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Stress is necessary for survival. However, chronic unnecessary stress exposure

leads to cardiovascular, gastrointestinal and neuropsychiatric disorders. Thus,

understanding the mechanisms involved in the initiation and maintenance of the

stress response is essential since it may reveal the underpinning pathophysiology

of these disorders and may aid in the development of medication to treat stress-

mediated diseases. Pituitary adenylyl cyclase activating polypeptide (PACAP) and

its receptors (PAC1, VPAC1 and VPAC2) are expressed in the hypothalamus and

other brain areas as well as in the adrenal gland. Previous research has shown that

this peptide/receptor system serves as a modulator of the stress response. In

addition tomodulating the stress response, this systemmay also be connected to

its emerging role as neuroprotective against hypoxia, ischemia, and

neurodegeneration. This article aims to review the literature regarding the role

of PACAP and its receptors in the stress response, the involvement of different

brain regions and microglia in PACAP-mediated modulation of the stress

response, and the long-term adaptation to stress recognizable clinically as

survival with resilience while manifested in anxiety, depression and other

neurobehavioral disorders.
KEYWORDS
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Introduction

Stress is known as any threat caused by a stimulus that prompts a change in internal

stability and elicits a biological response. Stress is recognized as the body’s internal response

to the disruption of homeostasis that brings about physiological and behavioral changes.

The stress response comprises of interconnections between the nervous, endocrine, and the
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immune systems which divert energy and resources to confront the

stressor at hand. The body’s ability to regulate this response and

restore homeostasis is coordinated primarily through the

hypothalamic-pituitary-adrenal (HPA) axis. The HPA axis is the

primary circuit which responds to homeostatic challenges with its

final effector, glucocorticoids (GCs), that act upon central and

peripheral targets (1). The HPA axis is a critical pathway in

adapting to acute stressors; upon activation of HPA axis, stress

responses are initiated by the release of corticotropic releasing

hormone (CRH, also known as corticotropin releasing factor,

CRF) and arginine vasopressin (AVP) from the hypothalamus

that in turn activates the anterior pituitary to release

adrenocorticotropic hormone (ACTH) hormone in systemic

circulation. Elevated ACTH levels consecutively regulate GC

synthesis especially cortisol (in humans) and corticosterone (in

rodents). However, prolonged release of GCs can lead to

inappropriate responses and psychopathologies (2). Thus,

understanding the underpinning mechanisms modulating

the stress response may represent potential target to regulate

the stress response and may aid in the development of

pharmacotherapy to treating stress-related disorders, such as

posttraumatic stress disorder (PTSD), major depressive disorder

(MDD), anxiety, and others.
How is the stress response initiated
and how is it turned off?

Activation of the HPA axis is initiated in the medial

parvocellular subdivision of the PVN of the hypothalamus, which

leads to the increased expression and release of CRH and AVP (3).

Hypothalamic CRH travels through the hypophyseal portal

circulation reaching the anterior pituitary and inducing ACTH

release. Upon binding to CRH receptors in the anterior pituitary,

CRH causes the release of ACTH, which travels through blood

circulation and reaching the adrenal cortex, where it acts to

stimulate the secretion of cortisol in humans and corticosterone

in rodents (4). This coordinated central response providing quick

responses to stress and promote HPA axis, metabolic, autonomic
Abbreviations: HPA axis, Hypothalamic-pituitary-adrenal axis; CRH, also known

as CRF, Corticotropic releasing hormone; PVN, Paraventricular nucleus; ACTH,

Adrenocorticotropic hormone; PACAP, Pituitary adenylyl cyclase activating

polypeptide; GC, Glucocorticoids; AVP, Vasopressin; BNST, Bed nucleus of stria

terminalis; VIP, Vasoactive intestinal peptide; GPCRs, G-protein coupled receptors;

PKC, Protein kinase C; ATP, Adenosine triphosphate; Gs, Stimulatory guanine

nucleotide binding protein; PLC, Phospholipase C; PKA, Protein kinase A; TSH,

Thyroid-stimulating hormone; GnRH, Gonadotropin-releasing hormone; TMT,

Trimethyltin; HAS, Hypothalamosympathoadrenal; ACh, Acetylcholine; nAChRs,

Nicotinic acetylcholine receptors; TH, Tyrosine hydroxylase; DBH, Dopamine beta-

hydroxylase; PNMT, Phenethanolamine N-methyltransferase; mPFC, medial

prefrontal cortex; LC, Locus coeruleus; IL, Infralimbic cortex; PL, Prelimbic

cortex; DG, Dentate gyrus; CeA, Central nucleus of amygdala; LHb, Lateral

habenula; MHb, Medial habenula; VTA, Ventral tegmental area; cAMP, Cyclic

adenosine monophosphate; fEPSP, Field excitatory postsynaptic potentials; BDNF,

Brainderived neurotrophic factor; MeA, Medial subdivision of the CeA.
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and hormonal signaling, leading to alterations in cellular excitability

as well as synaptic and neuronal plasticity (5). Collectively, these

peripheral-central effects mediate alterations in physiology and

behavior that enable adaptation and survival. Eventually, the

response is terminated through a negative feedback mechanism of

GC acting at the pituitary and hypothalamic levels.

The limbic structures, and closely related regions, such as the

amygdala, hippocampus, prefrontal cortex, bed nucleus of stria

terminalis (BNST), and habenula, have been implicated in initiating

and terminating the stress response with direct and indirect

projections primarily to the levels of the hypothalamic PVN and

anterior pituitary which are discussed below.
Central regulation of stress

In the central nervous system (CNS), HPA axis, hippocampus,

amygdala and the prefrontal cortex play important roles in stress

regulation (6). Under chronic stress, regions such as hypothalamus

and amygdala are crucial structures that integrate signals in the CNS

and then propagate them to the periphery, largely via the autonomic

nervous system and HPA axis (7). The amygdala, known for its role

in emotion, anxiety, and fear memory acquisition, has accumulated

interest in its involvement in the stress response, whereas the

hippocampus supports determining the context in which such

events take place (8). The amygdala, hippocampus and prefrontal

cortex are linked with each other anatomically and functionally. For

example, long-term potentiation in the hippocampus becomes

reduced when there is a lesion in basolateral amygdaloid nucleus

while stimulation of this nucleus facilitates the hippocampal long-

term potentiation (9, 10). Additionally, lesions of the dorsal and

ventral areas of the prefrontal cortex significantly hinder regulation of

the stress response via circuitry within the hypothalamus (11). These

findings point to the important interconnected role of these three

major brain areas in stress regulation. The prominent collection of

nuclei in amygdala includes the central amygdala (CeA), medial

subdivision of the CeA (MeA), and the basolateral amygdala (BLA).

