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1 Introduction

Since its identification in the late 1930s by the American psychiatrist and psychoanalysis

Adolph Stem (1), there has been a steeper increase in borderline personality disorder (BPD),

specifically over the past few years (2). BPD is found in around 1.7% of the general population

but in 15-28% of patients in psychiatric clinics or hospitals and in a large proportion of

individuals seeking help for psychological problems as reported in general health facilities (3).

BPD is one of the most complex disorders to date characterised by sudden shifts in identity,

interpersonal relationships, impulsive behaviour, periodic intense anger, the feeling of

emptiness, dissociative symptoms, and sometimes suicidal thoughts or behaviours (4). BPD

results in severely poor outcomes from low occupational and educational attainment to

disturbed and unsustainable relationships (5). BPD can be genetic, but the risk of developing

BPD can also be environmentally-influenced, which this article shows that it may not only be

due to an unhealthy social environment as commonly perceived, but also due to the physical

environment to a great extent.

The critical problem is that BPD is often untreatable, which urges a critical exploration of

the silent physical environment variables triggering BPD and pushing it to a critical risky crisis.

Leichsenring et al. (6) have recently explained that up to 96% of patients with BPD who seek

treatment receive at least one psychotropic drug (7), and 19% of BPD patients report taking four

or more psychotropic drugs (8). No class of psychoactive medications has been proven to be

consistently effective, and no medication has been proven for that (9). Leichsenring et al. (6)

further explained that pharmacotherapy is not recommended for the treatment of any core

symptom of BPD but only addresses discrete and severe depression, anxiety or psychotic

symptoms for the shortest possible time and in crises. The complexity of the BPD symptoms

and of effective psychoactive medication raises a critical need to understand this complexity at

the brain level, specifically since the human brain is neuroplastic and continuously adapts to its

environment. This is in line with current research efforts, where neuroscience is interested in
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understanding the connection between the physical environment and

mental health (10) and exploring how the physical environment

promotes sustainable adaptive neuroplasticity for mental health (11).

However, to date, researchers only focus on the social environment to

understand the gene-environment influences on BPD (12–14), but a

plethora of evidence, presented shortly in this paper, suggests that the

physical environment, particularly urbanism, can be the silent trigger

and chronic worsener for BPD patients or subjects with genetic

predisposition. By the early 20th century, when BPD was formally

identified, cities, particularly in the United States and England, were

undergoing rapid expansion. This may make it unsurprising that the

evidence presented in this article explains the identification of BPD at

the same time and in the same region.

This article adopts a novel perspective to prevent triggering BPD in

populations with a genetic predisposition, facilitate the treatment of

current BPD patients, reduce suicide, and show how the physical

environment can benefit the general population, who may not be as

vulnerable as BPD patients or genetically predisposed individuals.
2 Method

A comprehensive search for existing reviews was conducted using

the Scopus database with no specific timeframe ranges or subject area

limits. Firstly, the search was conducted using the keywords

((“borderline personality disorder”) AND (amygdala OR

hippocampus OR cortex)). This is because, in many people with BPD,

those three brain regions (amygdala, hippocampus, orbitofrontal cortex)

are either smaller than expected or have unusual activity levels. The

amygdala is responsible for emotional regulation, the hippocampus for

behavioral regulation and self-control, and the orbitofrontal cortex for

planning and decision-making (15). The BPD symptoms introduced

earlier are strongly associated with the functions of those affected brain

regions. Secondly, due to the rising interest in promoting

neurosustainability through the physical environment by focusing on

the same three brain regions (amygdala, hippocampus, cortex) (11),

further research was conducted using Scopus on the impact of both built

environment and natural environment on the three identified brain

regions to observe any potential association with the maladaptive

plasticity outcomes observed in people with BPD in the first search

through Scopus. The search primarily focuses on studies conducting

brain scans, while supplementary studies using EEG are searched for

and introduced when combined with MRI or relevant to enriching the

discourse. The following sections discuss BPD in the brain, urbanicity

and maladaptive plasticity outcomes related to maladaptive plasticity in

people with BPD, nature-driven neurosustainability for adaptive neural

responses and potentially reduced symptoms, and last but not least,

presenting final thoughts with potential implications and limitations at

the urban, architectural and interior scales.
3 Maladaptive neuroplasticity of brains
with BPD

