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Introduction: Machine learning (ML) is an effective tool for predicting mental

states and is a key technology in digital psychiatry. This study aimed to develop

ML algorithms to predict the upper tertile group of various anxiety symptoms

based on multimodal data from virtual reality (VR) therapy sessions for social

anxiety disorder (SAD) patients and to evaluate their predictive performance

across each data type.

Methods: This study included 32 SAD-diagnosed individuals, and finalized a

dataset of 132 samples from 25 participants. It utilized multimodal (physiological

and acoustic) data from VR sessions to simulate social anxiety scenarios. This

study employed extended Geneva minimalistic acoustic parameter set for

acoustic feature extraction and extracted statistical attributes from time series-

based physiological responses. We developed ML models that predict the upper

tertile group for various anxiety symptoms in SAD using Random Forest, extreme

gradient boosting (XGBoost), light gradient boosting machine (LightGBM), and

categorical boosting (CatBoost) models. The best parameters were explored

through grid search or random search, and the models were validated using

stratified cross-validation and leave-one-out cross-validation.

Results: The CatBoost, using multimodal features, exhibited high performance,

particularly for the Social Phobia Scale with an area under the receiver operating

characteristics curve (AUROC) of 0.852. It also showed strong performance in

predicting cognitive symptoms, with the highest AUROC of 0.866 for the Post-

Event Rumination Scale. For generalized anxiety, the LightGBM’s prediction for

the State-Trait Anxiety Inventory-trait led to an AUROC of 0.819. In the same

analysis, models using only physiological features had AUROCs of 0.626, 0.744,

and 0.671, whereas models using only acoustic features had AUROCs of 0.788,

0.823, and 0.754.
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Conclusions: This study showed that a ML algorithm using integratedmultimodal

data can predict upper tertile anxiety symptoms in patients with SAD with higher

performance than acoustic or physiological data obtained during a VR session.

The results of this study can be used as evidence for personalized VR sessions and

to demonstrate the strength of the clinical use of multimodal data.
KEYWORDS

machine learning, multimodal data, digital phenotyping, digital psychiatry, social
anxiety disorder, virtual reality intervention, anxiety prediction
1 Introduction

Social anxiety disorder (SAD) is characterized by an excessive

fear of negative evaluation or distorted cognitive perception

triggered by social or performance situations (1). SAD is one of

the most common mental disorders in the general population, with

an estimated lifetime prevalence of up to 12% in the US (2).

Therefore, considerable effort has been devoted to the

development of therapeutic approaches for SAD. Currently, the

combination of cognitive behavioral therapy (CBT) and

antidepressant medication with carefully planned procedures is

considered the gold standard treatment for SAD (3, 4). However,

with advances in science and technology, virtual reality (VR) has

accelerated a paradigm shift in psychiatric treatment (5). In

particular, given the nature of VR technology, which makes it

possible to mimic real-life social interactions within a therapeutic

context, CBT with virtual exposure to feared stimuli has been

assumed to be a promising alternative to current practice in

managing patients with SAD (6, 7).

From the current perspective, early, accurate, and objective

assessment of mental states, as well as prompt therapeutic

management, is regarded as the most effective way to improve disease

prognosis (8). Concurrently, machine learning (ML) technology is used

to develop prediction, classification, and therapeutic solutions for

mental states, making precision medicine a reality (9, 10). Therefore,

ML technology has been incorporated into VR exposure therapy

(VRET) to treat SAD (11, 12). In support of this, considerable effort

has been devoted to developing an ML-based prediction of individuals’

mental states in real time for exposure therapy in virtuo using central

and peripheral biosignals (13–15). Specifically, biofeedback framework,

defined as the process of teaching patients to intentionally regulate their

physiological response for improvingmental states (e.g., decreased stress

or anxiety) through VR-embedded visual feedback (e.g., growing tree

branches or gently moving particles), has been combined with VRET

andML technology (16). However, given the capability ofML to process

multimodal datasets, there is still room for improvement to provide

more robust interventions for patients with SAD (17–20). From a

neuroscientific perspective, a multi-modality approach, which involve

fusing and analyzing different types of data, including medical images
02
(e.g., magnetic resonance images (MRI) and structural MRI (sMRI)),

physiological signals (e.g., electrocardiogram, electromyogram, and

electroencephalogram), acoustic features, and speech transcript,

provides a fuller understanding of mental conditions (21). For

example, multimodal feature sets via a combination of different

biomarkers, such as sMRI, fluorodeoxyglucose positron emission

tomography (FDG-PET), cerebrospinal fluid performed up to 6.7%

better than unimodal features in classifying patients with Alzheimer’s

disease from healthy controls (22). Similarly, recent study demonstrated

the potential of ML-enabled detection of neurotypical and attention-

deficit/hyperactivity disorder populations by incorporating multimodal

physiological data, including electrodermal activity, heart rate variability,

and skin temperature (23). Therefore, in this study, the predictive

performance of ML models utilizing multimodal data from VRET

sessions was evaluated based on their medical applicability in

personalized therapy.

When implementing CBT for SAD, it is important to recognize

that SAD is characterized by various symptoms, including heightened

social anxiety/fear, distorted self-referential attention/rumination,

and maladaptive beliefs (fear of negative evaluation, humiliation,

and embarrassment) (24–26). Empirical research has indicated

heterogeneity in treatment responses among patients with anxiety

disorders over therapy sessions (27–29). For example, patients may

show early or delayed recovery and a steady or moderate decline in

symptoms (30, 31). Moreover, patients may exhibit attenuated or

steep slopes in their symptom trajectory (32). Furthermore, symptom

variability has been observed in patients with SAD (33). Therefore,

examining a broad array of symptoms throughout CBT is crucial for

identifying whether the treatment works and how much progress has

been made. Thus, in this study, a comprehensive assessment battery

was administered to participants, and their SAD symptom responses

during VRET were predicted using an ML approach to provide

information on the trajectory of session-to-session changes in the

symptom facets. Such an approach could help deliver tailored

interventions for heterogeneous patients, identify those who may

be at risk of not responding, and contribute to therapists’ evidence-

based clinical decision making.