The BLA is further divided into the lateral subdivision (LA) which

receives afferent sensory inputs from the thalamus and cortex with

efferent glutamatergic projections to the nuclei of the CeA (12, 13).

Auditory fear conditioning paradigms in LA lesioned mice

demonstrate reduced freezing behaviors compared to sham control

where damage to both thalamo-amygdala and thalamo-cortico-

amygdala pathways significantly reduced behavioral response to

stressors (13, 14). Additionally, the amygdala has been shown to be

an extrahypothalamic source of CRF and triggering sympathetic

drive. Induced CRF overexpression in the CeA increased the CRF

and AVP in the PVNwith elevated plasma ACTH and corticosterone

levels (15). This is further supported by lesions to the bilateral CeA of

Rhesus monkeys that demonstrate blunted fear and anxiety-related

behaviors with a significant decrease in cerebrospinal fluid CRF,

plasma ACTH and cortisol levels (16). These findings suggest that the

amygdala is a critical component of the central stress mechanism

affecting hippocampal functioning.

Amygdala, hippocampus and prefrontal cortex are interconnected

with each other (6) as well as with BNST, that is a central point in the
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stress regulation. The amygdala perceives a potential danger first;

the hippocampus conceals environmental information associated

with the stressors and the PFC modulates the emotional/stress

response by assessing the information gathered from the amygdala

and hippocampus (17). Previous research has shown that PFC exhibits

reduced neuronal connections as a result of repeated stress, as well as

simultaneous stress response impairs the executive functioning of PFC

(18). Furthermore, PFC may influence the activity of the amygdala as

amygdala and PFC have mutual anatomical connections. For example,

lesions in the PFC decreases extinction of cued fear conditioning that is

an amygdala-dependent task (19). Furthermore, Orem and colleagues

(20) identified relationship between brain activity and the emotional

response to stressors among 239 participants and concluded that the

activity within the amygdala and PFC is important for the expression

and regulation of behavioral and emotional changes observed in

response to stress.
Neuropeptides/neurotransmitters
involved in the regulation of stress

Among the many pathways and mediators discussed above,

neuropeptides and neurotransmitters are also important in

the stress regulation. Neurotransmitters such as epinephrine,

norepinephrine, dopamine, acetylcholine, glutamate and gamma

aminobutyric acid (GABA) are also involved in the regulation of

stress responses (21).

A number of neuropeptides, including vasopressin, neuropeptide

Y, neuropeptide S, substance P, galanin, dynorphin, and pituitary

adenylyl cyclase-activating polypeptide (PACAP), to name a few,

have been associated with either the initiation or course of stress

responses (22–24). Here, we review a neuropeptide PACAP and its

neuroanatomical site of action in regulating the stress response.
PACAP and PACAP receptors

Pituitary adenylyl cyclase-activating polypeptide (PACAP),

a pleiotropic polypeptide widely distributed throughout the CNS

(25–27) is found in two bioactive isoforms consisting of 38 and 27

residues (PACAP-38 and PACAP-27, respectively), with PACAP-

38 as the predominant form (28, 29). PACAP-27 is a C-terminally

truncated form derived from PACAP-38 after it was discovered that

PACAP-38 contained an amidation cleavage site (30). The

truncated PACAP-27 is 70% homologous to vasoactive intestinal

peptide (VIP) and has a close resemblance to VIP precursor and

gene construction (31). Additionally, the PACAP-38’s structure and

its precursor are highly conserved within rats, sheep, and humans

emphasizing the importance of this peptide across various

vertebrate phyla (32).

PACAP acts as a neurotransmitter, neuromodulator, neurotrophic

factor as well as serves as a neuroprotective factor against apoptosis.
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The peptide also plays a functional role in gut motility, circadian

rhythm, and stress response (31). PACAP’s effects are mediated via

PACAP receptors, PAC1, VPAC1 and VPAC2, which are G-protein

coupled receptors (GPCRs). Due to the high homology between the

amino acid sequences of PACAP and VIP, these peptides have

comparable affinity toward VPAC1 and VPAC2 receptors. However,

PACAP binds to another distinct receptor, PAC1 (PAC1R), with a

higher affinity than VIP. PAC1 is a 495-amino acid protein with seven

transmembrane domains (30) and is found in the CNS and peripheral

nervous system. As stated above, PACAP by binding to these receptors

regulates proliferation, differentiation, and cell survival during

development as well as regulating the synthesis and release of

neuroendocrine hormones (33). VPAC1 is composed of 457-amino

acids and is primarily found in the cerebral cortex and the

hippocampus, and VPAC2 comprises of 437 amino acids and is

located in the central nucleus of the amygdala, hippocampus,

thalamus, and hypothalamus. Activation of VPAC2 receptors leads

to the stimulation of adenylyl cyclase activity (30).