The body of literature on the intersection of neuroscience with

BPD is extensive, beginning in the early twenty-first century, but
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despite the strong identification of the key brain regions with

maladaptive neuroplasticity, the main BPD problem remains

unresolved, and more BPD patients are not responding to therapy.

In the first decade of the millennium, several neurological studies

emerged that were reviewed by multiple researchers who helped

understand the neurological underpinnings of BPD. New and Siever

(16) discussed how impulsive aggression in BPD involves the lack of

the prefrontal orbital cortex exerting an inhibitory control over

aggressive behaviors in normal individuals. Teicher et al. (17) show

that severe early stress is one of the factors having the potential to alter

brain development, potentially leading to attenuated development of

the left neocortex, hippocampus and amygdala that all increase the risk

of developing several mental health problems, including but not limited

to BPD. Saper and Lake, (18) reported that women patients with BPD

have reduced hippocampal volume along with hypermetabolism in the

premotor, prefrontal, and anterior cingulate cortex. Sala et al. (19)

showed in their review that BPD may suffer hippocampal atrophy as a

result of stressors. McCloskey et al. (20) also confirmed in their review

that BPD is associated with a decrease in hippocampal volume.

However, they also showed that BPD is associated with increased

amygdala activation of general (though not personal) emotional

stimuli, along with prefrontal hypermetabolism and functional

dysregulation. Geuze et al. (21) also confirmed in their review the

relationship between BPD and reduced hippocampal volume. Brendel

et al. (22) have reviewed the evidence for dysfunction in certain

frontolimbic regions that lead to a mechanistic model of symptom

formation in BPD, proposing that future neuroimaging studies of BPD

should encompass multilevel observations including not only the

structural but also functional dynamics among others. On the

contrary, Ivanovski and Malhi (23) have shown that mindfulness-

based therapeutic interventions were evidenced using fMRI and EEG

studies to be effective in the treatment of multiple psychiatric

conditions, including but not limited to BPD. After previously

discussing the amygdala-prefrontal disconnection in BPD New et al.

(24, 25) followed up to show that the promising findings in BPD

suggest that a diminished top-down control of affective responses is

probably associated with the decreased responsiveness of midline

regions of the prefrontal cortex that underlie the affective

hyperresponsiveness in BPD. A meta-analysis confirmed the smaller

volume found in both the right and left hippocampus and amygdala of

BPD patients (26). Zimmerman and Choi-Kain (27) questioned

whether the hypothalamic-pituitary-adrenal (HPA) axis functions

normally in BPD because the activation of the HPA axis occurs to

coordinate both behavioral and physiological responses to stress,

showing through their review the possibility of developing an HPA-

axis dysfunction in BPD.

The last decade continued to build up on neuro evidence that

existed by that time, beginning with a clearer synthesis (28), and

confirming earlier findings (29) before further research started

exploring the neural underpinnings in more detail. The beginning is

with a review by Wingenfeld et al. (30), who discussed that although

stress seems to be associated with the development of BPD, the

function of the HPA axis in BPD needed to be explored further,

discussing it along with the hippocampus and amygdala and cortex

patterns discussed previously. They hypothesised that BPD is

characterised by a dysfunctional regulation of the HPA axis,
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disturbances of the serotonergic system, and the identified maladaptive

patterns of the hippocampus, amygdala and cortex. A meta-analysis

was published a couple of years later by Ruocco et al. (31), aiming to

evaluate whether the magnitude of the hippocampus and amygdala

volume decreases and their associations with BPD, showing through 11

MRI-based studies that BPD patients showed an average of 11% and

13% decrease in the hippocampus and amygdala sizes, respectively,

which is the minimum compared to earlier reports that it can even be

up to 24% lower in the hippocampus volume and 20% in the amygdala

volume (32). To explain before proceeding further, hippocampal

volume and cell number reduced 20% - 35% in patients with

depression (33), which explains the depression symptoms in BPD.