This study aimed to build predictive models of upper tertile

symptoms related to SAD using machine learning algorithms by
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utilizing acoustic and physiological features, as well as combined

multimodal data from VRET sessions, and to evaluate the

effectiveness of these predictive models.
2 Materials and methods

2.1 Participants

A total of 32 young adults were recruited through internet

advertisements. Participants with SAD were eligible if they met the

Diagnostic and Statistical Manual of Mental Disorders, Fifth

Edition criteria for SAD, which was assessed using the Mini-

International Neuropsychiatric Interview (34), and if they had a

score ≥ 82 on the Korean version of the Social Avoidance and

Distress Scale (35). The exclusion criteria for all participants were

(1) having a lifetime or current mental illness or neurological

disorder that might elicit severe side effects from a VR experience

[e.g., schizophrenia spectrum disorder, bipolar disorder,

posttraumatic stress disorder, panic disorder, substance use

disorders, autism spectrum disorder [ASD], epilepsy, traumatic

brain injury, and suicide attempts) (2); having an intellectual

disability (IQ < 70; estimated using the short version of the

Korean Wechsler Adult Intelligence Test Fourth Edition (36)];

and (3) receiving psychotropic medication or psychotherapy at

the time of research enrollment.

Of the initial 32 participants, data from 7 individuals were

omitted from the analysis because of sensor malfunctions. Thus,

physiological and acoustic data were derived from 4 sessions of 25

individuals, resulting in 100 samples. In addition, participants were

allowed to repeat VR exposure scenarios at their request for extra

training, resulting in 89 additional samples. After removing 57

samples, which were considered outliers due to errors in audio

recordings, samples where no speech was made, and instances

where time-series data contained values like -1 exceeding 30%, we

finally obtained 132 samples. Consequently, the final dataset for the

ML analysis consisted of 132 samples, expanded by incorporating

additional data obtained from extra sessions, which comprised both

multimodal data and clinical and psychological scale values

collected from 25 participants. All procedures in this study were

performed in accordance with the guidelines of Declaration of

Helsinki regarding the ethical principles for medical research

involving human participants. This study was approved by the

Institutional Review Board of the Korea University Anam Hospital

(IRB no. 2018AN0377). All participants provided written

informed consent.
1 https://www.youtube.com/@socialanxietydisordervrtre8109.
2.2 VR sessions for SAD

The VR intervention was designed to immerse participants in

scenarios that simulated social anxiety within contexts pertinent to

SAD therapy, aiming to facilitate the confrontation and mitigation

of their fear. The intervention consisted of six VR sessions, each

structured into three phases: introductory, main, and concluding.

These sessions were categorized into three difficulty tiers (easy,
Frontiers in Psychiatry 03
medium, and hard), based on the challenges presented during the

main phase. The initial phase acquainted participants with the

virtual setting and employed meditation-based relaxation exercises.

The main phase was initiated by introducing seven to eight virtual

characters, simulating an interaction scenario akin to the first day of

college class. Participants began their self-introduction by activating

the recording function using an icon on the head-mounted display

(HMD). During this phase, they could adjust the session’s difficulty

by choosing between easy, medium, or hard levels, which influenced

the responses of the virtual characters. The concluding phase

mirrored the introductory phase, offering a meditation-based VR

experience to soothe participants’ minds. Initially, all participants

engaged at an easy level. Starting from the second session, they were

given the autonomy to select their preferred difficulty level, allowing

for adjustment of the challenge to suit their individual preferences,

thereby ensuring a personalized therapeutic experience. Additional

details concerning the intervention can be found in a study by Kim

et al. (37). The sample of the VR sessions used in this intervention

can be found at Youtube1.
2.3 Measures

During the main phase of each VR session, participants were

subjected to in situ measurements of video recordings and

autonomic physiological data. Note that analyses include data

gathered only from the main phase in which social interaction

between the user and virtual avatars took place. Figure 1 provides a

comprehensive description of the data-collection methodology.

Heart rate (HR) and galvanic skin response (GSR) were measured

to assess physiological responses during speech because of their

close relationship with anxiety (38–40). Using a Shimmer3 GSR+

with three channels, we measured the skin conductance on the

index and middle fingers of the non-dominant hand at 52 Hz and

cardiac volume using an earlobe infrared sensor, converting this to

HR data. During the VR sessions, the participants’ voices were

captured with an HTC Vive HMD microphone for vocal analysis,

enhancing the depth of the study.

A comprehensive assessment battery was used to measure the

symptom characteristics at the first, second, fourth, and sixth VR

sessions. For core symptoms of SAD, we used the Korean versions

of the Social Phobia Scale (K-SPS) (41, 42), Liebowitz Social Anxiety

Scale (K-LSAS) (43, 44), Social Avoidance and Distress Scale

(K-SADS) (35, 45), and Social Interaction Anxiety Scale (K-SIAS)

(42, 46). Cognitive symptoms of SAD were assessed using the Post-

Event Rumination Scale (PERS) (47, 48), Brief Fear of Negative

Evaluation (BFNE) (35, 45) scale, and Internalized Shame Scale

(ISS) (49, 50). Regarding generalized anxiety symptoms, the State-

Trait Anxiety Inventory (STAI) (51, 52) and Beck Anxiety

Inventory (BAI) (53, 54) were evaluated. A detailed description of

each assessment is provided in Table 1, and we utilized the total

scores from each clinical and psychological scale.
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2.4 Data preprocessing

2.4.1 Labeling procedure with clinical and
psychological scales

Scores from the 132 samples were divided into tertiles for each

clinical and psychological scale (K-SPS, K-LSAS, K-SADS, K-SIAS,

PERS, BFNE, ISS, STAI-State, STAI-Trait, and BAI), resulting in

three classification groups per scale. Then, the top tertile for each

scale was grouped into a “severe group,” and the remaining samples

formed a “non-severe group,” using the severe group labels as the

ground truth for machine learning prediction.

2.4.2 Acoustic features extraction process
Video recordings of VR sessions were converted to waveform

audio file format (WAV) format for analysis. Following the removal

of samples with errors in audio recordings, samples where no

speech was made, and samples containing outliers in

physiological data, we obtained a total of 132 WAV files for

machine learning training. From each of these files, we extracted

a total of 88 acoustic features included in the extended Geneva

Minimalistic Acoustic Parameter Set (eGeMAPS) (55).

Supplementary Table S1 details the acoustic features analyzed

using eGeMAPS. The features were broadly categorized into

frequency-related metrics, energy dynamics, spectral properties,
Frontiers in Psychiatry 04
and temporal patterns, and all 88 features were extracted using

the openSMILE toolkit (56).

2.4.3 Physiological features extraction process
The collected HR and GSR time series data were aligned with

the length of the voice recordings. Samples with excessive negative

readings were removed, considered outliers such as instances where

the proportion of -1 values exceeded 30%. Among the 132 usable

samples, missing values in HR and GSR were imputed using

forward and backward imputation techniques (57). Further data

cleansing was achieved by applying the interquartile range (IQR)

technique (58), which was chosen to manage the variability in HR

and GSR data. The IQR method is effective for reducing noise

caused by external factors such as sensor misplacement,

environmental changes, and user movements, which can lead to

abrupt fluctuations. By removing these noise-induced outliers, the

IQR technique helps to clarify the essential patterns in the data

while maintaining the central tendency, thereby enhancing the

reliability of subsequent model training. Following the

establishment of a cleaned dataset, a comprehensive suite of 12

statistical features was extracted from both the HR and GSR signals.