PAC1 and VPAC1 receptors are involved in a variety of

signaling cascades, including activation of adenylyl cyclase,

protein kinase C (PKC), and calcium regulation. The enzyme

adenylyl cyclase catabolizes adenosine triphosphate (ATP)

to generate cyclic adenosine monophosphate (cAMP). This

enzyme plays an important role in a variety of physiological

responses. It regulates sugar and lipid metabolism, cell growth

and differentiation, and olfaction. Research shows that the

activation of PAC1R in tissue injuries caused a direct delay in

apoptotic events thus improving cell survival. Furthermore, these

results suggested that the alleviation of cellular damages from the

increase in PAC1R signaling reduces cellular damage related to

cerebrovascular trauma, neurodegeneration, and peripheral organ

damages (34). Furthermore, the stimulation of PKC and calcium

regulation are attributed to VPAC receptors via the phospholipase

C (PLC) pathway through VPAC coupling to the Gq protein (35).
PACAP as a regulator of the
stress response

Evidence suggests that PACAP and its receptors play a variety

of roles in the human body, more specifically this peptide/receptor

system regulates the activity of the HPA axis and stress response

due to its high abundance in the hypothalamus and other brain

regions implicated in the stress response. It also regulates the

adrenal medulla and controls the synthesis and release of

epinephrine and norepinephrine in response to stress, preparing

the subject for the “fight and flight” response (36). The PACAP and

its receptors are present in different parts of the HPA axis and thus

are well positioned to regulate the stress response by altering the

level of CRH, ACTH, glucocorticoids, or epinephrine (Figure 1).

Below we have provided some evidence for these regulatory actions

of PACAP on the HPA axis and stress response.
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PACAP and CRH in regulating the
stress response

The hypothalamic PVN has emerged as one of the most

important stress control brain areas. Upon confronting the stress,

CRH is released in the medial paracellular subdivision of the PVN

(37). The release of CRH, a 41 amino acid peptide hormone, triggers

the synthesis and secretion of ACTH (38). CRH-containing

neurons are densely distributed throughout the PVN, BNST and

are also expressed throughout the brain (39). A high level of PACAP

and its receptor are co-localized with CRH neurons in the PVN (32,

40, 41). PACAP has been shown to increase CRH expression in the

PVN (42, 43). Later studies present similar findings that PACAP

alters CRF transcript through the cAMP/PKA pathway, as

exogenous administration of PACAP produces elevated levels of

phosphorylated cAMP response element-binding protein and an

increase in Fos-immunoreactivity within CRH-containing neurons

leading to significantly elevated corticosterone levels (44). Local

PACAP administration into the PVN produces behavioral

responses that closely mirror CRH activation in response to

stressors and simulates corticosterone secretion (44).

Nr4a transcription factors in the hypothalamic PVN have been

found to be closely coupled with HPA activation, leading to

enhanced CRH mRNA expression (42, 43). Additionally, Stroth
Frontiers in Psychiatry 04
and colleagues demonstrate that upregulation of Nr4a transcription

factors are PACAP-dependent as PACAP-deficient mice showed

attenuated levels of transcription factors compared to wildtype

mice. Studies involving a restraint stress in PACAP knockout

mice show blunted levels of CRH transcripts and corticosterone

compared to their wild-type counterparts (42, 43, 45). While

PACAP increases CRH biosynthesis in the PVN, PACAP does

not directly increase CRH secretion into the hypophysis (46).

Recent evidence demonstrates a frontocortical descending

PACAPergic input to the hypothalamus that regulates PVN CRH

expression and is involved in the activation of the HPA axis (47). At

the level of the PVN, PACAP plays a major role in prolonged HPA

axis activation, where PAC1 appears to be the dominant receptor

during sustained stress exposure, but other PACAP receptor types

should also be examined in future studies (48). These findings

suggest that PACAP within the hypothalamus acts to increase

CRH transcripts.

PACAP-ergic nerve terminals have also been found to synapse

on arginine-vasopressin (AVP) neurons in the supraoptic nucleus

of the hypothalamus in rats (49). Studies suggest that PACAP

may be acting through PKA-mediated phosphorylation and the

opening of calcium channels inducing secretion of AVP (49).

Further evidence in favor of this notion is that PACAP stimulates

AVP and CRH transcription through the cyclic-adenosine
FIGURE 1

PACAP regulation of the stress response along the HPA axis and different brain regions. The black lines represent the projections and connections
between the limbic structures. The BNST is shown as a major relay center with its numerous afferent and efferent connections. The purple lines
represent PACAP neurons found within these regions. (+) and (-) represent if PACAP activates or inhibits the stress response in these regions,
respectively. (?) unclear how PACAP regulates the stress response in this area. ACTH, Adrenocorticotropic Hormone; BNST, Bed Nucleus of Stria
Terminalis; CeA, Central Nucleus of Amygdala; CRH, Corticotropin Releasing Hormone; Dorsal Raphe; E, Epinephrine; GC, Glucocorticoids; Hb,
Habenula; Hipp, Hippocampus; LC, Locus Coeruleus; L-DOPA, L-dihydroxyphenylalanine; mPFC, medial prefrontal cortex; NE, Norepinephrine;
PACAP, Pituitary Adenylyl Cyclase Activating Polypeptide; PVN, Paraventricular Nucleus of the Hypothalamus; VTA, Ventral Tegmental Area.
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monophosphate/protein kinase A (cAMP/PKA) pathway (50).

Additionally, PACAP has been found to stimulate interleukin-6

gene transcription, a proinflammatory cytokine capable of

regulating the HPA axis, and leading to elevated CRH and AVP

promoter activity (50).

As stated above, local PACAP administration in the PVN

closely resembles CRH in inducing behaviors associated with

stressors. Evidence demonstrates that intra-PVN infusion of

PACAP in mice displays similar phenotypic characteristics to

CRH injections into the PVN, such as increased grooming and

freezing behaviors (44, 51). Overall, these findings demonstrate that

PACAP and its receptors are highly expressed in the PVN and other

nodes of the HPA axis and this PACAP/receptor system stimulates

the expression of CRF, leading to increased plasma corticosterone,

and may be involved in stress-mediated neuropsychiatric disorders.