Another meta-analysis by de-Almeida et al. (34) explained that the

amygdalar volumes are reduced in patients with BPD, and this is

confirmed in BPD patients without posttraumatic stress disorder

(PTSD) but not in BPD patients with PTSD, concluding that

comorbid PTSD cannot explain the reduced amygdalar volume in

BPD patients. Besides the reduced hippocampal and amygdala volumes

in patients with BPD, O’Neill and Frodl (35) showed in their review an

exaggerated amygdala activity in BPD patients when confronted with

emotion-related stimuli. Mak and Lam (36) showed in their review that

EEG studies explain the right hemispheric deficit in high-order cortical

inhibition in patients with BPD while confirming that the brain

structures implicated in BPD are the hippocampus, dorsolateral

prefrontal cortex and anterior cingulate cortex. Later studies shifted

towards comparing the neurological underpinnings of BPD to other

disorders until a systematic and integrative review was published by

Ruocco and Carcone (37), who discussed future directions including

but not limited to gene x environment interactions, urging to explore

novel applications of neuroscience findings to treatment research.

Winsper et al. (38) showed through their systematic review some

evidence for gene x environment interactions in childhood and

adolescence as well. BPD patients with a risk of committing suicide

are evidenced to heavily have dysfunction in the fronto-tepomral

network, primarily involving reductions of grey and white matter

volumes in the prefrontal cortex (PFC), anterior cingulate, and

superior temporal gyrus (39), showing the critical role of maladaptive

neuroplasticity of those specific brain regions on suicide. White matter

pathology and alterations among BPD were also confirmed by later

reviews (40, 41). Since then, most reviews confirm earlier findings and

merely show more nuanced differences (42–49), but the main problem

remains untouched.

To date, since the key understanding of suicidal thoughts and

behaviors among BPD in response to reductions of grey and white

matter volumes in the PFC and other regions, the physical

environment has been an afterthought in BPD-related research. By

the time no more relevant research for BPD in that regard was

conducted, research on the impact of the environment (built and

natural) on neuroplasticity has been growing exponentially, providing a

plethora of neuroscience evidence on how the urban environment

heavily influences such maladaptive plasticity outcomes. Even if

treatment-induced brain plasticity is proven to effectively down-

regulate neuronal activity within the insula and amygdala with the

employment of prefrontal areas, orbitofrontal cortex, anterior cingulate

cortex and dorsolateral prefrontal cortex along with enhancing

functional connectivity between limbic and prefrontal regions (50),
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the realisation that heavy reliance on psychotherapy and drugs for a

lifetime, to possibly counterbalance the fact that a large population is

not responding to psychotherapy for BPD (51), alarms that the physical

environment is the invisible and silent architect of BPD. The

subsequent sections elaborately explain how those insights on

neuroplasticity show that BPD patients are at high risk in urban

environments, how natural environments and spatial complexity can

foster adaptive neuroplasticity for BPD patients, and what the

recommended calls to action are.
4 Physical environment factors
causing similar maladaptive
neuroplasticity outcomes found
in BPD

The previous section provided an overview of research on brains

with BPD, showing that specific brain regions explain the complexity

of BPD. This section explores the physical environment variables

associated with those brain regions and how the environment can

become a source of positive adaptive or maladaptive neuroplasticity.