These features, including the mean, standard deviation, minimum,

maximum, mean difference, and maximum difference were

calculated to capture the dynamic nature of physiological
FIGURE 1

Overview of data collection during VR sessions. VR, virtual reality. This figure shows the overall process of data extraction.
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responses. A detailed description of these features is presented in

Supplementary Table S2.
2.5 Machie learning modeling

In this study, we employed machine learning models including

Random Forest (59), eXtreme Gradient Boosting (XGBoost) (60),

Light Gradient Boosting Machine (LightGBM) (61), and CatBoost

(62) to compare the performance in predicting the severe group for

each clinical and psychological scale. These models were

implemented in Python version 3.11.5, utilizing the Scikit-learn

library version 1.4.0 for classification tasks.
Frontiers in Psychiatry 05
We evaluated the classification models using the stratified k-

fold cross-validation with five splits to enhance the model

robustness and reduce bias by preserving the proportion of

classes across each fold. We employed both grid search and

random search methodologies to optimize hyperparameters for

the Random Forest, XGBoost, LightGBM, and CatBoost

classifiers. This approach ensured alignment with the unique

characteristics of our dataset and enhanced predictive accuracy.

The range of hyperparameters tuning explored was presented in

Supplementary Table S3; we extracted the best parameters based on

the criterion of maximizing the area under the receiver operating

characteristic curve (AUROC). To address the limitation posed by

the small data size, we further validated the performance using the
TABLE 1 A detailed description of the clinical and psychological scales.

Core Symptom of SAD

Social Phobia Scale (SPS)

The SPS was designed to assess the fear of being scrutinized during activities and performance tasks. It consists of 20 items and each answer is scored on a scale of 0 (not
at all) to 4 (extremely). Total scores range from 0 to 80, with higher scores representing greater anxiety about being observed. The Korean version of the SPS was used.

Liebowitz Social Anxiety Scale (LSAS)

The LSAS was designed to assess the fear or anxiety and avoidance of various social interaction and performance situations. It consists of 24 items on two separate scales,
assessing fear or anxiety (ranging from 0 = none, to 3 = severe) and avoidance (ranging from 0 = never to 3 = usually). Higher total scores indicate more severe social
anxiety symptoms. The Korean version of the SPS was used.

Social Avoidance and Distress Scale (SADS)

The SADS was designed to assess distress in social situations and the avoidance tendency in social interactions. It consists of 28 items on a true-false scale. In the Korean
version of the SADS, each item was assessed on a 5-point scale. Higher total scores indicate more severe social anxiety symptoms.

Social Interaction Anxiety Scale (SIAS)

The SIAS was designed to assess anxiety in social interactional situations. It consists of 20 items and each answer is scored on a scale of 0 (not at all) to 4 (extremely).
Total scores range from 0 to 80, with higher scores representing greater social interaction anxiety. The Korean version of the SIAS was used.

Cognitive Symptom of SAD maintenance

Post-Event Rumination Scale (PERS)

The PERS was designed to assess the frequency of post-event ruminations in social situations. It comprises two scales including negative rumination (15 items) and
positive rumination (9 items). Each answer is scored on a scale of 0 (never) to 4 (very often); higher scores indicate more frequent rumination.

Brief Fear of Negative Evaluation (BFNE)

The BFNE is a 12-item version of the original 30-item fear of negative evaluation scale and measures the degree of fear or worry of negative evaluation by others. The
Korean version was used in this study. Each item was scored on a 5-point Likert-type scale ranging from 1 (strongly disagree) to 5 (strongly agree), and scores were
summed with higher scores reflecting greater levels of anxiety or fear.

Internalized Shame Scale (ISS)

The ISS was designed to assess trait-shame or internalized shame. It consists of a 24-item shame scale and a 6-item self-esteem scale in which each answer is scored on a
scale of 0 (not at all) to 4 (extremely). Total scores range from 0 to 120, with higher scores representing higher level of trait-shame.

Generalized Anxiety

State-Trait Anxiety Inventory (STAI)

The STAI was designed to assess the level of state and trait anxiety. It consists of a 20-state anxiety scale (STAI-State) and a 20-trait anxiety scale (STAI-Trait). Both scales
range from 1 (almost never) to 4 (almost always) higher scores indicating a higher level of state-trait anxiety.

Beck Anxiety Inventory (BAI)

The BAI was designed to assess the intensity of somatic (hands trembling, face flushed, heart pounding) and cognitive (feeling terrified, fearing the worst, fear of losing
control, fear of dying) anxiety symptoms. It consists of 21 items and each answer is scored on a scale of 0 (not at all) to 3 (severely). Total scores range from 0 to 63, with
higher scores representing more severe symptoms. As evaluating anxiety symptoms in one-week time frame, the BAI is considered as a measure of state rather than trait
anxiety. The Korean version of the BAI was used.
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TABLE 2 Descriptive statistics on the various anxiety symptoms for SAD by clustered groups (higher, middle, and lower groups).

ount
Higher group
mean (SD)

Middle group
mean (SD)

Lower group
mean (SD)

Higher
group
threshold

Middle
group
threshold

Overall
mean (SD)

42.09(5.56) 25.36(5.55) 9.11(4.64) 35 17 26.51(14.04)

94.67(17.29) 68.64(7.42) 39.38(11.37) 79 56 68.20(25.81)

115.67(9.45) 99.61(2.31) 86.12(9.01) 106 96 101.73(14.53)

54.47(6.22) 40.49(3.08) 23.86(6.97) 46 34 39.71(13.83)

49.52(4.34) 38.09(2.37) 28.98(4.14) 44 35 39.24(9.17)

48.47(4.88) 40.17(2.06) 31.37(4.08) 44 37 40.64(8.31)

61.30(10.43) 40.22(5.17) 22.52(8.82) 50 33 42.20(17.82)

58.35(6.54) 44.71(3.52) 33.83(3.71) 51 40 47.20(11.12)

62.39(5.30) 47.88(3.32) 36.24(3.92) 55 43 49.65(11.68)

22.85(8.35) 6.70(2.34) 1.86(0.88) 12 4 11.17(11.17)

obia scale; K-LSAS, the Korean version of the liebowitz social anxiety scale; K-SADS, the Korean version of the social avoidance and distress scale; K-SIAS, the Korean version of
r of negative evaluation; ISS, the internalized shame scale; STAI-State, the state-trait anxiety inventory-state; STAI-Trait, the state-trait anxiety inventory-trait; BAI, the beck
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Symptom Groups

Middle group
count

Lower
group

Higher
group count

K-SPS 45 50 37

K-LSAS 45 45 42

K-SADS 51 41 40

K-SIAS 45 43 44

PERS 46 45 41

BFNE 53 36 43

ISS 46 46 40

STAI-State 52 45 35

STAI-Trait 49 42 41

BAI 47 50 35

SAD, social anxiety disorder; SD, standard deviation; K-SPS, the Korean version of the social ph
the social interaction anxiety scale; PERS, the post-event rumination scale; BFNE, the brief fea
anxiety inventory.
This table shows the characteristics of the group data for each clinical and psychological scal
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leave-one-out cross-validation (LOOCV) with the best parameter

models derived from both search methods.

