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Specific endophenotypes in EEG
microstates for
methamphetamine use disorder
Xurong Gao1, Yun-Hsuan Chen1*, Ziyi Zeng1, Wenyao Zheng1,
Chengpeng Chai1, Hemmings Wu2, Zhoule Zhu2, Jie Yang1,
Lihua Zhong3, Hua Shen4 and Mohamad Sawan1*

1CenBRAIN Neurotech Center of Excellence, School of Engineering, Westlake University,
Hangzhou, China, 2Department of Neurosurgery, Second Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou, China, 3Department of Education and Correction, Zhejiang Gongchen
Compulsory Isolated Detoxification Center, Hangzhou, China, 4Zhejiang Liangzhu Compulsory
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Background: Electroencephalogram (EEG) microstates, which reflect large-

scale resting-state networks of the brain, have been proposed as potential

endophenotypes for methamphetamine use disorder (MUD). However, current

endophenotypes lack refinement at the frequency band level, limiting their

precision in identifying key frequency bands associated with MUD.

Methods: In this study, we investigated EEG microstate dynamics across various

frequency bands and different tasks, utilizing machine learning to classify MUD

and healthy controls.

Results: During the resting state, the highest classification accuracy for detecting

MUD was 85.5%, achieved using microstate parameters in the alpha band. Among

these, the coverage of microstate class A contributed the most, suggesting it as the

most promising endophenotype for specifying MUD.

Discussion: We accurately categorize the endophenotype of MUD into different

sub-frequency bands, thereby providing reliable biomarkers.
KEYWORDS

EEG, microstate, methamphetamine addiction, resting states, detection biomarkers,
machine learning, classification
1 Introduction

Methamphetamine use disorder (MUD) can lead to significant impairments in brain

function (1). During methamphetamine consumption, dopamine-related neurons are

activated, resulting in elevated dopamine levels. This surge produces an exaggerated

learning signal that contributes to addiction (2, 3). To address MUD, several medical

institutions have proposed therapies such as transcranial magnetic stimulation (TMS) and
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transcranial direct current stimulation (TDCS). Identifying

endophenotypes of MUD is crucial for evaluating the efficacy of

these treatments (4). Electroencephalography (EEG), a safe and

cost-effective method for recording brain activity in real time,

facilitates the study and diagnosis of MUD. Among various

analytical methods applied to EEG data, microstate analysis has

revealed notable differences in resting-state EEG dynamics between

individuals with MUD and healthy controls (HCs, 5, 6).

Microstates are derived from the application of clustering

algorithms to EEG data, allowing for segmentation and grouping

of similar brain activity patterns. Researchers have discovered that

resting-state EEG in the alpha band (8–12 Hz) can be segmented

into several quasi-stable states that persist for approximately 60–

120 milliseconds before transitioning to another state (7). These

quasi-stable phases are thought to reflect the combined transient

activity of neuronal clusters in the brain and are often referred to as

“the atoms of thought” (8). Over the past two decades, significant

associations have been identified between microstate parameters

and various neuropsychiatric disorders (9). For instance, a reduced

duration of microstates has been noted in studies on depression

(10). Additionally, various alterations in microstate dynamics have

been reported in Alzheimer’s disease (11), schizophrenia (12),

frontotemporal dementia (13), and several other conditions.

EEG microstates typically manifest in the form of topographical

maps and are commonly categorized into four distinct topographical

patterns: microstate A, B, C, and D. In MUD research, several studies

have reported abnormalities in the temporal dynamics of EEG

microstates in patients with MUD compared to controls, aiming to

identify endophenotypes specific to MUD (5, 14, 15). One study

indicated significant differences in the majority of microstate

parameters between patients with MUD and HCs, highlighting the

potential for exploring MUD-specific features (14). Another study

found that MUD patients exhibited shorter mean durations of

microstate A and B, as well as a higher global explained variance for

microstate C (5). Although these studies, which utilized mixed-band

(2–20 Hz) EEG data, have identified several endophenotypes

characterizing MUD, mixed-band EEG analysis lacks the precision to

distinguish variations in each sub-frequency band affected by different

physiological states. Furthermore, the importance of specific microstate

parameters was not adequately addressed in previous research, leaving

key parameters that reflect MUD unidentified.

Therefore, in this study, we investigated the discriminative power

of EEG microstates for MUD across different sub-frequency bands

using machine learning techniques. Due to the inherent sensitivity of

machine learning to input features, we were able to characterize and

rank the importance of microstate parameters, identifying those with

the greatest potential to serve as specific endophenotypes of MUD.

