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Stem cell therapy for the
treatment of psychiatric
disorders: a real hope for
the next decades
Rosa Villanueva*

Servicio de Psiquiatrı́a y Salud Mental, Hospital Universitario La Paz, Hospital La Paz Institute for
Health Research (IdiPAZ), Universidad Autónoma de Madrid, Madrid, Spain
In this review, it is evaluated the progress in the application of stem cell therapy to

ameliorate the symptoms of bipolar disorder, major depression, schizophrenia,

and autism. These disorders are highly prevalent in clinical medicine and are

responsible for high levels of psychosocial disability among patients. All of them

share common biomedical features, such as complex and variable genetic

substrates, significant susceptibility to environmental changes, and insufficient

knowledge of their pathogenesis. In addition, the responsiveness of patients to

pharmacological treatment is heterogeneous, and in some cases, no treatment is

available. Therefore, the development of stem cell-based regenerative medicine

and its possible combination with emerging therapeutic approaches that

promote neural plasticity are expected to advance neuropsychiatry in the next

few decades.
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1 Introduction

The identification of stem cells in adult organisms, including humans, combined with

the design of methodological approaches to transform adult cells into pluripotent stem cells

(iPSCs) (1), has opened a new field of extraordinary importance in medicine for the

progress of diagnosis and biological characterization of distinct pathologies and for the

treatment of diseases for which we previously had no pharmacological tools (2).

Physiologically, stem cells are undifferentiated cells that self-renew and eventually

differentiate into specific cell lineages (3). In adults, stem cells are present in many tissues

and organs and often occupy niches that maintain their “stemness” (4). Under normal

conditions, these cells are attracted by their neighboring tissues to replace damaged cells,

ensuring tissue homeostasis (5). However, their regenerative potential is insufficient to

overcome a pathological situation. In clinical practice, autologous or allogeneic stem cells

can be isolated from the bone marrow, adipose tissue, or umbilical cord blood and
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expanded in vitro to obtain a sufficient number of cells required for

cell therapy. A hallmark in modern medicine was the development

of iPSCs by genetic reprogramming adult somatic cells in vitro (6),

thus overcoming the limitations in obtaining the number of cells

required for therapeutic procedures.

The beneficial effects expected from the utilization of stem cell-

based medicine are not only due to the direct replacement of

damaged tissues (7) but also to the release of paracrine factors

and extracellular vesicles (exosomes) that interact with the target

tissues (8, 9) (Figure 1). In fact, it has been found that exosomes

delivered by stem cells to the milieu may substitute the employ of

the living stem cells. Stem cells, can also be used as carriers for drug

delivery to injured organs (2, 10, 11). The latter is favored because of

the tropism of stem cells toward damaged tissues (12). In the

nervous system, a limitation of the therapeutic use of stem cells is

the difficulty of overcoming the blood–brain barrier by noninvasive

mechanisms. Advances in the nasal administration of cells or cell

products may circumvent the use of invasive approaches (13). The

use of experimental animals for the study of psychiatric disorders is

limited, but, stem cells grown in different culture assays provide a

valuable tool for modeling the pathophysiological substrates of

neuropsychiatric disorders. Thus, a complementary and equally

important medical application of stem cell technology is the

development of tridimensional cultures from iPSCs obtained from

patients. These cultures, termed “organoids,” can be directed to

differentiate into specific tissue structures and allow monitoring the

pathogenic basis of the disease and to test their response to

pharmacological treatments, thus predicting their efficacy in a

personalized fashion (14, 15).

In the last years important advances have been achieved in

obtaining neural-like cells for in vitro modelling psychiatric

disorders, avoiding reprograming and methodological limitations

of iPSC derived from the patients, such as accessibility to obtain the

cells, efficiency and time required for differentiation, economical

cost, and, of note, the maintenance of the epigenetic signature of the

patient cells that is loss during reprograming process (16). Among

the sources of neural cells, it can be emphasized the olfactory

neuroepithelium (17–19), but somatic cells (i.e. fibroblasts)
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gene editing that not require reprogramming (20), and

mesenchymal stem cells, or circulating pluripotent monocytes

transdifferentiated by growing in conditioned culture medium

provide also satisfactory results (21).