To obtain different perspectives on how well the ML models

classified the severe group of each clinical and psychological scale,

we evaluated the performance of the ML models using different

metrics: accuracy, AUROC, F1 score, sensitivity, positive predictive

value (PPV), and negative predictive value (NPV). We also

compared the AUROC and PPV performance of all models

across all clinical and psychological scales based on individual

features. Furthermore, we analyzed the factors influencing ML

model predictions using SHapley Additive exPlanations (SHAP)

(63), which provided interpretability by quantifying the

contribution of each feature to the model’s predictions.
2.6 Statistical analysis

Statistical analyses were performed using SciPy version 1.11.1.

To discern the variations in acoustic and physiological attributes

across the three groups, we assessed the normality of the data

distribution using the Shapiro-Wilk test and subsequently applied

either one-way analysis of variance (ANOVA) or the Kruskal-

Wallis test, depending on the normality of the data. Statistical

significance was determined using a false discovery rate of 5%.
Frontiers in Psychiatry 07
3 Results

3.1 Characteristics of participants and
clustered groups

The available sample at the time of analysis consisted of 25

young adults aged 19–31 years (mean age = 23.6 and standard

deviation = 3.06) and the majority were female (16/25, 64.0%).

Their mean education level was 2.64 of college (13–17 years of

education). Descriptive statistics on the scores of clinical and

psychological scales by clustered groups (higher, middle, and

lower thirds) are presented in Table 2. The results of a one-way

ANOVA or Kruskal-Wallis test between clustered groups in

acoustic and physiological variables for every scale are reported in

Supplementary Table S4. As shown in this table, statistically

significant differences were found only in the K-SPS, K-SIAS, and

STAI-Trait scale.
3.2 Machine learning prediction of
anxiety symptoms

The complete results of the grid search and random search were

provided in Supplementary Tables S5-S7, and Supplementary
TABLE 3 The predictive performance of the four machine learning models on the severe group for core symptoms of SAD (K-SPS, K-LSAS, K-SADS,
and K-SIAS) using the best parameters from grid search or random search combined with stratified cross-validation.

Variablea Physiological Features Acoustic Features Multimodal Featuresb

K-
SPS

K-
LSAS

K-
SADS

K-
SIAS

K-
SPS

K-
LSAS

K-
SADS

K-
SIAS

K-
SPS

K-
LSAS

K-
SADS

K-
SIAS

RF
(Random
Forest)

Accuracy 0.666 0.666 0.590 0.652 0.766 0.696 0.636 0.667 0.803 0.741 0.644 0.720

AUROC 0.577 0.734 0.618 0.702 0.783 0.743 0.732 0.736 0.831 0.772 0.697 0.788

F1-score 0.657 0.661 0.585 0.627 0.762 0.696 0.635 0.660 0.800 0.713 0.642 0.706

Sensitivity 0.666 0.666 0.590 0.652 0.766 0.696 0.636 0.667 0.803 0.741 0.644 0.720

PPV 0.659 0.664 0.614 0.706 0.765 0.712 0.644 0.669 0.801 0.727 0.658 0.745

NPV 0.733 0.754 0.694 0.726 0.805 0.799 0.714 0.771 0.847 0.767 0.736 0.792

XGB
(XGBoost)

Accuracy 0.651 0.689 0.546 0.585 0.728 0.742 0.697 0.606 0.712 0.765 0.691 0.674

AUROC 0.576 0.713 0.615 0.603 0.767 0.799 0.741 0.630 0.742 0.843 0.709 0.721

F1-score 0.635 0.684 0.537 0.580 0.722 0.740 0.699 0.609 0.710 0.760 0.680 0.674

Sensitivity 0.651 0.689 0.546 0.585 0.728 0.742 0.697 0.606 0.712 0.765 0.691 0.674

PPV 0.643 0.684 0.547 0.591 0.730 0.744 0.711 0.641 0.721 0.780 0.697 0.686

NPV 0.712 0.757 0.648 0.697 0.783 0.809 0.774 0.746 0.797 0.836 0.734 0.774

LGBM
(Light GBM)

Accuracy 0.674 0.650 0.576 0.623 0.727 0.711 0.735 0.644 0.758 0.736 0.787 0.689

AUROC 0.626 0.651 0.605 0.637 0.788 0.762 0.754 0.669 0.811 0.820 0.800 0.735

F1-score 0.661 0.647 0.570 0.615 0.724 0.712 0.734 0.636 0.753 0.737 0.783 0.685

Sensitivity 0.674 0.650 0.576 0.623 0.727 0.711 0.735 0.644 0.758 0.736 0.787 0.689

(Continued)
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TABLE 3 Continued

Variablea Physiological Features Acoustic Features Multimodal Featuresb

K-
SPS

K-
LSAS

K-
SADS

K-
SIAS

K-
SPS

K-
LSAS

K-
SADS

K-
SIAS

K-
SPS

K-
LSAS

K-
SADS

K-
SIAS

PPV 0.665 0.655 0.596 0.632 0.726 0.717 0.745 0.640 0.756 0.754 0.790 0.698

NPV 0.721 0.744 0.691 0.742 0.789 0.788 0.773 0.726 0.805 0.818 0.816 0.779

CAT
(Cat Boost)

Accuracy 0.652 0.667 0.561 0.683 0.735 0.726 0.712 0.659 0.796 0.728 0.750 0.713

AUROC 0.567 0.754 0.608 0.712 0.782 0.779 0.795 0.724 0.852 0.819 0.822 0.808

F1-score 0.645 0.665 0.547 0.660 0.730 0.719 0.712 0.649 0.791 0.727 0.748 0.707

Sensitivity 0.652 0.667 0.561 0.683 0.735 0.726 0.712 0.659 0.796 0.728 0.750 0.713

PPV 0.650 0.675 0.558 0.670 0.729 0.726 0.723 0.664 0.796 0.747 0.758 0.719

NPV 0.726 0.757 0.664 0.787 0.785 0.777 0.778 0.760 0.833 0.817 0.792 0.804
F
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SAD, social anxiety disorder; K-SPS, the Korean version of the social phobia scale; K-LSAS, the Korean version of the liebowitz social anxiety scale; K-SADS, the Korean version of the social
avoidance and distress scale; K-SIAS, the Korean version of the social interaction anxiety scale; AUROC, area under the receiver operating characteristic; PPV, positive predictive value; NPV,
negative predictive value.
aThe highest AUROC scores for each clinical and psychological scale are highlighted in bold to denote superior model performance.
bThe combination of physiological and acoustic features.
TABLE 4 The predictive performance of the four machine learning models on the severe group for cognitive symptoms of SAD (PERS, BFNE, and ISS)
using the best parameters from grid search or random search combined with stratified cross-validation.