Regarding the amygdala, upbringing in rural regions showed

higher right amygdala volumes compared to adolescents exclusively

brought up in cities (52), while Kühn et al. (53) revealed later that the

opposite of city living, forest coverage, and not even urban greenness,

was associated with amygdala integrity. Nonetheless, several key studies

can be relied on to prove that the urban environment can trigger

emotional dysregulation in BPD at multiple levels through chronic

exposure during adulthood. One of the earliest studies by Lederbogen

et al. (54) showed that city living was associated with increased

amygdala activity. A recent study compared two types of

environments (natural and urban), showing that a 1-hour walk in

urban and natural environments resulted in decreasing the amygdala

activation after the walk in a forest, but it remains stable after the walk

in an urban environment, urging urban planning to create more

accessible green areas to adapt urban environments to benefit

citizens’ mental health (55). Several EEG studies are found today to

be consistent with the sophisticated insights provided by fMRI

regarding the exposure to natural environments, urbanisation and

mental disorders in urban communities (56), which can be of high

relevance to the discourse in this article. Recently, Harris et al. (57)

explained in their study that not only the absence of green space but

also the presence of grey space (e.g., impervious surfaces as concrete,

streets and rooftops) was linked with increased left amygdala-DMN

connectivity, circuits implicated in affective processing, emotion

regulation, and psychopathology. In other words, grey space

increases the risk of emotion dysregulation as explained by the

authors. Furthermore, greater amygdala activity is found in response

to objects with sharp corners compared to curved ones (58–60). What

is interesting, but also strikingly challenging, is that those studies were

conducted on non-BPD patients. This urges us to consider the adverse

effects of urban environments characterized by a lack of dense green

space (forest-like coverage) and increased grey space (concrete and

streets). Such conditions can drive emotional dysregulation in BPD

patients, especially after acute daily exposure that becomes chronic.
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This is particularly concerning given that BPD patients not only exhibit

a reduced amygdala size but also show excessive amygdala activation in

response to stimuli, as previously explained. The 13% reduction in

amygdala volume in BPD patients (31) can highly be expected to be

triggered by city upbringing. Besides, environmental factors in the city

can continuously trigger amygdala hyperactivity chronically,

contributing to the hypervigilance, emotional dysregulation, and

disturbed interpersonal relationships. BPD patients can experience

engaging in higher diversity since it is proven to increase

hippocampal volume (61), but that has to be cautiously explored

with amygdala-dependent emotional dysregulation.

Hippocampal volume is also subject to atrophy in response to

city upbringing where Kühn et al. (52) showed that rural upbringing

was associated with higher volumes in the bilateral hippocampus of

adolescents compared to those brought up in cities. Nonetheless,

walkability in the environment is also associated with hippocampus

volume. For instance, Cerin et al. (62) explained that each unit in

walkability within 1 km radius residential buffer results in 0.038 to

0.043 cm3 greater right hippocampal volume. Cities are even rarely

complex to navigate, while research shows that navigation training,

with the effect of walking excluded, shows an increase in right

hippocampus volume followed by a return to baseline, protecting

the hippocampus from volume decline (63). Geospatial

environmental complexity has been proven as well recently to

have positive effects on various brain regions including the

hippocampus (64). Walking itself is proven to increase

hippocampal volume (65). Knowing that BPD patients show 11%

decrease in hippocampus volume compared to health subjects (31),

reliance on transportation, reduced walkability potential in cities,

and low complex navigation can have dramatic adverse effects on

hippocampus volume.

Regarding the cortical regions identified (premotor, prefrontal

and anterior cingulate cortex), Dadvand et al. (66) showed that

children with lifelong exposure to greenness were positively

associated with grey matter volume in the left and right prefrontal

cortex and in the left premotor cortex and with white matter volume

in the right prefrontal region, in the left premotor region, and in both

hemispheres. Furthermore, Kühn et al. (67) showed in their study on

children’s upbringing (200m buffer) that there is a positive correlation

between grey matter volume in various prefrontal clusters and green

open space coverage (with sky views), but a negative association

between within prefrontal clusters for tree cover density. Those

studies indirectly provide very critical information on potential

contribution of cities into the development of BPD where low

exposure to greenness along with the existence of high-rise

buildings and minimal setbacks inhibit skyviews and potentially

lead to increased risk of BPD. Furthermore, Dzhambov et al. (68)

show that the Normalised Difference Vegetation Index (NDVI)