Indeed, PACAP deficient mice have been shown to demonstrate

reduced anxiety and depressive phenotypes during exposure to

chronic and acute stressors (52, 53).
PACAP and ACTH in regulating the
stress response

Through interactions with its receptors on pituitary cells,

PACAP increases the release of anterior pituitary hormones such

as growth hormone, ACTH, prolactin, thyroid- stimulating

hormone (TRH), and gonadotropins (54). In response to

stressors, CRH as well as other peptides are released from the

PVN and travel to the anterior pituitary to bind to cognate receptors

on corticotropes, causing the release of ACTH. There is evidence

that PACAP may regulate ACTH synthesis and release from the

corticotrop cells. Chiodera and colleagues showed while infusion of

a low dose PACAP did not alter circulating ACTH concentrations,

the level of ACTH significantly increased with higher doses of

PACAP (55). This finding suggests that systemic administration of

PACAP dose-dependently stimulates ACTH secretions from the

anterior lobe of the pituitary gland.
PACAP and the adrenal cortex in
regulating the stress response

The adrenal cortex is the outer region and the largest part of the

adrenal gland. PACAP plays an important role in the regulation of

adrenal cortical secretion and growth, mainly acting indirectly on

its parenchymal cells. PACAP enhances ACTH secretion from

pituitary corticotrop cells, and ACTH activates aldosterone and

glucocorticoid production from adrenal zona glomerulosa and

zonae fasciculata-reticularis, respectively, as well as stimulates

adrenal hypertrophy (56, 57). VIP and PACAP enhance pituitary

ACTH secretion, either directly or via the release of CRH, and thus

may increase mineralo- and glucocorticoid secretion from the

adrenal cortex in response to stress (58). Within the adrenal

gland, the highest density of PACAP and PAC1 receptors are

found in the adrenal medulla (53, 59, 60). Studies have found that
Frontiers in Psychiatry 05
restraint stress-induced secretion of corticosterone is attenuated in

mice lacking PACAP compared to their wildtype controls, further

proving the importance of PACAP in the stress response (61).

Furthermore Lehmann et al. (53) discovered lipopolysaccharide

administration in PACAP deficient mice showed attenuated

corticosterone secretion and animals failed to develop stress

behavior after exposure of stressors. These results suggest that

PACAP is more prominently involved in emotional stress-

dependent corticosterone secretion. Research also established c-

Fos expression increased in the CRH but not AVP neurons in the

PVN or medial subdivision of the CeA (MeA). These responses

were significantly decreased in PACAP-deficient mice, providing

further support for the involvement of PACAP in restraint stress-

induced corticosterone secretion (61). Research was also conducted

to measure corticosterone levels in mice lacking the PACAP gene,

following an injection of trimethyltin (TMT). It showed that TMT

caused a dramatic increase in plasma corticosterone levels in wild-

type mice, while there were no significant changes in corticosterone

secretion in PACAP-deficient mice. Overall, these findings suggest

that PACAP plays a functional role in the stress response and

corticosterone secretion, but the type of stressors may be important.
PACAP and the adrenal medulla in
regulating the stress response

Alongside the HPA axis, the hypothalamo-sympathoadrenal

(HSA) system, which includes the adrenomedullary splanchnic

nerve, is another closely related neuroendocrine regulator of

homeostatic challenges. Briefly, presynaptic splanchnic nerve

terminals that synapse on postsynaptic cholinergic/nicotinic

receptors on chromaffin cells cause depolarization of these cells

and opening of voltage gated calcium channels, allowing the entry

of calcium in these cells and leading to exocytosis of large dense core

vesicles containing catecholamines [reviewed in (62, 63)]. Binding

of acetylcholine (ACh) to nicotinic acetylcholine receptors

(nAChRs) is known to be the primary mechanism of medullary

secretion, but this effect last for a short time due to the

desensitization of nAChRs (64). Thus, a prolonged secretion of

catecholamines may require a mechanism other than nAChR

activation by ACh. PACAP receptors present adjacently with the

vesicular ACh transporter in the adrenal presynaptic nerve

terminals and by acting as catecholamine secretagogues represent

a potential mechanism for prolonged catecholamine secretions in

response to stressors (36, 65, 66). Recent evidence suggests that

PACAP and ACh stimulates secretary pathways via independent

mechanisms, in which PACAP’s actions involve exchange proteins

directly activated by cAMP and PLCe (67). PACAP activates the

adrenal gland through the cAMP/PKA pathway by gene regulation

of tyrosine hydroxylase (TH) and dopamine beta-hydroxylase

(DBH), two catecholamine synthesizing enzymes (68–70). This

finding correlates with the finding of Stroth and colleagues who

reported that PACAP knockout animals showed attenuated

catecholamine synthesis by direct high-frequency stimulation of

the splanchnic nerve in native adrenal slices while wildtype mice
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showed increased depolarization of adrenal medulla catecholamine

transcripts (71). As stated above, PACAP and its receptor have been

identified to colocalize with ACh on splanchnic nerve terminals and

in the adrenal medulla, where they upregulate TH and

phenethanolamine N-methyltransferase (PNMT) expression (70).

The latter enzyme is responsible for the conversion of

norepinephrine to epinephrine in the adrenal medulla and some

central adrenergic neurons. Evidence suggests that acute stress-

induced prolonged secretion of catecholamines is mediated by

PACAP and its receptors that in turn promote a concordant rise

in serum glucose levels (59, 72). PACAP-deficient mice exposed to

metabolic stressors (i.e., prolonged hypoglycemia) displayed

significantly lower glucose levels and were unable to survive

following exposure to such stressors (59).
PACAP and medial prefrontal cortex
and regulation of the stress response

The prefrontal cortex has been shown to provide an inhibitory

input to the hypothalamus, thereby regulating the HPA axis and

thus the stress response. In addition, the medial prefrontal cortex

(mPFC) is known for its role in executive function and affective

information processing (73). A bulk of evidence points to mPFC

having an inhibitory effect on the HPA axis through indirect

synapses mediated by structures such as the bed nucleus of stria

terminalis (BNST). mPFC is most sensitive brain area to the

detrimental effects of stress. Even a mild acute but uncontrollable

stressor can cause a rapid and dramatic loss of prefrontal cognitive

abilities, and more prolonged stress exposure causes architectural

changes in prefrontal dendrites (74). Martelle et al. (75) explored

the effect of PACAP on the stress response by microinjecting

PACAP (1 ug) in the PFC and after five days passive avoidance

paradigm testing revealed that PACAP infused mice displayed

increased latency and memory retention in crossover consistent

with anxiety-like behaviors (75). Two weeks later a significant rise

of PACAP expression was seen in putative pyramidal neurons.