Variablea Physiological Features Acoustic Features Multimodal Featuresb

PERS BFNE ISS PERS BFNE ISS PERS BFNE ISS

RF (Random Forest)

Accuracy 0.689 0.446 0.614 0.643 0.690 0.696 0.726 0.636 0.644

AUROC 0.744 0.397 0.600 0.653 0.758 0.669 0.772 0.722 0.629

F1-score 0.687 0.444 0.614 0.632 0.687 0.688 0.720 0.636 0.631

Sensitivity 0.689 0.446 0.614 0.643 0.690 0.696 0.726 0.636 0.644

PPV 0.688 0.448 0.622 0.635 0.698 0.691 0.728 0.656 0.628

NPV 0.759 0.535 0.702 0.719 0.760 0.744 0.805 0.736 0.700

XGB (XGBoost)

Accuracy 0.674 0.553 0.637 0.727 0.628 0.614 0.712 0.651 0.584

AUROC 0.655 0.512 0.593 0.737 0.718 0.624 0.777 0.732 0.648

F1-score 0.672 0.556 0.638 0.727 0.622 0.608 0.711 0.644 0.586

Sensitivity 0.674 0.553 0.637 0.727 0.628 0.614 0.712 0.651 0.584

PPV 0.676 0.565 0.646 0.734 0.634 0.605 0.720 0.655 0.592

NPV 0.754 0.638 0.724 0.812 0.679 0.701 0.790 0.688 0.687

LGBM (Light GBM)

Accuracy 0.651 0.432 0.599 0.764 0.644 0.674 0.773 0.667 0.674

AUROC 0.666 0.443 0.606 0.787 0.687 0.750 0.864 0.694 0.758

F1-score 0.653 0.415 0.597 0.762 0.642 0.660 0.772 0.668 0.673

Sensitivity 0.651 0.432 0.599 0.764 0.644 0.674 0.773 0.667 0.674

PPV 0.661 0.482 0.606 0.772 0.684 0.660 0.777 0.700 0.674

NPV 0.741 0.559 0.692 0.840 0.779 0.738 0.835 0.791 0.746

CAT (Cat Boost)

Accuracy 0.674 0.523 0.591 0.750 0.651 0.689 0.787 0.705 0.742

AUROC 0.694 0.472 0.567 0.823 0.738 0.733 0.866 0.778 0.765

F1-score 0.673 0.522 0.591 0.751 0.653 0.690 0.785 0.707 0.740
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TABLE 4 Continued

Variablea Physiological Features Acoustic Features Multimodal Featuresb

PERS BFNE ISS PERS BFNE ISS PERS BFNE ISS

Sensitivity 0.674 0.523 0.591 0.750 0.651 0.689 0.787 0.705 0.742

PPV 0.677 0.526 0.595 0.762 0.660 0.694 0.788 0.727 0.746

NPV 0.754 0.610 0.692 0.832 0.727 0.773 0.843 0.807 0.807
F
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SAD, social anxiety disorder; PERS, the post-event rumination scale; BFNE, the brief fear of negative evaluation; ISS, the internalized shame scale; AUROC, area under the receiver operating
characteristic; PPV, positive predictive value; NPV, negative predictive value.
aThe highest AUROC scores for each clinical and psychological scale are highlighted in bold to denote superior model performance.
bThe combination of physiological and acoustic features.
TABLE 5 The predictive performance of the four machine learning models on the severe group for generalized anxiety (STAI-State, STAI-Trait, and
BAI) using the best parameters from grid search or random search combined with stratified cross-validation.

Variablea Physiological Features Acoustic Features Multimodal Featuresb

STAI-
State

STAI-
Trait

BAI
STAI-
State

STAI-
Trait

BAI
STAI-
State

STAI-
Trait

BAI

RF
(Random
Forest)

Accuracy 0.585 0.592 0.582 0.590 0.621 0.668 0.644 0.720 0.705

AUROC 0.652 0.671 0.514 0.584 0.718 0.734 0.685 0.772 0.786

F1-score 0.585 0.596 0.575 0.589 0.621 0.666 0.641 0.719 0.695

Sensitivity 0.585 0.592 0.582 0.590 0.621 0.668 0.644 0.720 0.705

PPV 0.620 0.615 0.599 0.592 0.631 0.688 0.652 0.730 0.702

NPV 0.716 0.702 0.672 0.674 0.704 0.741 0.709 0.795 0.763

XGB
(XGBoost)

Accuracy 0.555 0.569 0.553 0.629 0.628 0.721 0.630 0.727 0.689

AUROC 0.623 0.628 0.549 0.690 0.674 0.735 0.693 0.744 0.743

F1-score 0.557 0.568 0.543 0.620 0.631 0.713 0.627 0.726 0.690

Sensitivity 0.555 0.569 0.553 0.629 0.628 0.721 0.630 0.727 0.689

PPV 0.592 0.583 0.562 0.657 0.642 0.719 0.644 0.734 0.691

NPV 0.688 0.670 0.669 0.722 0.725 0.763 0.708 0.798 0.764

LGBM
(Light
GBM)

Accuracy 0.562 0.561 0.476 0.660 0.673 0.713 0.683 0.766 0.741

AUROC 0.599 0.625 0.530 0.719 0.708 0.773 0.732 0.819 0.765

F1-score 0.565 0.556 0.482 0.656 0.668 0.702 0.679 0.766 0.736

Sensitivity 0.562 0.561 0.476 0.660 0.673 0.713 0.683 0.766 0.741

PPV 0.571 0.585 0.505 0.667 0.691 0.729 0.696 0.776 0.746

NPV 0.649 0.676 0.613 0.729 0.736 0.769 0.755 0.827 0.807

CAT
(Cat Boost)

Accuracy 0.538 0.615 0.523 0.689 0.704 0.698 0.682 0.750 0.719

AUROC 0.598 0.624 0.547 0.716 0.754 0.770 0.740 0.796 0.809

F1-score 0.539 0.615 0.516 0.687 0.701 0.692 0.681 0.751 0.721

Sensitivity 0.538 0.615 0.523 0.689 0.704 0.698 0.682 0.750 0.719

PPV 0.562 0.627 0.523 0.689 0.711 0.704 0.696 0.760 0.724

NPV 0.650 0.719 0.631 0.741 0.765 0.746 0.745 0.817 0.794
STAI-State, the state-trait anxiety inventory-state; STAI-Trait, the state-trait anxiety inventory-trait; BAI, the beck anxiety inventory; AUROC, area under the receiver operating characteristic;
PPV, positive predictive value; NPV, negative predictive value.
aThe highest AUROC scores for each clinical and psychological scale are highlighted in bold to denote superior model performance.
bThe combination of physiological and acoustic features.
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Tables S8-S10, respectively. Tables 3–5 presented the best model

performances for each clinical and psychological scale across

different modalities, achieved through combinations of grid

search or random search with stratified cross-validation.