Additionally, unlike other studies that rely solely on resting-state

tasks, we also incorporated visual induction tasks to broaden the

scope for identifying MUD endophenotypes.

This paper is organized as follows: Section 2 concerns the

adopted materials and methods, Section 3 includes the results, we

provide a discussion in Section 4, and conclusions are the subject of

Section 5.
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2 Methods

2.1 Participants

In this study, we recruited 20 male patients with MUD

from Gongchen Rehabilitation Center in Zhejiang, China

(Figure 1A). The recruitment criteria were as follows: (1)

exclusive methamphetamine use (single-drug users only), (2) met

the criteria for MUD as outlined in the Diagnostic and Statistical

Manual of Mental Disorders, Fifth Edition, (3) normal intelligence

with no history of head injury, and (4) right-handedness, (5) no

personal or family history of other psychiatric illnesses.

Additionally, 20 male HCs were recruited from a university

campus through advertisements and word-of-mouth between

April and July 2023. The selection criteria for HCs included: (1)

no history of drug use, (2) normal intelligence with no history of

head injury, and (3) right-handedness, (4) no personal or family

history of psychiatric illnesses. All participants provided informed

consent and received compensation for their participation.
2.2 Protocol

Both groups of participants followed the same experimental

protocol, as shown in Figure 1. EEG data were collected using 33

Ag/AgCl electrodes, including one ground electrode and one

reference electrode, arranged according to the 10–20 international

standard (Figure 1B). The ground electrode was positioned at Fpz,

while the reference electrode was placed at Cz. The recording setup

consisted of an EEG signal amplifier (actiCHamp Plus, Brain

Products) and active EEG electrodes (actiCAP slim, Brain

Products), with a sampling frequency of 1000 Hz. An experiment

began when the impedance of all channels was below 20 kW.

The experimental protocol (Figure 1C) was designed using E-

Prime software, and EEG signals were recorded under two different

tasks for both groups. In Task 1, participants were asked to sit in a

plastic chair with a backrest, lean comfortably against it, keep their

eyes closed, and remain awake for 10 minutes, minimizing body

movements. The EEG signals recorded during this task are defined

as resting-state EEG. In Task 2, participants were exposed to 30

pictures, 15 neutral and 15 drug-related, presented randomly. Each

picture was considered a separate trial for analysis. The pictures

(Figure 1D) were selected from the Methamphetamine and Opioid

Cue Database (MOCD), with the drug-related images validated to

significantly induce craving in participants with MUD (16). During

visual stimulation, each image was displayed for 7 seconds, followed

by a 7-second black screen before the next image appeared. The

random presentation order prevented participants from predicting

the type of stimulus, maintaining the element of surprise.

Additionally, participants were instructed to press a key before

each image appeared to initiate the next trial, ensuring active

engagement throughout the experiment. This protocol was

approved by the ethical committee of Westlake University

(ID: 20191023swan001).
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2.3 EEG signals processing

For EEG data preprocessing, the raw data were bandpass

filtered between 4–45 Hz using a finite impulse response filter.

The EEG signals were then down-sampled to 250 Hz to reduce

computational load for subsequent independent component
Frontiers in Psychiatry 03
analysis (ICA). Bad channels, identified as spectral outliers, were

interpolated using an average method. ICA was then applied to

remove artifacts such as eye blinks and muscle movements. No bad

epochs were found requiring additional manual adjustment. The

EEG signals were segmented into epochs based on individual

participants, tasks, and four sub-frequency bands: theta (4–7 Hz),
FIGURE 1

Illustration of experiment protocol: (A) MUD and HC group were included, with 20 participants in each group. (B) 32-channel EEG data was
collected. (C) Schematic experimental process: The experiment began with Task 1, a 10-minute resting state task with eyes closed. Task 2 showed
15 drug-related and 15 neutral visual stimuli to the participants. (D) The drug-related and neutral figures used in this experiment. Images reprinted
with permission from R. Kuplicki, https://github.com/rkuplicki/LIBR_MOCD.
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alpha (8–12 Hz), beta (13–28 Hz), and gamma (29–45 Hz). For

Task 1, 15 epochs, each lasting 7 seconds, were extracted from the

first 105 seconds in 10-minute resting-state EEG. For Task 2, each

epoch also lasted 7 seconds, corresponding to the duration when the

pictures were displayed.