Thus, the authors concluded PACAP plays a functional role in

stress responses and in processing of fear memories (75). It suggests

that PACAP is involved in prefrontal processing of traumatic stress

and fear learning. Preclinical research suggested that PACAP

receptors are confined to the PFC, which regulates fear memories

by interconnecting with hippocampus and BNST (76). Recent

evidence shows that 2-h restraint stress causes an increase in c-

fos expression and CRH mRNA levels, a response blunted in the

absence of PACAP in the mPFC neurons projecting to the

hypothalamus (47).

PACAP and its receptor have been localized in the infralimbic

cortex (IL), where PAC1 is found on GABA neurons and

interneurons, while PACAP on glutamatergic cells. Additionally,

PACAP infusions to the IL induce sympathetic activation which

confirms known functions within this region. Increased expression

of PAC1 transcripts in the prelimbic cortex (PL) have been reported

in female rats in response to cued fear conditioning suggesting

females may be more responsive to PACAP signaling during
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affective memory processing (77). In human studies, sex-related

differences in plasma PACAP levels have been noted in participants

with PTSD-like symptoms. This difference has been suggested to be

influenced by estrogen response elements on the expression of

PAC1 receptor gene. A recent study discovered a sexual

dimorphism of PACAP expression in the paraventricular nucleus

of the thalamus (PVT), a region involved in affective and motivated

behaviors, to be significantly increased in females compared to male

mice (78). Studies using VPAC2 knockout mice suggest that this

receptor type is most likely involved in fear extinction and retrieval

processes (79). Consequently, VPAC2R has been reported to play

an important role in the dendritic organization of the PL and IL

(80). In PACAP knockout mice, FosB immunostaining was elevated

in MPFC after exposure to chronic stress compared to wildtype

mice, showing that endogenous PACAP is normally required to

modulate stress-responsive circuit during chronic stress (53).
PACAP and hippocampus in regulating
the stress response

The hippocampus, located in the medial temporal lobe of the

brain, is involved in memory formation, such as contextual

learning, and regulation of behavior. Upon stimulation of stress

response and HPA axis, hypothalamus released corticotrophin

releasing factor (CRF) that in turn stimulates the release of

ACTH from anterior pituitary, that is further responsible for the

release of GCs from adrenal cortex. This stimulation of HPA axis is

counter-regulated by negative feedback mechanism (81). The

hippocampus has been implicated to have an inhibitory influence

over the HPA axis with evidence pointing to the ventral subiculum

(82–84). HPA axis is controlled by neuroendocrine neurons located

in the medial PVN of the hypothalamus. PVN is one of the primary

sites of glucocorticoid negative feedback regulation of the HPA axis.

Anatomical studies indicate that direct innervations to the PVN

have yet to be identified, but subicular projections to the BNST have

been identified which further implicate the BNST as a major relay

center that receives abundant input from the limbic regions and

hippocampus sends outputs to PVN via the BNST (85).

The ventral hippocampus contains a high density of

glucocorticoid (GC) receptors that is why stress can so readily

impede this part of the brain. Evidence suggests that GC receptors

in the hippocampus affect the negative feedback termination of the

stress response. This action occurs through the stimulation of

hippocampal neurons which ultimately leads to a decrease in

neuronal activity in the parvocellular division of the PVN, thus

hindering GC secretion (3). In animal models, GCs hypersecretion

leads to reduced number of GC receptors in the hippocampus

(86, 87). PACAP receptors, such as PAC1Rs, have been found in

hippocampal dentate hilar mossy cells, and PVN, studies revealed

that potentiation of DG synapses is impaired in PAC1 knockout

mice (88). The hippocampus seems to play a pivotal role in the

generation of long-term memory through NMDA and AMPA

receptors. It is evident that PACAP enhances both NMDA and

AMPA currents in the hippocampus through PAC1R, activation of
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which in CA1 hippocampal neurons increases evoked NMDA

currents via the cyclic AMP/PKA pathway that modulates LTP

(89–91). Evidence also shows a dose-dependent action of PACAP

on AMPA-receptor mediated glutamatergic transmission at the

CA3-CA1 synapse (92).

In DG cells, PACAP has been reported to enhance action

potential excitability through mitogen-activated kinases/

extracellular signal-regulated kinase signaling (93, 94). PAC1 has

been identified to be more prominent than the other PACAP

receptor types in the hippocampus. Immunohistochemical studies

of the hippocampus describe PAC1 as being localized to presynaptic

mossy fiber terminals and also on CA3-CA1 pyramidal cells (76, 95,

96). VPAC1 and VPAC2 have been identified to be dispersed

throughout all regions of the hippocampus (95). Local application

of PACAP38 in the CA1 region was found to enhance field

excitatory postsynaptic potentials responses and alter synaptic

strength (97). This is further supported in the CA1 pyramidal

neurons showing increasing excitability in the presence of

PACAP38 and PACAP27 (98). These studies suggest that PACAP

may modulate the stress response or associated behavioral changes

via an action within these hippocampal regions.

Glutamate NMDA receptors are associated with learning and

memory processes such as contextual fear conditioning and long-

term potentiation. PACAP has been shown to modulate the NMDA

receptor-mediated activity and learning processes (99). PACAP38

has been found to enhance NMDA-receptor current in the CA1

region primarily through the Gq pathway (90). Studies in knockout

mice show that PAC1R is involved in modifying patterns of

associative learning, contextual fear conditioning, and synaptic

plasticity (88).
PACAP and locus coeruleus in
stress response

LC is characterized by its role in arousal and response to stressful

stimuli. LC is a major source of adrenergic neurons in the brain with

connections to the cortex and hippocampus (100). Adrenergic-

containing fibers from the LC have been identified to project to the

basolateral amygdala promoting anxiogenic behaviors (101).

Additionally, elevated c-Fos expression has been noted in the CeA

in stressed rats, and this neuronal communication between LC and

CeA has been shown to produce acute anxiety-like behaviors (102).

