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Background: We previously reported that machine learning could be used to

predict conversion to psychosis in individuals at clinical high risk (CHR) for

psychosis with up to 90% accuracy using the North American Prodrome

Longitudinal Study-3 (NAPLS-3) dataset. A definitive test of our predictive model

that was trained on the NAPLS-3 data, however, requires further support through

implementation in an independent dataset. In this report we tested for model

generalization using the previous iteration of NAPLS-3, the NAPLS-2, using the

identical machine learning algorithms employed in our previous study.

Method: Standard machine learning algorithms were trained to predict

conversion to psychosis in clinical high risk individuals on the NAPLS-3 dataset

and tested on the NAPLS-2 dataset.

Results: NAPLS-2 and -3 individuals significantly differed on most features used

in machine learning models. All models performed above chance, with Naive

Bayes and random forest methods showing the best overall performance.

Importantly, however, overall performance did not match those previously

observed when using only NAPLS-3 data.
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Conclusion: The results of this study suggest that amachine learningmodel trained to

predict conversion to psychosis on one dataset can be used to train an independent

dataset. Performance on the test set was not in the range necessary for clinical

application, however. Possible reasons that limited performance are discussed.
KEYWORDS

schizophrenia, clinical high risk (CHR), NAPLS, out of sample evaluation, scale of
psychosis risk symptoms, generalizability
Background

In a prior priority data letter in The American Journal of

Psychiatry, we reported that machine learning could be used to

predict conversion to psychosis in individuals at clinical high risk

(CHR) for psychosis with up to 90% accuracy using the North

American Prodrome Longitudinal Study-3 (NAPLS-3) dataset (1).

As argued by Cannon (2), a definitive test of our predictive model

that was trained on the NAPLS-3 data requires further support

through implementation in an independent dataset. In this report,

in collaboration with the primary investigators of the NAPLS

consortium we tested for model generalization using the previous

iteration of NAPLS-3, the NAPLS-2, using the identical machine

learning algorithms employed in our previous study. We used the

NAPLS-2 dataset as a test set because it used mostly the same

measures that were used in the NAPLS-3 to predict conversion to

psychosis in a similarly-aged sample.
Materials and methods

Participants

NAPLS-2 and 3 are NIMH-funded studies conducted at 8 and 9

sites, respectively. All participants provided written informed

consent, including parental consent for minors. The study was

approved by all sites’ Institutional Review Boards.

Detailed descriptions of NAPLS-2 and NAPLS-3 participants,

including exclusion criteria, are provided in Addington et al. (3) and

Addington et al. (4), respectively. Participants were between 12 and 30

years old and were followed up to 2 years. Predictors included those

used by the NAPLS-2 calculator (riskcalc.org/napls, see Table 1).

Consistent with prior work (5), conversion to psychosis for a

CHR individual was defined as meeting the Presence of Psychotic

Symptoms criteria: One of the five Scale of Psychosis-Risk

Symptoms (SOPS) positive symptoms must reach a psychotic

level of intensity (rated 6) for ≥ 1 hour per day for 4 days per

week during the past month, and/or these symptoms seriously
02
impact their functioning. Machine learning models were tested with

and without SOPS rescaling prior to analysis [see Table 1 legend for

rescaling procedure, based on Cannon et al. (6)].
Analyses

Standard machine learning algorithms were employed using

Weka software (University of Waikato, New Zealand) and included

logistic regression, naive Bayes, a 3 kernel support vector machine,

KStar, J48 decision tree, random forest (max depth 2), decision

stump (with 100 iterations of AdaBoost), and multilayer perceptron

(see explanation of algorithms below). Classifiers were trained using

NAPLS-3 data and tested on NAPLS-2 data. Individuals with

missing data were excluded from the analyses. Because of class

imbalance, prior to machine learning training data for the minority

(converter) class was 800% upsampled using the Synthetic Minority

Oversampling Technique (SMOTE) (7) to match the majority

(nonconverter) class. By providing more training data of the

minority class, this procedure helps to refine the machine

learning model decision binary and improve performance (7).

SMOTE k (n nearest neighbors) was set to 5.
Naive Bayes

Naive Bayes (8) compares the probability of observing an

converter/non-converter for each test data point according to the

equation P (Ci | x) = (P (Ci) * p (x | Ci)/p (x) where P(Ci) is the prior

probability of class Ci (e.g., converter) occurring, p (x | Ci) is the

conditional probability that class Ci is associated with feature

observation x, and p (x) is the marginal probability that

observation x is observed (effectively constant for any given

dataset). The joint model (combining all features) can then be

expressed as the product of the probabilities for all features, and the

algorithm classifies unseen data as converter or non-converter

based on the highest probability.
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Support vector machine

SVM classifiers find the maximum-margin hyperplane using

only those data instances closest to the separation boundary (i.e.