A total of 1,800 all-band (filtered at 4~45Hz) EEG epochs were

obtained from the 40 participants, spanning three conditions

(resting state, drug-related cue, neutral cue) and 15 trials per

condition. After that, another 7200 epochs of separated EEG band

were extracted from these 1800 epochs by dividing them into four

frequency bands for further analysis. The extraction of different

EEG frequency bands was achieved using a finite impulse response

filter. All data preprocessing was performed using MATLAB

R2013a (The MathWorks, Inc., Natick, USA) with the EEGLAB

2021.0 toolbox.
2.4 Microstate analysis

Microstate analysis included several steps: global field power

calculation, microstate clustering, selection of the number of

microstates, back-fitting, labeling, and parameter calculation (17).

These processes were conducted using the MATLAB toolbox

+microstate (18). We selected and merged the all-band (4~45Hz)

EEG data from both groups of participants to conduct microstate

analysis, generating the common microstate topographies as shown

in Figure 2. These topographies were then backfitted to each

individual’s EEG data (7,200 epochs for 4 bands and 1,800 epochs

for all bands) to obtain their respective microstate parameters. In

addition to the all-band EEGmicrostate topographies, band-specific

(theta, alpha, beta, gamma) EEG microstate topographies were also

generated, revealing similar patterns to the all-band results

(Supplementary Figure S1).

After determining the microstate topographies, parameters

such as coverage, duration, occurrence, and global explained

variance (GEV) for each microstate class were derived. Coverage

represents the percentage of time occupied by each microstate,

duration indicates the average time span of each microstate,

occurrence refers to the number of times each microstate class
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occurs per second, and GEV reflects the accuracy in explaining the

overall sequence of microstate topographies (14).

Previous studies performed microstate clustering separately for

each group of participants, but no significant differences were found

in the microstate topographies derived from each group (6, 14, 19).

Therefore, to compare parameters under consistent microstate

topographic conditions and to reduce the potential for invalid

features due to differences in microstates, we combined the EEG

data from both groups for clustering to obtain common microstate

topographies. In this study, four microstate classes, as shown in

Figure 2, were clustered and selected for further analysis. These

patterns closely resemble those reported in related studies, enabling

comparative analysis across research. Seventeen parameters derived

from the microstates were characterized in this study: the coverage,

duration, occurrence, and GEV of the four microstate classes, as

well as the total GEV of all microstate classes. In total, microstate

parameters were generated from 9,000 EEG epochs, each epoch

lasts 7 seconds. These 9,000 epochs included data from five

frequency bands (theta, alpha, beta, gamma, and all-band), three

task conditions (resting state, drug cue, and neutral cue), 15 trials

per condition, and 40 participants. These parameters were used as

the dataset for classification using artificial intelligence algorithms.
2.5 Random forest classification

To investigate the diagnostic efficacy of MUD under different

tasks and identify potential biomarkers of MUD within microstates,

we employed a classification approach to analyze microstate data.

Given that our aim was not to optimize the algorithm itself, we used

Scikit-learn, a widely adopted machine learning library, to perform

a random forest classification (20). In this model, the features were

the 17 parameters derived from microstate analysis, while the two

participant groups served as labels. A five-fold cross-validation was

implemented to evaluate the stability of predictions and the

generalization ability of the model.

To ensure the validity of the classification, outliers in the

microstate parameters were identified and excluded. Specifically,

epochs with a duration of zero or exceeding 250 ms were removed,

as the duration of a single microstate typically averages between 60

and 100 ms (9). Additionally, due to the varying scales of different

parameters, it was essential to normalize each parameter

individually to ensure equal weighting among features.
2.6 Out-of-Bag analysis

Out-of-Bag (OOB) analysis is a technique used to assess the

generalization performance of ensemble learning algorithms,

particularly random forests. The key idea is to use the samples

not selected for training a specific tree (OOB samples) to evaluate

that tree’s performance. In random forests, approximately one-third

of the data is excluded from each bootstrap sample, and these OOB

samples are leveraged to assess model performance and feature

importance. Following classification, an out-of-bag analysis was

conducted to rank the importance of each feature.
FIGURE 2

Topographical microstate topographies for both groups. The figure
shows the spatial configuration of the four microstate classes (A–D).
The top view maps of each class are presented.
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3 Results

3.1 Demographic and clinical information
of participants

The detailed demographic and clinical information for both

groups are presented in Table 1.

Given the distinct characteristics of the recruitment locations,

the average ages of the two groups differed. However, Koenig et al.

