0.355

Anxious 0.539 (***) 0.590 (***) 0.473 (***) 0.315 0.340 0.242

Impeditive 0.589 (***) 0.671 (***) 0.442 (***) 0.389 0.516 0.226
(*p<0.05, **p<0.01, ***p<0.005).
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language. A potential application could follow the example of AI-

based personal assistants that provide natural language suggestions

for daily activities. For instance, a physical activity assistant system

has been proposed that adapts its recommendations based on user

behavior and provides real-time feedback via generative AI, such as

ChatGPT (54). A similar approach could be applied to auditory

hypersensitivity support systems, enabling them to offer

personalized explanations and guidance to users in an

understandable and user-friendly manner.

This study has three primary limitations. First, the sample size

was limited (a total of 57 participants) in this study. Moreover, the

complexity of the experimental task makes it difficult for

participants other than adults or adolescents and those with high-

functioning ASD to participate. The task design required

participants to manipulate more than 10 filters simultaneously

while comparing auditory stimuli and adjusting settings to reduce

stress. This complexity made participation challenging for

individuals outside the adolescent or adult high-functioning ASD

population. Additionally, certain filters, such as Tinnitus, Flanger,

and Water Effect, were rarely used, suggesting that they could be

eliminated in future experiments to simplify the procedure. Second,

participants exhibited variability in their ability to reproduce

sensory experiences, which may have been influenced by early

exposure to auditory stimuli before they were fully familiar with

the experimental procedure. Additionally, changes in Bluetooth

profiles during the experiment may have affected sound quality,

introducing another potential confounder. While including

Bluetooth profile changes as an explanatory variable in the model

could be an option, it would be preferable to control for these

changes in future experiments. Third, because the experiment was

completed within a single day, we were unable to examine how

auditory sensitivity fluctuates over time due to physical and mental

fatigue. A possible solution is to conduct online experiments that

allow participants to complete tasks over multiple days in their

natural environments. This approach could not only reduce

participant burden but also enable a more ecologically valid

investigation of fluctuations in auditory sensitivity.
5 Conclusion

The present predictive model for auditory sensitivity assessment

and filter settings for mitigation demonstrated a specific level of

predictive performance and accuracy. The model has the potential

for integration into wearable devices that analyze real-time sound

environments and issue warnings when auditory conditions

become unfavorable. Additionally, if the prediction performance

and accuracy of the Easing task are further improved, the model

could be adapted for use in digital earplugs, offering personalized

auditory support in daily life. Future work will focus on expanding

the dataset by increasing the number of participants and

incorporating a broader range of auditory stimuli. These

enhancements aim to further improve model performance and

accuracy, ultimately contributing to the development of a

practical auditory support system.
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