In categorizing the core symptoms of SAD, the prediction of

CatBoost model for the severe K-SPS group was notable, achieving an

AUROC of 0.852. This was closely followed by the prediction of

XGBoost model for the severe K-LSAS group with an AUROC of

0.843, and the prediction of CatBoost for the severe groups of

K-SADS and K-SIAS with AUROCs of 0.822 and 0.808,

respectively. Regarding the cognitive symptoms of SAD, CatBoost

predictions for the severe group of PERS, BFNE, and ISS were

marked by AUROCs of 0.866, 0.778, and 0.765, respectively. In the

context of generalized anxiety, the prediction of LightGBMmodel for

the severe group of STAI-Trait was the most accurate, with an

AUROC of 0.819, whereas the predictions of CatBoost for those of

BAI and STAI-State were characterized by AUROCs of 0.809 and

0.740, respectively.

The performance of the top-scoring models, as visualized by

receiver operating characteristic curves, was shown in Figures 2–4.

A thorough analysis of the performance metrics across various

scales, focusing on the AUROC, revealed a clear pattern: MLmodels

utilizing acoustic features outperformed those based solely on

physiological features. This performance gap was further

amplified in the models that integrated multimodal features.
Frontiers in Psychiatry 10
These results were also evident in the visualizations of AUROC

and PPV in Figures 5, 6.

The results of validating the best parameter models using

LOOCV were presented in Table 6. With AUROC ranging from

0.725 to 0.835, the performance was slightly lower compared to the

stratified cross-validation results, but the best prediction

performance based on the AUROC was achieved using models

that utilized multimodal features, and the same trend was observed

in the results of the LOOCV.
3.3 Influential factors for predictions using
SHAP values

The SHAP values for the models that demonstrated superior

performance with multimodal features are shown in Figures 7–9.

Overall, while acoustic features generally had a greater influence,

the Liebowitz Social Anxiety Scale and the Post-Event Rumination

Scale showed that GSR had the most significant impact on the

model’s predictions.

For the core symptoms of SAD, examining the top five features

reveals that, aside from the Liebowitz Social Anxiety Scale, the mean

and minimum values of HR exerted a significant influence on the

predictions for the other three scales. In contrast, for the cognitive

symptoms of SAD and the generalized anxiety, acoustic features
FIGURE 2

ROC curves of the best prediction on the severe group for core symptoms of SAD. ROC, receiver operating characteristic; SAD, social anxiety
disorder. For the Social Phobia Scale, Liebowitz Social Anxiety Scale, Social Avoidance and Distress Scale, and Social Interaction Anxiety Scale, we
used the Korean versions.
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played a major role in influencing the model’s predictions, apart

from GSR.
4 Discussion

This study aimed to examine the clinical utility of ML models

using acoustic and physiological data, as well as combined

multimodal data from VR sessions, as input data for the

prediction of multifaceted SAD symptoms. The focus of this

study was to address the potential of using multimodal features to

build an ML model. Although models for the real time detection of

the mental states of patients with anxiety have been widely

developed, they have received relatively little attention in the

development of symptom prediction models. This study aimed to

identify individuals with severe symptoms in each SAD symptom

domain. In general, study findings shed light on ML-driven

identification of individuals who may not benefit from specific

treatment settings, thereby helping clinicians have insights into

ways to develop another approach for the treatment strategy.

In the burgeoning field of digital health, VR applications

showcase their ability to elicit and modulate psychological

responses in real time and integrate these data within an ML

framework. To this end, ML-combined VRET systems have been

developed to be predominantly capable of automatically detecting
Frontiers in Psychiatry 11
patients’ levels of anxiety (13, 64–66), arousal (12) and stress (67) in

real-time, and to change subsequent scenarios depending on the

detected patients’ state [i.e., VR-based biofeedback (12, 13)].

Concurrently, to extend this literature, the present study

introduces a novel predictive model encompassing a range of

SAD symptom facets and reports overall good performance with

an average AUROC of 80.6% for multimodal ML models. It

presents a diverse array of performance metrics across feature

utilizations. This emphasizes the significance of AUROC as a

measure of model performance at all threshold levels, providing

insights into the influence of features on models that demonstrate

high AUROC scores. Building on these findings, the CatBoost

model demonstrated notable performance across various

symptom domains of SAD, particularly in predicting severe cases

of K-SPS and PERS, with AUROCs of 0.852 and 0.866, respectively.

This superior performance can be attributed to CatBoost’s

advanced algorithmic features, including its use of randomized

permutations during training to mitigate overfitting and its

capacity to effectively model high-order feature interactions.

These characteristics are especially advantageous in multimodal

datasets, where complex relationships between diverse features,

such as psychological and physiological measures, must be

captured (62). Overall, the results offer new promise for the

development of ML models for classifying individuals at risk of

not responding to ongoing treatment via the detection of those
FIGURE 3

ROC curves of the best prediction on the severe group for cognitive symptoms of SAD. ROC, receiver operating characteristic; SAD, social
anxiety disorder.
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reporting greater severity in each symptom domain over

therapy sessions.

The slight performance differences observed between stratified

k-fold cross-validation and LOOCV suggest that the choice of

validation method can influence model evaluation outcomes.

While LOOCV provides a less biased estimate of performance by

leveraging all available data for training, it can be computationally

demanding. Stratified k-fold, on the other hand, mitigates potential

class imbalance in the test folds, making it more suitable for datasets
Frontiers in Psychiatry 12
with uneven distributions. These findings underscore the need for

methodologically robust approaches when evaluating machine

learning models, particularly in small-scale studies like the

present one (68). Future research should further explore how

validation strategies influence generalizability and interpretability

in similar contexts.