(21) reported no significant differences in EEG microstate

parameters between age groups of 20 to 30 years and 30 to 40

years, suggesting that age-related effects on microstate analysis are

negligible in this context.

To rigorously verify that age does not influence microstate

parameters, we conducted ANCOVA tests on both groups, while

age was included as a covariate. Microstate parameter values from

all 15 trials per participant were averaged to be analyzed. In the

ANCOVA analysis, the covariate Age did not exhibit a significant

main effect on microstate parameters (p > 0.05). Furthermore, the

interaction effect between Group and Age was also non-significant

(p > 0.05), indicating that the influence of Age on microstate

parameters was consistent across the two groups. Results from

the MUD group in the Alpha band under resting state are presented

in Table 2 as an example.
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3.2 Microstate analysis results

Typically, the duration and GEV of microstates are used to

evaluate the fitting performance of microstate analysis, which is

highly significant. Our results for duration and GEV, as shown in

Table 3, indicate that most durations are around 100 ms, and most

GEV values range between 0.65 and 0.8, both falling within the

normal range. Additionally, our microstate topography, frequency

band selection, and GEV results are consistent with those reported

in most studies focusing on non-polarized microstates (22, 23). This

indicates that our microstate analysis is reliable. Each parameter

was calculated as the mean and standard deviation across 15 trials,

with all data available in the Supplementary Tables.
TABLE 1 Group average statistics of MUD patients and HCs.

Group MUD patients HCs P-value

Age (years) 36.90(7.72) 26.10(4.2) < 0.01

Age of first use 35.70(8.20) –

Quitting times 1.65(0.99) –

Gender(male/female) 20/0 20/0
fr
Group average statistics (Standard Deviation) of MUD patients, HCs. “Age of first use”
represents the age at first drug use, and “Quitting times” indicates the number of times forced
to quit drugs in rehabilitation centers.
TABLE 2 One-way ANCOVA results for the age effect in microstate parameters in alpha band.

Parameter
Age Age × Group

sum_sq df F PR(>F) sum_sq df F PR(>F)

A_Duration 109.1893 1 0.1011 0.7542 7.4938 1 0.0069 0.9345

B_Duration 543.0562 1 0.6304 0.4376 1028.0870 1 1.1934 0.2891

C_Duration 8.0561 1 0.0114 0.9161 345.2767 1 0.4896 0.4931

D_Duration 2096.9021 1 0.9480 0.3431 446.9988 1 0.2021 0.6584

A_Coverage 0.0060 1 0.7389 0.4013 0.0000 1 0.0000 0.9985

B_Coverage 0.0001 1 0.0131 0.9102 0.0043 1 0.4977 0.4896

C_Coverage 0.0028 1 0.5325 0.4750 0.0065 1 1.2230 0.2833

D_Coverage 0.0144 1 1.0337 0.3228 0.0002 1 0.0148 0.9046

A_Occurrence 0.1235 1 1.2671 0.2751 0.0182 1 0.1866 0.6709

B_Occurrence 0.0027 1 0.0170 0.8977 0.0211 1 0.1309 0.7217

C_Occurrence 0.0958 1 1.0247 0.3248 0.1620 1 1.7325 0.2046

D_Occurrence 0.1348 1 0.7034 0.4126 0.0139 1 0.0725 0.7908

A_GEV 0.0059 1 0.4974 0.4897 0.0026 1 0.2230 0.6425

B_GEV 0.0070 1 0.9347 0.3464 0.0008 1 0.1099 0.7440

C_GEV 0.0022 1 0.8012 0.3826 0.0022 1 0.8204 0.3770

D_GEV 0.0060 1 1.4255 0.2480 0.0000 1 0.0085 0.9274

GEV 0.0080 1 2.4832 0.1325 0.0022 1 0.6730 0.4227
All the significant results have P-values greater than 0.05, suggesting neither Age nor its interaction with Group substantially contributed to the variability in microstate parameters. PR(>F) is the
p-value that tests the significance of the F-statistic.
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3.3 Classification of different tasks for MUD
and HCs group

To explore the differences in neural and cognitive functions

between individuals with MUD and HCs, we used a random forest

classifier to analyze resting-state and task-state EEG data, which

were further categorized into drug stimuli and neutral stimuli for

both groups separately, as shown in Figures 3A, B.
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3.4 Classification of MUD patients and HCs

In the previous section, we observed differences in classification

accuracy betweenMUDpatients and HCs. Building on this, we aimed

to identify specific biomarkers that could distinguish these two

groups. To pinpoint the most representative biomarkers for MUD,

the classification was further subdivided by each frequency band and

condition (drug cue, neutral cue, and resting state), as Figure 3C.
TABLE 3 Part of microstate parameters results.