CRH-containing neurons have also been reported as a key modulator

of LC activity. Known extrahypothalamic sources of CRH, originating

from the CeA and mPFC, have been identified to project to the LC

(102, 103). Application of CRF on LC neurons demonstrates increased

excitability and elevated levels of plasma norepinephrine (104, 105).

While CRF has been known to increase tonic firing of LC neurons, the

release of endogenous opioids in the LC has been shown to counteract

the effects of CRF, returning activity to baseline levels (106). Evidence

shows that the LC contains close interactions with both the

norepinephrine and corticotropin systems suggesting that it is

another key regulator of the sympathetic response (107).
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It has been known that a high level of PAC1 receptor populates

in the LC (41), but studies involving PACAP’s role in this brain

region are limited. The high density of this receptor type in the LC

has produced an interest in symptoms of morphine withdrawal.

PAC1 knockout mice interestingly display increased withdrawal

phenotypes (108). Martin and colleagues expected PAC1 activity to

increase withdrawal symptoms as PKA-dependent CREB

phosphorylation is known to be elevated during withdrawal;

however, the LC may not be solely responsible for withdrawal

symptoms and this process may be mediated by a different pathway.

Additionally, LC-PAC1 has also been indicated in sex-dependent

alteration of energy metabolism, but not fear expression in mice

exposed to stress (102, 109). Future studies should focus on

PACAP’s effect on the LC-NE system in the context of

HPA response.
PACAP and habenula in
stress response

Habenula plays a critical role in motivation and emotional

regulation as well as in stress-induced psychopathologies. Hb can be

divided into two distinct nuclei: the medial (MHb) and lateral

(LHb) habenula (110). The LHb is a relay center that receives inputs

from various limbic structures, such as the mPFC, BNST, PVN, and

lateral preoptic area [reviewed in (111)]. The LHb contains

glutamatergic output projections to both 5-HT and dopamine

circuits such as the dorsal raphe and the ventral tegmental area

(VTA), respectively (111). GABAergic interneurons have also been

identified on the LHb regulating output from this region (112, 113).

The LHb has been indicated to play a role in contextual learning,

depression, stress processing, motivation and avoidance learning

(112–114). Exposure to stress has been shown to produce

anhedonic behaviors in animals due to altered reward responses

indicating that stress causes a negative shift in LHb signaling of

reward and its omission (115). The mechanism behind the

anhedonic behaviors after stress exposure may be explained by an

altered reward signaling pathway as stress changed the polarity of

neuronal responses to rewards, making them appear as punishment

signals, in this way aberrant LHb signaling during stress leading to

motivational impairment (116). LHb is a hub that convert negative

affective states information and dysregulates the reward system.

Upon stress exposure glutamatergic synaptic transmission is

enhanced in LHb, as NMDA-dependent neuronal firing is

observed in LHb neurons of mice that generated negative aversive

states (117). Neuroanatomical and morphological alterations have

been noted in rats, as chronic stress exposure leads to a reduction in

cell volume and number of neurons in both the LHb and MHb

(118). Furthermore, long term potentiation in subregions of the

LHb has been shown to occur during exposure to acute stressors

(119). CRF within the LHb has been shown to increase neuronal

firing rate of glutamate and excitability through reducing

GABAergic transmission from presynaptic terminals (120). CRF

has been reported to increase glutamate activity and excitatory
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postsynaptic currents within the LHb in rats with a history of

chronic alcohol use (121).

PACAP-expressing neurons have been found in the LHb (76),

but PACAP’s role in this region has not been extensively explored.

PACAPergic and glutamatergic neurons have been identified to be

co-expressed within the LHb and MHb subdivisions (122).

PACAPergic neurons of the LHb have been found to project on

the raphe nuclei, rostromedial tegmental nucleus, and less densely

to the VTA (110). ICV PACAP infusions in rats showed a decrease

in c-Fos expression in the LHb, and resulted in a reduction in

freezing behaviors (123). Levinstein and colleagues demonstrated

that activation of PACAPergic neurons in the LHb produced

anxiolytic behaviors and increased locomotion which is contrary

to the known role of the LHb as a whole This may suggest that LHb

PACAP neurons are producing differential behavioral phenotypes

than LHb activation as a whole during stress exposures (110). It

seems that LHb-PACAPergic neuronal activation during the stress

response diminishes the negative consequences of aversion and

reduces fear and anxiety-associated behaviors (124).
PACAP and amygdala in
stress response

Amygdala is known for its role in emotion, anxiety, and fear

memory. It detects stress and informs the HPA axis to respond

(125). The CeA acting as a hub for negative emotional processing

and interconnected with GABA and glutamate projection neurons.

A prominent collection of nuclei in this region includes the CeA,

medial subdivision of the CeA (MeA), and the BLA. CeA receives

excitatory glutamatergic projections from BLA and sends

GABAergic afferent signals to CeM. The CeM serves as hub of

the output nucleus which sends GABAergic signals to downstream

efferent regions that control stress and fear responses (125).

Amygdala is known to mediate the stress response through

gaining information from sensory modalities (126). The

stimulation of the amygdala afferents to the hypothalamus can

activate the HPA axis, leading to the release of glucocorticoid into

the systemic circulation (3). Research has shown that CRF

expression in amygdala can mediate the adequate behavioral

responses to stress and increase the anxiety-like behaviors (127).

CeA serves as a center for negative emotional processing and

contains GABA interneurons and GABAergic projections that

regulate stress and fear responses and plays an important role in

brain’s inhibitory circuit (125, 128). In contrast, BLA contains both

glutamatergic and GABAergic interneurons that participates

simultaneously in somatic and behavioral responses to stressful

stimuli (125).

The CeA is thought to act through a GABA-GABA disinhibitory

mechanism by involving structures such as the BNST, containing

abundant neurons projecting to the PVN (129). Additionally, the

amygdala has been shown to be an extrahypothalamic source of CRF

and trigger the sympathetic drive. In vitro studies have shown CRF

overexpression after chronic stress exposure in the CeA, led to

increased CRF and AVP in the PVN along with elevated plasma
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ACTH and corticosterone levels (15). This is further supported by

results from bilateral lesions of the CeA in Rhesus monkeys that

demonstrated blunted fear and anxiety-related behaviors with

significant decreases in cerebrospinal fluid CRF, and plasma ACTH

and cortisol levels (16).