(500m buffer) is positively associated with average cortical thickness

across both hemispheres among adults, more specifically in several

gyri across the prefrontal cortex. Kühn et al. (69) show in their study

that there is a negative association between urban fabric coverage and

a positive association between urban green coverage and grey matter

volume in perigenual/subgenual anterior cingulate cortex (p/sACC)

among older adults (1 km buffer). Additionally, Baena-Extremera

et al. (70) showed that people who exercise in green space exhibited
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increased thickness in the right anterior cingulate cortex (rACC).

Collectively, those studies assert the importance of exposure to green

space and sky views for the prevention of triggering BPD in people

with genetic predisposition and preservation of a positive adaptive

neuroplasticity across the course of life.

Last but most importantly, where grey and white matter volumes

can drive BPD to the risk of suicide, some environmental variables

are strongly evidenced to be associated with neuroplastic changes in

both the grey and white matter volumes. Shang et al. (71) show that

greater proximity to greenspace (100-300m buffer) was associated

with larger total brain volumes, grey matter, and white matter,

supporting the study on white matter presented by Dadvand et al.

(66). In that regard, exposure to green spaces in cities within close

proximity to the place of residence is very critical towards reducing

suicidal risks among patients with high BPD severity.
5 Environment-BPD plasticity
pathways, a need for collaborative
treatment, and limitations

Based on the earlier discussion, Figure 1 illustrates the synthesis

of the neuroplasticity dynamics linking urban living and BPD.

It is important to note that the complexity of BPD stems from

the complexity of adverse effects resulting from hippocampal

atrophy, amygdala atrophy and hyperactivity, reduced thickness

in the prefrontal cortex, and worsened grey matter and white

matter. Altogether, this article explains why BPD is given

antidepressant medications and mood stabilizers (72) when the

complexity of neuroplasticity processes is making BPD complex

and that this complexity itself is driven by multiple variables in the

physical environment, particularly urban environments for the

reasons explained previously and illustrated in Figure 1.

This article strongly predicts that the physical environment is a

significant triggering factor for BPD in patients with genetic

predisposition and worsens the case during adulthood. Treatment

should begin from childhood and upbringing to avoid triggering

BPD and inhibit positively adaptive early development of the brain

regions associated with BPD—amygdala, hippocampus and cortex—in

response to the environment where those regions subsequently show

dysfunction for a lifetime. Adulthood chronic exposure to cities

worsens BPD symptoms and can lead to worsening grey and white

matter that may highly contribute to suicide in BPD. It is not easy to

begin treatment at the environmental level, but inevitably, the no-hope-

for-treatment in BPD will forever persist if the environment walks in

the opposite direction of treatment. For instance, if psychotherapy

takes place on a weekly or biweekly basis whilemedical drugs overcome

the complexly intertwined depression and anxiety symptoms,

increasing dosage will only try to cope with the adverse

neuroplasticity-based effects caused by the urban environment. BPD

therapy, therefore, cannot take place without collaborative efforts from

public health policymakers, the American Psychiatric Association,

psychiatrists, and psychotherapists, on the one hand, to urban

planners, urban designers, local governments setting building codes,

architects, and even interior designers on the other hand, while BPD
frontiersin.org

https://doi.org/10.3389/fpsyt.2024.1524531
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Khalil 10.3389/fpsyt.2024.1524531
FIGURE 1

The urban environment-BPD neuroplasticity pathways.
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patients themselves should have more awareness about the physical

environment impact through advocacy and education groups.