From an affective neuroscience perspective, as affective states are

accompanied by significant physiological changes in human body,

such as brain, heart, skin, blood flow, muscles and organs, their
FIGURE 4

ROC curves of the best prediction on the severe group for generalized anxiety. ROC, receiver operating characteristic.
FIGURE 5

Boxplots of the AUROC scores across feature sets: physiological features, acoustic features, and multimodal features. AUROC, area under the
receiver operating characteristics. Each dot is a data point in the performance metric, and the yellow line is the median value.
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responses have been used as objective markers for identifying current

mental states (69). In light of this, studies on VRET for patients with

SAD have assessed physiological signals, particularly HR and GSR

indices, for assessing anxiety states. Prior studies have shown that HR

in patients with SAD significantly changed when confronting a

conversation with avatars (70) and delivering a speech with

increased virtual audiences (71). In terms of electrodermal activity,

increased responses were synchronized with both increased negative

affect and decreased positive affect (72) and observed when seeing a

face with direct gaze (73). Our finding showing that the model

utilizing physiological data alone achieved AUROC up to 0.754 is in

alignment with previous findings.

The measurement of mental state has been significantly

enhanced by leveraging diverse data streams. For instance,

previous studies have presented ML models for detecting real

time anxiety in patients by measuring the HR, GSR, blood

volume pressure, skin temperature, and electroencephalography

(13, 17, 64, 66). However, given that there have been few ML

investigations on the potential of combining VRET and

multimodality, this study was designed to describe an ML

framework combined with multiple sources of information for the

identification of at-risk patients. Consequently, the detection

performance was superior when acoustic and physiological

features were integrated. Specifically, AUROC ranged from 85.2%

to 74.0%, comparable to previously reported values [i.e., accuracy,

89.5% (65), 86.3% (66), and 81% (64); AUROC, 0.86% (74)].

Regarding the notably powerful prediction for SPS, it is plausible

that our VR content, which provides a self-introduction, could be

particular to evaluating scrutiny fear (41), which is assessed by SPS,

suggesting that the proposed algorithms might not be accurately

predicted in other VRET scenarios. In summary, integrating

multimodal data sources can significantly enhance our

understanding of the ongoing patient symptomatology trajectories

from a holistic perspective.

The results revealed that models utilizing acoustic features

showed superior classification performance compared with those

utilizing physiological features. Moreover, the interpretation
Frontiers in Psychiatry 13
provided by SHAP to obtain an overview of the important

features in models with multimodal data highlighted that most

predictors across a set of SAD symptoms were derived from audio

data. Similarly, a previous study (75) reported that acoustic

measures were better predictors of VRET effectiveness for

mitigating public speaking anxiety than physiological measures.

These findings corroborate an earlier finding that while

physiological data (i.e., HR) are only predictive of task-induced

stress levels in children with ASD, acoustic data are more predictive

of ASD severity in both ASD and typically developing populations

(76). Overall, physiological responses represent transient states of

intense emotion (e.g., anxiety and stress), whereas voice acoustic

changes may be more closely linked to the pathological

development of psychiatric disorders.

Supporting this speculation, physiological responses such as HR

and GSR are controlled by the autonomic nervous system, which is

a part of the peripheral nervous system responsible for regulating

involuntary physiological processes (77). Moreover, according to

the James–Lange theory (78), emotional experience is largely due to

the experience of physiological changes. Therefore, physiological

responses strongly predict momentary emotional states. However,

speech production involves not only a sound source (i.e., the larynx)

coupled to a sound filter represented by the vocal tract airways [i.e.,

the oral and nasal cavities (79)], but also the engagement of

widespread brain regions including several areas of the frontal

lobe as well as cortico-subcortical loops traversing the thalamus

and basal ganglia (80, 81). In particular, regions such as the

amygdala, orbitofrontal cortex, and anterior cingulate cortex are

involved in encoding the emotional valence of speech (82, 83).

Meanwhile, dysfunction of such areas has been widely reported in

patients with SAD (84, 85), suggesting a close link between acoustic

characteristics and symptomatology of patients with SAD. In

summary, our findings strongly support the integration of voice

data to enhance the SAD status prediction.

An alternative explanation of the results regarding the

accentuated power of acoustic over physiological data is that

providing a speech in public, including a self-introduction,
FIGURE 6

Boxplots of the PPV scores across feature sets: Physiological features, acoustic features, and multimodal features. PPV, positive predictive value.
Each dot is a data point in the performance metric, and the yellow line is the median value.
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requires the engagement with active efforts to mitigate global

physical and physiological changes that occur in the body, such

as muscles, heart, and other important organs, in response to social

threat and its consequence could be reflected on diverse voice

metrics. For example, in terms of fundamental frequency (F0),

one of the properties used in this study, its heightened value can be

explained by increased vocal cord tension which is a plausible

consequence of an increase in overall muscle tone, suggesting that

freezing in response to social threat could lead to F0 alteration,

alongside with increases in overall muscular tension (86). Similarly,

the increase in lung pressure as a part of the body’s fight-flight

response, mediated by the central nervous system regulation of the

hypothalamic–pituitary–adrenal axis stress response, could also

affect the increase in vocal intensity, as well as the delay in voice-

onset-time (87, 88). Therefore, utilizing a variety of acoustic indices
Frontiers in Psychiatry 14
may provide more information about the pathological aspects of

social anxiety than integrating a limited number of physiological

indices, such as electrodermal and cardiovascular responses; yet,

more studies are needed to understand which types of features are

more critical than others for predicting SAD symptom trajectories.

Considering the generalizability of the study, it is important to

note that our results were obtained from a relatively small sample of

young adults with SAD.While our findings are promising, the limited

sample size and specific demographic characteristics of our

participants constrain the broad applicability of our models.

Further research with larger and more diverse samples, involving

patients with heterogeneous symptoms, is necessary to validate the

robustness and reliability of these models across different populations

with varying symptom profiles. Studies with other age ranges, such as

adolescents and middle-aged and older adults with SA needed to
TABLE 6 The predictive performance of the four machine learning models on the severe group for all clinical and psychological scales using leave-
one-out cross-validation of best parameter models.