Band/Condition A_Duration B_Duration C_Duration D_Duration GEV

Theta MUD-D 130.11 (± 41.97) 101.42 (± 31.68) 91.62 (± 29.87) 83.82 (± 24.08) 0.78 (± 0.06)

MUD-N 133.36 (± 42.47) 99.44 (± 27.45) 87.64 (± 25.65) 84.48 (± 26.48) 0.78 (± 0.04)

MUD-R 130.84 (± 34.57) 117.03 (± 33.23) 90.24 (± 20.81) 87.77 (± 22.5) 0.77 (± 0.05)

HC-D 119.09 (± 31.61) 112.2 (± 28.13) 83.59 (± 21.01) 93.64 (± 27.58) 0.75 (± 0.03)

HC-N 121.14 (± 32.57) 108.23 (± 24.44) 87.09 (± 22.9) 82.65 (± 24.35) 0.75 (± 0.03)

HC-R 121.68 (± 31.18) 116.33 (± 23.54) 85.82 (± 18.98) 92.55 (± 20.01) 0.75 (± 0.03)

Alpha MUD-D 158.64 (± 40.38) 137.95 (± 41.22) 128.12 (± 41.31) 136.08 (± 44.06) 0.73 (± 0.05)

MUD-N 164.67 (± 38.28) 137.12 (± 38.35) 129.0 (± 37.76) 127.44 (± 44.1) 0.73 (± 0.04)

MUD-R 182.2 (± 36.87) 160.38 (± 40.35) 140.94 (± 37.47) 136.59 (± 43.47) 0.73 (± 0.05)

HC-D 159.55 (± 38.31) 144.06 (± 34.32) 115.08 (± 34.14) 132.52 (± 43.42) 0.72 (± 0.04)

HC-N 171.46 (± 39.1) 139.78 (± 34.0) 123.21 (± 33.08) 119.79 (± 38.81) 0.72 (± 0.04)

HC-R 183.84 (± 38.29) 162.03 (± 34.7) 118.65 (± 30.23) 157.77 (± 40.21) 0.72 (± 0.03)

Beta MUD-D 106.35 (± 31.4) 79.14 (± 19.58) 79.83 (± 18.9) 76.74 (± 16.79) 0.69 (± 0.05)

MUD-N 111.2 (± 34.87) 76.71 (± 16.08) 78.05 (± 18.68) 76.81 (± 17.88) 0.69 (± 0.04)

MUD-R 120.1 (± 42.9) 83.29 (± 26.25) 77.99 (± 18.57) 77.23 (± 13.42) 0.71 (± 0.06)

HC-D 101.98 (± 25.0) 84.24 (± 16.73) 74.25 (± 15.4) 83.98 (± 22.25) 0.67 (± 0.04)

HC-N 111.29 (± 30.13) 80.95 (± 15.42) 76.58 (± 15.19) 78.84 (± 18.88) 0.67 (± 0.04)

HC-R 120.98 (± 36.43) 83.66 (± 17.19) 74.95 (± 13.79) 89.91 (± 24.3) 0.68 (± 0.05)

Gamma MUD-D 107.47 (± 35.83) 74.15 (± 22.91) 77.5 (± 18.28) 72.25 (± 14.95) 0.67 (± 0.06)

MUD-N 108.96 (± 35.97) 69.86 (± 13.85) 78.93 (± 20.56) 74.17 (± 18.01) 0.67 (± 0.05)

MUD-R 112.93 (± 40.8) 77.95 (± 23.25) 76.07 (± 17.22) 71.32 (± 10.65) 0.68 (± 0.06)

HC-D 102.78 (± 24.05) 77.65 (± 16.37) 71.98 (± 12.46) 76.63 (± 14.22) 0.64 (± 0.04)

HC-N 105.73 (± 26.89) 76.14 (± 16.32) 73.95 (± 13.49) 71.82 (± 15.49) 0.64 (± 0.04)

HC-R 100.55 (± 22.81) 80.86 (± 17.12) 71.29 (± 9.58) 75.83 (± 13.31) 0.65 (± 0.04)

All MUD-D 111.01 (± 38.25) 76.55 (± 19.33) 76.75 (± 18.38) 74.86 (± 18.93) 0.66 (± 0.05)