Knowing the dramatic adverse impacts of urban environmental

living on BPD asserts protecting BPD from stigma and discrimination,

which are very common among BPD (73–75), urging to face the main

problem, which is how urban living is triggering BPD and driving it to

a crisis. BPD patients and their families or caregivers often experience

recurring crises with structural stigma specific to BPD remains

pervasive in health systems reflected by factors embedded in

institutional policies, cultural norms and practices, including BPD-

related stigma and discrimination and dominance of a biomedically-

driven approach to healthcare (76).
5.1 Collaborative BPD treatment

Public health has been urged for a few years to recognize BPD as a

severe mental health disorder at all levels, highlighting a need for an

evidence-based policy to address BPD (77), which this article not only

strongly supports and strengths with neuroevidences but also advances

the discourse with means for prevention and adaptive treatment

through the discussed environment-BPD triggering interactions from

genetic predisposition to behaviors after BPD is triggered. The shortage

of BPD treatment providers across 22 countries (78) alarms an urge to

shift perspective into environmental health through the environment-

neuroplasticity dynamics to optimize current treatment plans with the

current rations given. This article strongly supports the need for a more

in-depth investigation of BPD care pathways (79), urging an

investigation of the impact of environmental factors.

The American Psychiatric Association’s Diagnostic and Statistical

Manual of Mental Disorders (DSM) is recommended to update the

description of the factors influencing BPD to include physical

environmental factors as well besides childhood adversity, abuse, and

unstable family environments, which are all equally important but the

equal important of the physical environment needs to be

critically considered.

Psychiatrists are highly advised to take into consideration the

chronic impact of the physical environment on BPD patients if they

prescribe pharmacological medication for the complex symptoms

accompanying the disorder. For instance, it was found that second-

generation antipsychotics, anticonvulsants, and antidepressants were

not able to consistently reduce the severity of BPD (9). The hypothesis

presented in this article is that if medication will consistently overcome

the adverse effects of the physical environment on the neuroplasticity of

the amygdala (reduced volume and hyperactivity), hippocampus

(atrophy) and cortex (reductions of grey and white matter volumes)

combined then, it is doubtful that the BPD patient may have a

sustainable long-term benefit from treatment without taking into

account the synchronous impact of the physical environment.

Psychotherapists are more likely than psychiatrists to work with

BPD patients more frequently. To date, dialectical behavior therapy

(DBT) and schema therapy (ST) are the two most common

psychotherapy approaches used by psychotherapists working with

BPD patients, and both are effective to a great extent (80, 81). ST

focuses on reorganizing the inner structure (82), while DBT provides a

therapeutic response in the reduction of self-injurious behaviors,
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hospitalisation in BPD (80), but as clear as the results indicate a

‘reduction’ of those symptoms, living in an urban environment that

continues to worsen the grey and white matter as explained due to the

lack of green spaces access and lack of surrounding tree cover density

cannot wholly prevent those symptoms. Simple, BPD patients may see

their therapists weekly or biweekly, but their exposure to their physical

environment is chronic and is daily, which highly increases

degenerative neuroplasticity and increases the risk of suicide. More

than 75% of BPD patients have been reported to self-injure, while

suicide rates are estimated to be as high as 10%, which is 50 times

higher than in the general population (83, 84), urging psychotherapists

to plan for access to green spaces more frequently as part of the

psychotherapy plan using either DBT or ST because we argue in this

opinion article that earlier suggestions by Thornton et al. (85) that DBT

can improve neural plasticity will be negatively counterbalanced by the

constant adverse impact of the physical environment.

While public health policymakers, psychiatrists and

psychotherapists are encouraged to handle existing BPD crises, urban

planners, urban designers, local governments setting building codes,

architects and interior designers are equally called to take part by

preventing design parameters from triggering BPD and worsening the

symptoms for current BPD patients to an extent that can drive them to

commit suicide.