PACAPergic neurons are abundantly present in CeA from the

lateral parabrachial nucleus and dorsal vagal complex of the

brainstem (130), and PAC1 is expressed throughout the CeA.

Iemolo et al. (131) showed that intra-CeA PACAP-38 infusions

directly accelerate the HPA axis and increases their anxiety-like

response towards stressors. Indeed, Sieglie and colleagues reported

that 10 days of chronic social defeat stress (CSDS) causes a

significant increase in PACAP levels selectively in the CeA of

PAC1R knockdown mice and prevents the chronic social defeat

stress-induced increase in anxiety-like behavior (132). These

findings suggest that PACAP is needed to change the activity of

the stress circuit during chronic social defeat stress and regulate the

altered mood and motivation following stress exposure. In addition,

the CeA PACAPergic system helps to regulate anxiogenic and stress

coping behaviors via PAC1 to restore normal function of CeA to

maintain GABA release in the CeM. These authors also have shown

that activation of lateral parabrachial PACAPergic neurons to the

CeA induces anxiety-like behaviors (133). Varodayan and

colleagues studied PACAPergic regulation in the CeA during

restraint stress in male Wistar rats. They subjected the animals to

either restraint stress or control conditions, and alterations in PAC1

receptor level and cellular functional changes by PACAP were

assessed using immunohistochemistry and electrophysiology,

respectively. They found that exogenous PACAP38 increased

GABA release through the presynaptic PAC1 receptor. This

response was attenuated in animals exposed to restraint stress.

Tangentially, they found that single restraint stress decreases PAC1

immunoreactivity in the CeM. Overall, the results suggested that

PACAP/PAC1 receptor signaling in the CeA is complex and

diverse. The stress mediated GABA release in CeM is regulated

by PACAP expression. On the other than hand, a single restraint

stress reduces the impact of PACAP/PAC1 on the CeM GABA

system (125).

The BLA PACAPergic projections to the intercalated cells

microcircuit has also been implicated in contextual fear (134).

Higher circulating PACAP along with greater amygdala

connectivity with posterior cingulate cortex and left angular gyrus

in women but not men with PTSD (135). Likewise, a single

nucleotide polymorphism in the PACAP receptor gene has been

reported in patients with PTSD which may contribute to a

dysregulated fear circuitry (136).
PACAP and BNST in regulating the
stress response

Endogenous PACAP in the BNST is known to mediate stress

responses and induces anxiety-like behaviors in rodents. In

addition, mice that were treated with PACAP exhibited stronger

anxiety-like behaviors with increases in weight loss. Roman et al.
frontiersin.org

https://doi.org/10.3389/fpsyt.2024.1495598
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Singh et al. 10.3389/fpsyt.2024.1495598
(137) reported direct PACAP administration in the BNST

decreased entries in elevated plus maze, open field and novel

object avoidances (137). Additionally, chronic stress exposure

increased PACAP levels primarily in the dorsolateral BNST and

caused a slight increase in the PAC1 receptor expression (138).

Chronic variable stress was found to be anxiogenic and so was local

PACAP administration in the BNST. PACAP was found to increase

startle amplitude at 0.5µg dose and more robustly at 1.0 µg.

This result also proved that chronic stress increases BNST

neuroplasticity and heightens anxiety-like behaviors by a PACAP

mediated mechanism (138). PACAP-deficient mice exposed to

forced swim test exhibited reduced c-fos expression in different

BNST nuclei as well as in the ventral septum and dorsal

raphe nucleus (139). Immunohistochemistry showed a dense

network of PACAPergic fibers in the lateral part of the BNST.

VIP-immunoreactivity was also found in the lateral part of

BNST but covers a larger area than PACAP. However, PACAP-

immunoreactivity is not limited to this area but was also seen in the

medial part of BNST (140). Thus, PACAP has the ability to affect

CRH levels through PACAP/VIP receptor subtypes in these regions.

In a recent study, PACAP levels were found to be higher in the

BNST of submissive mice, implicating PACAP in the adaptation of

dominance hierarchies (141). In another study, BNST PACAP

expression was increased in the oval nucleus of BNST after

chronic stress (137). However, additional studies are necessary to

identify the origins of the PACAPergic fibers and VIP in the dorsal

subdivision of the lateral part of the BNST.

Exogenous PACAP in the BNST shows many different

responses. It was found that the effect of PACAP injected locally

in the BNST of male and female rats resulted in increased secretion

of corticosterone compared to the saline-treated control group even

though this was only induced with injections of 1.0 micrograms of

PACAP. However, PACAP injection in the lateral ventricle just

above the BNST did not increase corticosterone secretion showing

the site-specific effect of PACAP in increasing the stress response

(142). Further studies have examined what behavioral and

endocrine changes would occur after a BNST PACAP infusion in

adult male and female Sprague Dawley rats exposed to chronic

variate stress. The results showed that only the stressed males

showed an increase in corticosterone levels after 30 minutes as

well as an increased startle amplitude, where the same stressor did

not change the startle response in female rats (37). In addition,

PACAP injections in the PVN, in animals exposed to mild stress,

body grooming and face washing were observed with decreases in

rearing and locomotor activity both at 10 minutes and 2 minutes

post PACAP injection. It is possible that the lack of locomotor

activity could be compensated by the larger increase in body

grooming (51). This proves that preceding stressors did in fact

sensitize the behavioral and endocrine responses to PACAP injected

into the BNST in male rats and PACAP injection in the PVN

imitates stress. These actions of PACAP were not mimicked by VIP,

suggesting that PACAP is acting via BNST PAC1 receptors (37,

143). Finally, research has been conducted to analyze the effect of

PACAP administered in the CeA and BNST on startle amplitudes in

adult male Wistar rats using the acoustic startle response. Results
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showed increases of startle amplitude following injection of

PACAP, but not VIP, in the BNST and CeA. Foot shock stress

increased startle amplitude and PACAP expression in the BNST

and CeA. The effect of stress was blocked by a PACAP antagonist,

PACAP 6-38, suggesting that stress increases startle amplitude by

the PACAPergic system. However, studies are required to assess

whether this action of PACAP is exerted via the extrahypothalamic

region or HPA axis. Thus, further studies might require injecting a

CRH antagonist in the hypothalamus and to assess whether the

action of BNST PACAP can be mediated by CRH release in the

hypothalamus (144).
PACAP, stress and microglia

Microglia, as resident macrophages in the CNS, execute essential

functions to maintain brain homeostasis and neuronal survival (145).