MUD-N 109.64 (± 28.65) 83.89 (± 17.21) 74.61 (± 17.15) 72.38 (± 15.56) 0.65 (± 0.04)

MUD-R 130.56 (± 45.8) 94.57 (± 26.67) 79.98 (± 20.41) 78.04 (± 21.4) 0.69 (± 0.06)

HC-D 111.11 (± 31.59) 82.84 (± 16.33) 74.44 (± 14.28) 71.91 (± 17.72) 0.65 (± 0.04)

HC-N 109.65 (± 37.29) 76.96 (± 17.1) 74.94 (± 16.83) 74.72 (± 19.88) 0.66 (± 0.05)

HC-R 143.5 (± 42.99) 96.48 (± 27.25) 78.3 (± 15.9) 84.08 (± 21.72) 0.69 (± 0.05)
In this table, the frequency range of each band is Theta (4~8Hz), Alpha (8~12Hz), Beta (12~28Hz), Gamma (28~45Hz), and All (4~45Hz). MUD represents the MUD patient group while the HC
denotes the healthy control group. D, N, R means different tasks in this work, they are Drug Cue (D), Neutral Cue (N), Resting State (R). A, B, C, D represents four different microstates. The unit
of Duration is milliseconds, while GEV is unitless.
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In this binary classification, the average 5-fold cross-validation

accuracy for distinguishing between MUD patients and HCs ranged

from 67.79% to 85.50%, indicating significant differences in

microstate features. In lower frequency bands, such as the theta

band, the differences in classification accuracy between different

conditions were minimal, at 3.05%. However, in the alpha band, the

accuracy difference was substantial, reaching 17.71%. In the beta

and gamma bands, this difference gradually decreased to 9.02% and

7.42%, respectively. In the full frequency range (4~45 Hz), the

difference was 7.43%. Notably, the highest classification accuracy,

85.5% (± 1.84%), was observed in the alpha band during the resting

state, while the lowest accuracy, 67.79% (± 1.86%), occurred in the

alpha band during drug stimuli. These findings suggest that the

alpha band is the most critical frequency band for distinguishing

between MUD patients and HCs.
Frontiers in Psychiatry 07
3.5 Feature importance of
microstate parameters

Given that the highest accuracy was achieved in the alpha band

during the resting state, we conducted an OOB analysis to evaluate

the importance of each feature in this classification. This analysis

aimed to identify the critical parameters that contribute most to

distinguishing between MUD patients and HCs. The feature

importance rankings are presented in Table 4. The importance of

features was not expressed in specific units because the numerical

values were directly tied to the magnitude of the data in the dataset.

However, these values effectively reflected the comparative

relationships between features. In the feature importance ranking,

the coverage of microstate A ranked highest with an importance

score of 0.1190, followed closely by the global explained variance
FIGURE 3

The 5-fold classification accuracy. Classification between resting and visual-stimulation states, separated into (A) during the drug-related; and
(B) neutral cues, for both the MUD and HC groups across different EEG frequency bands (Theta, Alpha, Beta, Gamma, and All). (C) Classification
between HCs and MUD patients under 3 conditions (Drug cue, Neutral cue, Resting State) across different EEG frequency bands. MUD data
represent patients with MUD, HCs data represent healthy controls. The frequency range of each band is Theta (4~8Hz), Alpha (8~12Hz), Beta
(12~28Hz), Gamma (28~45Hz), and All (4~45Hz).
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(GEV) of microstate A at 0.1054. These features were the most

critical contributors to achieving the highest classification accuracy

of 85.5% for distinguishing between MUD patients and HCs during

the resting state.
4 Discussions

4.1 Cognitive difference between MUD
Patients and HCs

In our classification results regarding different tasks (Section

3.1), we found that the classification accuracy for distinguishing

between the visual stimuli task (drug stimuli or neutral stimuli) and

the resting state was higher in the HC group compared to the MUD

group across all frequency bands. These results suggested significant

differences in the dynamics of neuronal networks and indicated

cognitive differences between MUD patients and HCs. This

phenomenon maybe attributed to long-term methamphetamine

abuse, which can lead to neural damage and disrupt the brain’s

functional connectivity (24). Such disruptions alter the brain’s

response patterns to external stimuli and contribute to cognitive

functional impairment (25). Previously, structural and functional

differences between drug addicts and healthy individuals in brain

imaging (5, 26–28) particularly in functional magnetic resonance

imaging (fMRI, 29), were readily identified through microstate

analysis based on these structural disparities (30). In our study,

all these structural and functional differences in the brain, leading to

cognitive differences, were reflected in the data features of

microstate analysis and were visually demonstrated through

machine learning classification.
4.2 Key EEG band for specific
endophenotypes for MUD

The main purpose of this study was to explore the specific

endophenotypes of MUD. The first objective was to precisely
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identify the most MUD-related EEG frequency band, where we

aimed to explore the key parameters of microstates as specific

endophenotypes for MUD. In a previous review (31), it was noted

that the majority of current research on microstates predominantly

selects EEG frequency bands ranging from 2 to 20 Hz or 2 to 40 Hz.