Urban planners are strictly urged to be aware that their decisions

have lifelong neuroplasticity outcomes not only for BPD patients but

also the general public health, but BPD is more vulnerable, as explained

in this paper. In that regard, urban planners must provide increased

walkability opportunities within the 1 km buffer around the residential

home address (62), suggested to be accompanied by complex

navigation opportunities (64), in order to increase the likelihood of

increasing the total hippocampus volume size in response to walking

and the right hippocampus volume size in response to navigational-

training and also walking in the environment. Designing urban

environments with a diversity of zones and activities is also

promising for increasing the hippocampus volume size as suggested

by recent evidence indirectly (61), urging zoning and land use planning

to take this into consideration (86). Urban planners also must consider

the availability of green spaces within every 100-300m from each

subject’s home address ad it was proven to be correlated with white and

grey matter that, if worsened due to the absence of green spaces, can

highly increase the risk of BPD committing suicide in response to the

adverse neuroplasticity-dependent outcomes. Urban forest planning

should highly take this into consideration (87).

Urban designers play a key role in the liminality of urban planning

and architecture for public health, BPD prevention and treatment

through the environment. In that regard, urban designers need to

maximize tree cover density in cities and specifically within

neighborhoods but with a balance of maximizing sky views through

the arrangement of trees as well as through the provision of open public

spaces and plazas. Nonetheless, less use of grey materials (streets,

rooftops, etc.) is highly suggested to reduce amygdala hyperactivity.

Those insights add new layers to the identified important urban design

parameters mainly focused on thermal considerations (88), to the

interest in optimizing green and grey urbanism (89), to exploring
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health outcomes dependent on concrete (90), and to showing more

sides of promoting open public spaces in urban spaces (91).

Local governments working on building codes and setbacks must

further strengthen the importance of setbacks (92–95) (distance from

road and land boundary) in order to maximize sky views as this

variable is very effective in the early development brain stages can

upbringing with more sky views can highly trigger or prevent BPD

development through the subsequent neuroplasticity processes

determined by the environment.

Architects can promote public health, prevent BPD triggering and

facilitate treatment of existing BPD patients in several ways. Firstly,

building with skylights or atriums can be challenging, but it also

promises to promote positive adaptive neuroplasticity. Skylight design

configurations and daylight performance have been widely explored

recently (96, 97) and similar atriums (98, 99). Secondly, buildings can

become biophilic to different extents based on sunlight, color, gravity,

fractals, curves, detail, water, plants, representations of nature, and

organization and complexity (100). Valentine et al. (101) conducted a

pilot study examining the impact of biophilic architectural design on

neuroinflammation, suggesting that exposure to buildings with higher

degrees of biophilia may result in decreased neuroinflammatory

activity, which we take as evidence to explain the indirect relevance

for BPD due to having increased plasma levels of oxidative stress and
Frontiers in Psychiatry 07
inflammatory markers in addition to reduced levels of the brain-

derived neurotrophic factor (BDNF) (102). Thirdly, in order to increase

the levels of BDNF, recent research shows that architectural

environments promoting more physical activity through their

designs can increase BDNF levels (103) and that the homeostasis

facilitated by natural environments can optimize the BDNF increase

(104). Therefore, how architects can prevent BPD and reduce its

symptoms is critically important and needs to be done in multiple

ways, as explained, to promote public health.

Interior spaces were recently shown to increase the likelihood of

experiencing depression, anxiety and cognitive impairment compared

to getting out of the house (105). As previous recommendations

highlighted how to promote public health, prevent BDP triggering

and overcome its symptoms, evidence can suggest ways at the interior

level as well. Interior designers or individuals who design their homes

themselves are highly advised to avoid the use of industrial concrete or

grey materials that can lead to increased amygdala-DMN connectivity

that leads to an increased risk of emotion dysregulation (57), which was

explained earlier as highly critical for BPD subjects. This design

characteristic should also be applicable to public spaces. On the

contrary, the integration of real flowers or real flower images,

compared to mosaic flowers, in interior spaces can provide

automatic recovery effects after physiological stress through a
TABLE 1 Negative environmental influences, adverse structural neuroplasticity outcomes, and proposed improvement strategies through
the environment.