“support vectors”) to determine classification boundaries (9). Both

linear and non-linear (using a kernel) classifications can be

performed. Polykernel SVM classifiers were evaluated starting

with an exponent of 1 and increasing in size until average

accuracy (over all 1000 allocations of test/training data) plateaued.
KStar (K-nearest neighbor)

The K* algorithm operates by assigning new data instances to

the class that occurs most frequently amongst the k-nearest data

points, yj, where j = 1,2…k (10). Distance is then used to retrieve the

most similar instances from the data set. The K* function is

operationalized as K* (yi,x)= -ln P*(yi,x) where P* is the

probability of all transformational paths from instance x to y, i.e.,

the probability x will arrive at y via a random walk in feature space.
AdaBoost

AdaBoost operates by creating multiple weak classifiers that are

weighed by their effectiveness at classifying data (11). Initially, a

classifier is created with all instances weighted equally. Next, the

weights of the incorrectly predicted instances are increased. The

instances that are still misclassified are then selected and their
Frontiers in Psychiatry 03
weights increased as well, and so forth. After the complete classifier

is constructed, each weak classifier then casts a weighted “vote” as to

the class membership of each set of individual test data to make a

classification decision.
J48 decision tree

Decision tree classifiers operate hierarchically, with each level

representing a feature (e.g., age) (12, 13). Based on the value of that

feature the tree either classifies immediately or passes the

information to the next level of the tree. The C4.5 algorithm (12)

was used for the J48 decision tree, which uses a measure called

“information gain” to select each attribute at each stage. In essence,

the J48 tree first chooses the feature that most effectively splits the

training data into one class or another using a measure called

“information gain” (essentially, the effectiveness of feature at

classifying data). After this split, the tree then chooses the next

most effective feature to split each resulting partition. The process

then iteratively repeats until all training data is classified.

Performance of the resulting tree is then evaluated on test data.
Random forest

A random forest is a group of decision trees made up of random

partitions of training data (14). Each tree casts a “vote” as to the

classification of a testing instance and votes are counted to produce

the final classification.
TABLE 1 Demographic and clinical information, excluding participants with missing data (N = 64).

NAPLS3
Mean

SD NAPLS2
Mean

SD NAPLS2 vs.
NAPLS3 t

or c2

p

N 598 – 596 – – –

Age in Years* 18.79 4.03 18.51 4.27 -1.16 .25

N With First Degree Relative with Psychosis* 117 – 96 – 2.44 .12

N Without First Degree Relative with Psychosis* 481 500

BACS Symbol Coding Raw Score* 54.74 13.21 56.80 13.04 2.72 .007

HVLT Raw Score* 26.39 5.21 25.61 5.15 -2.60 .009

Number of Trauma Types* 1.87 1.61 2.08 1.71 2.20 .028

Decrease in Global Social Functioning Score Over the
Past Year*

1.03 .97 .74 1.04 -4.98 <.001

Number of Undesirable Life Events* 9.56 4.86 10.47 5.43 3.06 .002

Rescaled** SIPS Delusions + Suspicions* 3.10 1.46 2.61 1.57 -5.60 <.001

SIPS Delusions + Suspicions* 6.80 1.87 6.08 2.23 -6.00 <.001

N Converters 62 – 84 – 3.86 .049

N Non-Converters 536 512

Days from Baseline to Conversion 278.0 286.1 219.7 173.4 -1.42 .16
Numbers in parentheses represent the standard deviation unless otherwise stated. BACS, Brief Assessment of Cognition in Schizophrenia; HC, Healthy Control; HVLT, Hopkins Verbal Learning
Test; SIPS, Structured Interview for Psychosis-risk Syndromes. *Included as features in machine learning models. **Rescaled such that scores 0-2 = 0, 3 = 1, 4 = 2, 5 = 3, and 6 = 4.
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Results

Demographic and clinical information for and comparisons

between NAPLS-2 and NAPLS-3 participants are provided in

Table 1. NAPLS-2 and -3 individuals significantly differed on

most features used in machine learning models. Examining

conversion rates, 84 out of the 596 CHR individuals in NAPLS-2

(14%) and 62 out of the 598 CHR participants in NAPLS-3 (10%)

with no missing data converted over the course of the follow-

up period.

Machine learning performance metrics for each machine learning

algorithm are provided in Table 2. Briefly, all models performed

above chance as evidenced by concordance values [receiver operating

characteristic area under the curve (ROC AUC)] values over 50%.