There is currently no fully unified standard or consensus regarding

the selection of EEG frequency bands for microstate analysis.

Similarly, in studies focusing on addiction-related microstate

analysis, most EEG microstate research integrates different

frequency bands into a unified analysis, encompassing multiple

subdivided frequency ranges (32, 33). This approach reflects the

general dynamics of neuronal networks but does not help to identify

specific bands with key neuronal activity. In contrast, neuroscience

research, including studies on MUD, often targets specific EEG

frequency bands to investigate their unique physiological roles (34).

For example, a power increase was found in the beta and gamma

bands in patients with MUD compared to HCs (35). Consequently,

in this work, we studied not only aggregated bands but also each

frequency band (theta, alpha, beta, gamma) individually. Our

results revealed that segmented EEG frequency bands for MUD

detection yielded much higher average accuracies (with 85.50% as

the highest among all sub-frequency bands) than detecting MUD by

aggregating all frequency bands together (79.11%) under resting

state conditions. The highest accuracy was observed in the alpha

band (8-12 Hz). In other words, the performance for classifying

patients with MUD and HCs reached its maximum when

considering only the alpha frequency band. Compared to the

delta, beta, and gamma frequency bands, the average accuracy

improved by 3.66%, suggesting that the alpha frequency band has

the highest priority. Although other frequency bands also exhibited

high classification accuracy (82.97% in the beta band and 82.29% in

the gamma band under resting state), indicating that they contain

crucial information for distinguishing between the two groups, their

stability, as indicated by the standard deviation performance, was

on average 0.98% lower.

The current understanding of the EEG alpha band has not been

fully elucidated (36); however, it is generally believed that the alpha

band is strongly associated with memory (37), creativity (38), and
TABLE 4 Feature importance of microstate parameters.

No Microstate Parameter Importance No Microstate Parameter Importance

1 A Coverage 0.1190 10 C GEV 0.0478

2 A GEV 0.1054 11 D Duration 0.0425

3 B GEV 0.1028 12 B Duration 0.0422

4 A Occurrence 0.0805 13 C Coverage 0.0403

5 Total GEV 0.0765 14 B Occurrence 0.0336

6 A Duration 0.0641 15 B Coverage 0.0322

7 D Coverage 0.0624 16 C Duration 0.0228

8 D Occurrence 0.0578 17 C Occurrence 0.0160

9 D GEV 0.0533 – – – –
Microstate topography of A, B, C, and D are presented in Figure 2. Parameters of microstate are introduced in Section 2.4 (Microstate Analysis). Total-GEV means the total global explained
variance of four microstates. Importance represents the importance of each feature.
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cognitive abilities (39). In microstate analysis, the importance of the

alpha band in exploring MUD endophenotypes is now being

discussed for the first time. However, the potential of the alpha

band as a characterization for MUD has already been demonstrated

in some previous studies. Most MUD-related EEG research has

reported the specificity of the alpha band (35, 40–43). For example,

under eye-closed resting state conditions, patients with MUD

exhibit lower alpha band power in the EEG spectrum compared

to HCs (40, 43). Another example is the increase in alpha band

power observed in MUD patients when transitioning from a drug-

related to a neutral VR task (35). These studies align closely with

our characterization of the internal endophenotype of MUD, to

some extent demonstrating the importance of the alpha band.

However, unlike previous research where the alpha band was

treated as a biomarker, in this work, it serves as the primary band

for further exploration of the MUD endophenotype. Furthermore,

we focused on the alpha band to explore the most crucial microstate

parameters as specific endophenotypes of MUD in the resting state.
4.3 Key parameters as specific
endophenotypes for MUD

In our feature importance rank, microstate A emerged as the

primary contributor, followed by microstate D, while the contributions

of microstates C and B were considerably weaker. This indicates that

microstate A has the strongest association with MUD (Table 4).

Microstate A most effectively reflects the differences between MUD

patients and HCs. It is noteworthy that these four microstate

topographies are highly reproducible, with most studies adopting

similar microstates, facilitating comparisons across research.