Variablea Physiological Features Acoustic Features Multimodal Featuresb

Core Symptoms
of SAD

K-SPS K-LSAS K-SADS K-SIAS K-SPS K-LSAS K-SADS K-SIAS K-SPS K-LSAS K-SADS K-SIAS

Accuracy 0.629 0.712 0.636 0.667 0.795 0.705 0.659 0.735 0.758 0.727 0.697 0.750

AUROC 0.537 0.728 0.611 0.686 0.801 0.735 0.733 0.720 0.826 0.799 0.782 0.780

F1-score 0.592 0.707 0.625 0.648 0.789 0.690 0.638 0.724 0.742 0.724 0.682 0.735

Sensitivity 0.629 0.712 0.636 0.667 0.795 0.705 0.659 0.735 0.758 0.727 0.697 0.750

PPV 0.588 0.704 0.624 0.646 0.791 0.690 0.647 0.725 0.752 0.722 0.690 0.743

NPV 0.676 0.763 0.677 0.713 0.812 0.740 0.680 0.765 0.767 0.780 0.711 0.765
fron
Cognitive
Symptoms
of SAD

PERS BFNE ISS PERS BFNE ISS PERS BFNE ISS

Accuracy 0.727 0.462 0.689 0.758 0.652 0.705 0.758 0.667 0.735

AUROC 0.719 0.410 0.690 0.790 0.668 0.687 0.825 0.725 0.780

F1-score 0.716 0.452 0.672 0.737 0.634 0.684 0.742 0.643 0.720

Sensitivity 0.727 0.462 0.689 0.758 0.652 0.705 0.758 0.667 0.735

PPV 0.717 0.445 0.673 0.760 0.642 0.691 0.754 0.662 0.726

NPV 0.755 0.545 0.723 0.755 0.670 0.728 0.765 0.673 0.752
Generalized
Anxiety

STAI-
State

STAI-
Trait

BAI
STAI-
State

STAI-
Trait

BAI
STAI-
State

STAI-
Trait

BAI

Accuracy 0.614 0.606 0.629 0.682 0.720 0.758 0.682 0.765 0.773

AUROC 0.573 0.628 0.572 0.734 0.737 0.833 0.750 0.800 0.835

F1-score 0.598 0.595 0.618 0.674 0.711 0.743 0.670 0.762 0.759

Sensitivity 0.614 0.606 0.629 0.682 0.720 0.758 0.682 0.765 0.773

PPV 0.598 0.591 0.614 0.675 0.712 0.755 0.674 0.762 0.773

NPV 0.653 0.667 0.691 0.711 0.745 0.762 0.702 0.795 0.772
SAD, social anxiety disorder; K-SPS, the Korean version of the social phobia scale; K-LSAS, the Korean version of the liebowitz social anxiety scale; K-SADS, the Korean version of the social
avoidance and distress scale; K-SIAS, the Korean version of the social interaction anxiety scale; PERS, the post-event rumination scale; BFNE, the brief fear of negative evaluation; ISS, the
internalized shame scale; STAI-State, the state-trait anxiety inventory-state; STAI-Trait, the state-trait anxiety inventory-trait; BAI, the beck anxiety inventory; AUROC, area under the receiver
operating characteristic; PPV, positive predictive value; NPV, negative predictive value.
aThe highest AUROC scores for each clinical and psychological scale are highlighted in bold to denote superior model performance.
bThe combination of physiological and acoustic features.
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improve the degree of generalization of the proposed ML models.

Considering our findings from Korean sample comprising people

who are well educated with relatively secure socioeconomic status,

further external validation is required in order to generalize to other

populations with different cultures and races. Moreover,

implementing the proposed ML algorithms in other VR scenarios

(e.g., providing public speeches or role-playing conversations) could

be very challenging due to specificity of VR scenario employed in this

study. Considering the scenario was specific to situation of a self-

introduction in front of new colleagues, the proposed ML algorithms
Frontiers in Psychiatry 15
should be further validated with other anxiety-inducing contexts,

such as shopping in a grocery store, conducting a job interview,

providing a presentation in a business meeting, and attending a party.

It is recognized that the reliance on binary classification limits the

depth of analysis, particularly considering the complexity of SAD

symptoms. Adopting a multiclass classification approach could

provide a more nuanced perspective on symptom severity, thereby

improving the capability to track symptom progression and tailor

interventions more precisely. Future research should focus on

developing and evaluating multiclass models to capture these
FIGURE 7

SHAP analysis: multimodal features impact on core symptoms of SAD severity prediction. SHAP, shapley additive explanations; SAD, social anxiety
disorder. For the Social Phobia Scale, Liebowitz Social Anxiety Scale, Social Avoidance and Distress Scale, and Social Interaction Anxiety Scale, we
used the Korean versions. This visual representation clearly demonstrated the impact of specific characteristics of multimodal features on model
predictions across a range of clinical and psychological scales, with features listed in order of importance from the top of the y-axis.
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varying severity levels, which would contribute significantly to

precision psychiatry. Lastly, while physiological features such as HR

and GSR provide valuable insights, the absence of continuous time-

series analysis limits our understanding of dynamic symptom

patterns. This limitation could be addressed in future research

through the application of temporal data analysis techniques.

Additionally, as HR data was not collected at a frequency of at

least 100 Hz, performing a heart rate variability (HRV) analysis was
Frontiers in Psychiatry 16
not feasible, representing a limitation of the current study.

Considering the important role of HRV as a biomarker to measure

regularity of HR fluctuations (i.e., HR coherence) and as an indicator

of autonomic regulation and the existing literature on associations

not only between deep breathing and increased HRV, but also

between pathological anxiety and reduced HRV, further

incorporating HRV into the model may help improve predictive

performance (89–92). Future research should incorporate high-
FIGURE 8

SHAP analysis: multimodal features impact on cognitive symptoms of SAD severity prediction. SHAP, shapley additive explanations; SAD, social
anxiety disorder. This visual representation clearly demonstrated the impact of specific characteristics of multimodal features on model predictions
across a range of clinical and psychological scales, with features listed in order of importance from the top of the y-axis.
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frequency physiological measurements to facilitate HRV analysis and

other temporal evaluations. Furthermore, incorporating multifaceted

analyses of HR, GSR, and acoustic signals is recommended to develop

a more comprehensive understanding of subjects’ responses over

time. Moreover, integrating temporal analysis into real-time, adaptive

VR therapy bridges the gap between static assessments and dynamic,

patient-specific interventions. By leveraging temporal patterns, such

as fluctuations in physiological and acoustic features, real-time

adaptation of VR scenarios becomes possible.
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Having carefully considered the challenges and limitations

highlighted above, we present an abstract concept of ML-driven

symptom prediction during mental health treatment, thereby

helping clinicians follow patients’ therapeutic responses across

therapy sessions without requiring a time-consuming evaluation

procedure (i.e., traditional pen-and-paper assessment). The

proposed concept will allow clinicians to explore whether patients

respond to treatment, leading to important insights and providing

the first steps toward precision psychiatry.
FIGURE 9

SHAP analysis: multimodal features impact on generalized anxiety severity prediction. SHAP, shapley additive explanations; SAD, social anxiety
disorder. This visual representation clearly demonstrated the impact of specific characteristics of multimodal features on model predictions across a
range of clinical and psychological scales, with features listed in order of importance from the top of the y-axis.
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