Naive Bayes and random forest showed the best overall performance

(AUC). Sensitivity and negative predictive values were relatively high

and specificity and positive predictive values were relatively low for all

models, however. Importantly, overall performance did not match

those previously observed when using only NAPLS-3 data

(performance metrics from the previous study are also provided in

Table 2). For example, when exclusively using NAPLS-3 data

(including non-rescaled SIPS scores) for training and testing, the

most accurate method (random forest) showed 90% accuracy with

79% sensitivity and 96% specificity (1). When a NAPLS-3-based
Frontiers in Psychiatry 04
random forest model was tested on NAPLS-2 data, however,

accuracy, sensitivity, and specificity were reduced to 77%, 41%, and

83% (respectively) (Table 2, bottom half).
Discussion

The results of this study suggest that a machine learning model

trained to predict conversion to psychosis on one dataset can be

used to train an independent dataset. In this analysis, however, we

did not achieve the high level of accuracy as in the training sample

and classification success was not in the range generally considered

necessary for clinical application (80% positive and negative

predictive value). Notably most models in this generalization

analysis struggled to identify positive cases (converters), the

minority outcome in both samples, although they did show high

specificity and AUC scores that were above chance.

One likely reason for the discrepancy in performance is that

models that exclusively use NAPLS-3 data may have overfit to that

dataset. Chekroud et al. (15) have recently emphasized that machine

learning faces a generalizability issue in outcome prediction in studies

of psychiatric disorders in that models often do not perform well when

tested on unseen data. Consistent with our findings, recent prior work

that also sought to predict conversion to psychosis in CHRs observed a
TABLE 2 Predicting conversion to psychosis using NAPLS-3 clinical/demographic data for training and NAPLS-2 data for testing using various
machine learning methods.

Method Acc Sn Sp PPV NPV ROC AUC

SIPS Rescaled

Decision Stump with AdaBoost 79 33 87 29 89 66

J48 Decision Tree 82 10 94 21 86 56

KStar 72 20 81 15 86 52

Logistic Regression 75 51 79 29 91 67

MLP* 70 36 76 20 88 60

Naive Bayes 75 58 78 30 92 70

Random Forest 78 38 85 29 89 70

SVM (3 Kernel) 70 36 76 20 88 56

SIPS Non-Rescaled NAPLS-3 Train, NAPLS-2 Test NAPLS-3 Train, NAPLS-3 Test

Decision Stump with AdaBoost 79 71 31 43 87 88 27 68 88 73 68 74

J48 Decision Tree 81 85 20 76 91 90 28 82 88 87 55 86

KStar 70 78 21 77 78 79 14 69 86 86 57 84

Logistic Regression 72 68 51 35 75 87 25 61 90 70 66 68

MLP* 66 73 57 48 67 88 22 70 91 75 64 77

Naive Bayes 66 70 55 45 68 84 22 62 90 73 65 68

Random Forest 77 90 41 79 83 96 28 92 89 89 69 96

SVM (3 Kernel) 69 74 45 41 73 93 22 78 89 73 59 67
fron
Performance from our previous study (1) using NAPLS-3 data (only) for training and testing are provided in shaded bold italic to the right of each metric for comparison (SIPS were non-rescaled
only for the previous analysis). Values are percentages. Acc, Accuracy; NPV, Negative Predictive Value; PPV, Positive Predictive Value; ROC AUC, Receiver Operating Characteristics Area
Under the Curve; Sn, Sensitivity; Sp, Specificity. *Multilayer perceptron (MLP) with 2 hidden layers (5 nodes in the first and 2 in the second).
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significant reduction in performance (from 85% accuracy on the

trained sample to 73% on the independent test sample) when a

trained model was tested on an independent dataset (16). Although

all algorithms here did perform above chance, the fact that they did not

perform as well as amodel trained within one dataset as in our previous

study is in conceptual agreement with the findings of Chekroud et al.

(15). An additional potential reason for poor performance is that the

assumption of stationarity, core to machine learning methods

including random forest, was not met since the levels of key

predictor variables differed significantly across the two samples (17)

(as shown in Table 1). This presents a significant challenge for

researchers seeking to develop generalizable prediction tools using

machine learning approaches. One approach to improving

generalizability that machine learning researchers are actively

investigating is the application of domain adaptation methods, to

apply in cases in which source and target domains have different

distributions but identical underlying predictive features (18). As

recently reviewed by Smucny et al. (19), domain adaptation methods

have achieved some success when using magnetic resonance imaging

data to predict various outcomes, although only a few studies thus far

have been conducted and domain adaptation procedures are still being

developed and refined. Finally, it should be noted that the power of the

model may have been limited by the relatively low sample size of the

minority class in the training dataset (n = 62). Hence, while we are not

“there yet” (1), we believe that the field should eschew nihilism

regarding the application of predictive analytics to unique and

powerful datasets (such as those collected by the NAPLS

consortium) in pursuit of a personalized medicine approach to early

intervention for young people with psychosis.
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