They respond to noxious stimuli by releasing inflammatory cytokines

such as interleukin (IL)-1b, IL-6, tumor necrosis factor-a (TNF-a)
and chemokines (146). Emerging evidence indicates that activation of

microglia, is critically involved in mediating inflammatory responses

to various stresses that can serve as a major trigger for numerous

stress-related neuropsychiatric disorders, such as Parkinson’s,

Alzheimer’s, Huntington’s and depression (147). Furthermore,

previous studies have shown that stress led to microglial activation,

changed morphology, increased phagocytic capacity, and altered

transcriptional profile that result in premature, progressive and

chronic neural cell loss (148). The neuropeptide PACAP exert

neuroprotective and immunomodulatory activities throughout the

central and peripheral nervous systems. Activation of this

endogenous neuropeptide may interfere with stress processes to

promote glial cell survival and myelin self-repair (149). The

neuroprotective actions of PACAP have been identified extensively

in several research papers for neurodegenerative diseases (149–153).

Intraperitoneal injection of PACAP with graded doses in

experimental autoimmune encephalomyelitis mice model revealed

that PACAP suppress pro-inflammatory cytokines induction through

microglia (154). Similarly, in MPTP (1-mthyl-4-phenyl-1,2,3,6-

tertrahydropyridine) induced Parkinson’s model, PACAP

administration protected dopaminergic neuronal degeneration

(155). Furthermore Broome et al. (150) reported cotreatment with

PACAP or VIP prevented rotenone-induced increase of nitrous

oxide, matrix metalloproteinase (MMP)-9 and IL-6 that plays a

critical role in dopaminergic neuronal loss. Another study showed

that long-term PACAP administration in Alzheimer’s (AD)

transgenic mice improved cognitive function (156). Preclinical and

clinical evidence suggests that multiple exposures to stress

disrupt the homeostasis between inflammatory response and

neuroprotective mechanisms, and lead to neuronal loss and

cognitive decline (157–159). Cognitive decline has been associated

with a decrease in brain-derived neurotrophic factor (BDNF) levels.

Zink and colleagues (160) reported decreased expression of BDNF in

hippocampal CA3 and dentate gyrus of PAC1-receptor-deficient

mice. Several AD transgenic mouse models and human AD

temporal cortex have showed down-regulation of PACAP receptors
frontiersin.org

https://doi.org/10.3389/fpsyt.2024.1495598
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Singh et al. 10.3389/fpsyt.2024.1495598
(161). The rescue of memory decline is linked with an increase of

BDNF levels. PACAP is suggested to prevent cognitive decline via

promoting protein expression of BDNF that participates in neuronal

plasticity and essential for learning and memory (162).

Moreover, it has been suggested that PACAP and VIP might be

exerting their neuroprotective effects in part by acting directly on

microglial cells as microglia-deactivating factors (Figure 2).

Expression of VPAC1 and PAC1 was detected in rat microglia,

after LPS administration in rat’s spinal cord transaction, where

these receptors VIP and PACAP significantly suppressed LPS

induced TNF-a (163, 164). These neuropeptides signaling

systems might be involved in attempts to minimize the impact of

neuronal injury and cure neurodegenerative disorders.
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Concluding remarks

PACAP is involved in the regulation of many physiological

responses. This review summarized the current literature regarding

the influence of PACAP on the stress response, involving the HPA axis

as well as extrahypothalamic brain regions. PACAP acts at different

levels along the HPA axis to alter the stress response. PACAP acts

at the level of the PVN to alter the expression of CRH. It also serves to

cause the secretion of ACTH from the anterior pituitary. At the level

of the adrenal gland, it may cause the secretion of glucocorticoids

and alter the expression of catecholamine biosynthetic enzymes, TH,

DBH, and PNMT. All these actions could promote the stress response.

However, further studies are needed to determine whether PACAP is
FIGURE 2

Stress leads to HPA axis activation and causes consistently increased cortisol levels in our body. Following cortisol release, Th1-mediated cellular
immune response is initiated that produces plethora of inflammatory mediators that promote and perpetuate the inflammatory response, potentially
leading to neurodegenerative diseases, such as Parkinsonism, Alzheimer’s and Depression). Neuropeptides VIP/PACAP, acting through specific
receptors present on microglial cells, are able to modulate microglial response and inhibit the release of inflammatory mediators while favoring
development of an alternative activation program. HPA, Hypothalamic Pituitary Adrenal; IL-1b, Interleukin-1beta; IL-6, Interleukin-6; IL-10,
Interleukin-10; NO, Nitric Oxide; ROS, Reactive Oxygen Species; PACAP, Pituitary Adenylyl Cyclase Activating Polypeptide; PGE2, Prostaglandin E2;
PPARg, Peroxisome Proliferator-Activated Receptor-gamma; TGFb, Transforming Growth Factor-beta; TNFa, Tumor Necrosis Factor-alpha.
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released in these brain regions. Although the HPA function

are important to determine the susceptibility of the body to stress or

insults during the life process, this is also the main clinical correlates

of stress-related neurodegenerative disorders that represent a

significant public health concern. In this context, PACAP/VIP

system exert anti-inflammatory and neuroprotective effect through

their receptors PAC1, VPAC1, and VPAC2. Given the diverse

signaling of PACAP in the CNS, PACAP analogs/agonists can be

considered as therapeutic option for stress related neuropsychiatric

disorders. Future studies are required to design potent PACAP targeted

medications that would be a promising therapy for neuropsychiatric

and neurodegenerative disorders.
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