Each microstate class has specific physiological significance. For

example, microstate class A is generally associated with speech and

auditory processing (44). Additionally, microstate A has been

linked to schizophrenia (45), depression (46), various types of

addiction (33, 47) and a high risk of developing mental disorders

(48). Our previous work (49) reviewed microstate analysis in MUD

and found that patients with MUD tend to exhibit relatively lower

coverage in microstate class A (14). This finding is consistent with

the importance ranking of microstate A coverage in our out-of-bag

analysis, where it ranked highest (Table 4). Moreover, similar
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neurodynamic abnormalities have been observed in studies of

heroin addiction (6), suggesting that this phenotype may have

broader relevance in representing various forms of drug addiction.
5 Comparison across different studies
and limitations

A comparison of various studies focusing on drug addiction-

related microstate analysis is presented in Table 5. Most research

using EEG microstate analysis in addiction studies has identified

specific biomarkers (5, 14) and some have proposed the use of

repetitive transcranial magnetic stimulation to treat MUD patients

(6, 15). One study, however, focused on improving addiction detection

accuracy through novel algorithms without identifying specific

biomarkers (50). Despite these advancements, the critical frequency

sub-bands characterizing MUD have not been adequately emphasized

or identified in the existing literature. Our study addresses this gap by

exploring the role of specific frequency bands in MUD. Additionally,

the investigation of EEG microstates under different task conditions is

relatively rare (14). Unlike typical resting-state studies, our research

introduces visual induction tasks involving drug-related and neutral

images to examine their effects on microstate analysis for MUD.

Furthermore, our study achieved an addiction detection accuracy

rate of 85.5% for methamphetamine addiction, representing notable

improvement over previous research (6, 26).

This work highlights several areas for potential improvement.

Firstly, enhancing the experimental stimulation by incorporating

virtual reality (VR) and drug-like objects could elicit more distinct

EEG patterns, thereby providing a clearer understanding of addiction

mechanisms. Secondly, some experimental designs and analytical

methods could be improved. It would be more rigorous if the

sample size were further expanded, female participants were

included, and the age differences between groups were balanced.

Meanwhile, the random 5-fold cross-validation approach may allow

trials from the same subject to appear in both the training and

validation sets, introducing feature leakage and exacerbating

confounding effects. This setup may cause the model to learn

subject-specific characteristics rather than true differences between

MUD and HC, leading to an overestimated accuracy. A subject-wise

5-fold split would better mitigate this issue. Thirdly, to validate the
TABLE 5 A Comparison of studies that investigate drug-craving with microstate approach.

Authors Drugs EEG
freq. bands

Sub-
bands
analysis

Different
tasks

Therapies Biomarkers MUD vs
HCs Classification

Accuracy

Chen (5) Meth 2-20 × × × √ × –

Ding (6) Heroin 2-20 × × √ √ √ 81.5%

Lin (14) Meth 2-20 × √ × √ × –

Li (15) Meth 0.1-45 × × √ √ × –

Wang (50) Heroin 2-20 × × × × √ 81.0%

This work Meth 4-45 √ √ × √ √ 85.5%
Different tasks mean resting state and visual stimuli. Therapies refer to rTMS. Biomarkers, namely endophenotypes for MUD detection.
"√" indicates the item is accomplished, while "×" indicates the item is not included.
frontiersin.org

https://doi.org/10.3389/fpsyt.2024.1513793
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Gao et al. 10.3389/fpsyt.2024.1513793
proposed biomarkers, therapeutic interventions could be explored to

treat MUD patients and assess significant changes in these biomarkers.

Implementing closed-loop neuromodulationmay also help validate our

proposed biomarkers and improve therapeutic outcomes for MUD

patients. At last, while our machine learning approach identified key

microstate parameters (coverage and GEV in the alpha band) as

strongly associated with MUD, this method primarily reveals

patterns based on data rather than directly addressing the disease’s

intrinsic characteristics. Thus, there remains a gap in interpretability,

and further research is needed to explore the physiological significance

of these identified endophenotypes.
6 Conclusions

This study integrates microstate analysis with machine learning

to identify the EEG frequency band most relevant to MUD. The

alpha band emerged as strongly associated with MUD, with

microstate class A proving to be the most effective in

distinguishing MUD patients from HCs. Additionally, the

duration of microstate class A was found to be the most critical

parameter for classification, suggesting its potential as a key

endophenotype for MUD.
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