Negative environmental
factor

Maladaptive neuroplasticity outcomes Proposed improvement strategies

Low forest density Reduced amygdala integrity Urban planners need to provide public spaces with highly dense tree
cover density that transcends the classification of urban greenness. This
approach may counterbalance the severe amygdala atrophy in
BPD patients.

Amygdala hyperactivity Urban planners are highly encouraged to provide green spaces and
parks accessible from the home address, while architects are encouraged
to design biophilic architecture, and interior designers should integrate
natural plants or images of real flowers in interior spaces.

Gray spaces Increased amygdala-DMN connectivity Urban designers, architects, and interior designers must minimize or
avoid using concrete and grey materials in streets, rooftops, facades, and
industrial-style interiors.

Linear forms Greater amygdala activation Architects and interior designers should prioritize curved geometry and
not ones with sharp corners.

Low walkability Hippocampal atrophy Urban planners should priorities increasing walkability units within
each 1 km buffer around the home.

Low walkability (physical activity) Reduced brain-derived neurotrophic factor (BDNF) Urban planners are encouraged to provide more pedestrian pathways,
while architects are highly encouraged to adopt the novel strategy of
environmental affordance for physical activity through structural
enrichment of the layout.

Low complexity Hippocampal volume Urban planners are encouraged to increase geospatial zip code-based
environmental complexity to increase the likelihood of increasing right
hippocampal volume.

Low tree cover density Reduced cortical thickness Urban planners and designers must prioritize increasing tree cover
density using, for instance, the normalised difference vegetation index
(NDVI) to ensure high greenness density within the 100 to 300 m buffer
around the home addresses.

No sky views Worsen white and gray matter Architects need to provide skylights and atriums, urban designers
should provide open public spaces and plazas, and local governments
must strictly enforce setback building code regulations.
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deactivation in the right amygdala-hippocampus region (106), which

provides additional insights for biophilic design (107, 108).

All of the above also applies to healthy humans, but the

outcomes of lacking those environmental considerations may not

be as risky as for BPD. Those approaches will save BPD patients,

inhibit triggering BPD in genetically predisposed individuals, and

improve the health of non-BPD individuals. BPD patients and the

public with genetic predispositions are advised to increase time

spent in natural environments such as forests and parks until the

implementation of the previous suggestions commences. Table 1

outlines the negative environmental influences, maladaptive

neuroplasticity outcomes, and proposed improvement strategies.
5.2 Limitations

Three main limitations arise at this point. Firstly, ignorance of

the present evidence is only expected to increase the BPD behavioral

risks. Secondly, the sole reliance on the therapy or environmental

design approaches without collaborative efforts. Treatment of BPD

and preventing its trigger has not only to be done through

encouraging a healthy social environment but also exposure to a

healthy physical environment from the beginning and throughout

life. Last but not least, while most presented evidence is explained

using brain scans, EEG headsets are feasible (109, 110), providing a

wide range of options that can be used by clinicians, designers, BPD

patients and healthy individuals with genetic predisposition to be

able to track risk points and observe mental health improvements.
6 Conclusion

The impact of the physical environment on BPD need not be

overlooked or taken positively for granted anymore as urban living

appears through neuroscience evidence to be directly in relationship

with BPD. Key urban living variables are proven in this paper to

cause the adverse neuroplasticity outcomes for the amygdala,

hippocampus and cortex that together form the complexity of

BPD and make it untreatable not only due to its complexity but

because the physical environment does not stop worsening the

crisis. With the needed actions exemplified in this article, urgent

collaborative efforts are critically needed by therapists and
Frontiers in Psychiatry 08
environmental decision-makers alike where the hope for

borderline personality disorder lies at the liminality of their effort.

This article advocates that borderline personality disorder's black-

and-white patterns should not be stigmatised. We need to shift our

perspective towards the grey and linear city before we expect

borderline personality disorder to think and behave on a

grey spectrum.
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