The purpose of this review is to summarize the current status of

the application of stem cell technology to ameliorate the

symptomatology of bipolar disorder (BD), major depression

(MD), schizophrenia (SQZ), and Autism Spectrum Disorder

(ASD). These disorders are most prevalent in clinical medicine

occupying the second (Depressive disorders), seventeenth (SQZ)

and twenty-first (ASD) places in the last rank generated by the

“Global Burden of Diseases, Injuries, and Risk Factors Study” (22)

that estimates the global disease burden, on the basis of incidence,

prevalence, and disability-adjusted life- years (DALYs) for 371

diseases at both country and regional levels. The advancement of

stem cell-based regenerative medicine and its possible combination

with emerging therapeutic approaches that promote neural

plasticity opens a promising panorama for the advancement of

neuropsychiatry (23).
2 Neuropsychiatric disorders

2.1 Bipolar disorder

BD is a highly prevalent disorder, affecting more than 1% of the

world population. It is characterized by alternating manic and

major depressive episodes, and usually develops in young

individuals. Despite the influence of environmental factors on the

evolution of BD, its genetic origin is accepted. However, rather than

single mutations, complex and variable genetic modifications have

been identified in individuals and families (24). Since many decades,

clinical treatment to reduce manic episodes of BD patients relays in

the administration of mood stabilizers (lithium, valproate, and

lamotrigine) although their action mechanism was not fully

understood (25) and a considerable number of patients fail to

respond to the medication.
FIGURE 1

Schematic representation of the central events of stem cell therapy. From left to right: 1) potential source of stem cells; 2) administration procedure;
3) expected effects of stem cell administration. ST, stem cells ready for infusion or engraftment, EX, exosomes released by stem cells.
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Studies using stem cell technology have paid much attention to

decipher the molecular and cellular basis of the disorder and to

unravel the action mechanism of mood stabilizers, including the

variability in the responsiveness to lithium treatment (26–30).

Organoids made with iPSC obtained from BD patients, revealed

important molecular and structural alterations respect to control

subjects that are ameliorated by addition of lithium to the culture

medium, and, importantly, this in vitro assay replicates the

responsiveness of the patient to treatment (26, 29–31). This

property constitutes a major step to the development of

personalized medicine in clinical practice.

The use of organoid technology provided important advances in

the understanding of BD pathogenesis (26). Functional and

transcriptional studies have revealed increased expression and

response to pro-inflammatory cytokines (IL-6) in astrocytes

derived from patient iPSCs (31), supporting a potential

therapeutic effect of anti-inflammatory treatments (32), to inhibit

neuroinflammation (27). Furthermore, genes regulating neuronal

differentiation, and plasticity, such as the Wnt/b-catenin signaling

pathway appear altered in BD-patients (33, 34), and the influence of

Wnt signaling inhibitors in the vitro assay opened new approaches

for the treatment of the disorder (35). The microRNA miR34 is

another target of lithium altered in BD-derived organoids. It has

been proposed that its detection in plasma might be a biomarker, to

distinguish lithium responding and non-responding patients (36).

In contrast with the advances obtained in the pathogenesis and

conventional pharmacological treatment of the disorder via stem-

cell technology, clinical trials for cell therapy in BD are currently in

their early stages (37). Several research centers have registered

clinical trials using stem cells in combination with conventional

mood stabilizers; however, to our knowledge, these results have not

yet been published.
2.2 Major depressive disorder

MDD is a multifactorial psychiatric disorder characterized by

persistent sadness, low self-esteem, and a loss of interest in for

environmental stimuli, accompanied by various cognitive and

physical symptoms. MDD has the highest prevalence in Western

countries and is responsible for social disabilities and suicidal

behaviors (38). The pathogenesis of depression involves an intricate

combination of genetic, environmental, and neurobiological factors.

Genetic predisposition plays a significant role, with multiple genes

contributing to vulnerability to depression, particularly when

combined with environmental triggers, such as chronic stress or

trauma (39–42).

Neurobiologically, MDD is associated with the dysregulation of

key neurotransmitter systems, particularly serotonin, norepinephrine,

and dopamine, which are crucial for mood regulation (43). Recently,

the glutamatergic system has been implicated (44). Additional

pathogenic alterations include dysregulation of the hypothalamic-

pituitary-adrenal axis, alterations in the gut microbiota (45, 46),
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microglia and astrocyte modifications in response to inflammatory

stimuli (47, 48), and neuroplasticity deficits (49). Collectively, these

factors contribute to the onset, progression, and recurrence of

depressive episodes.

Selective serotonin reuptake inhibitors are the first-line treatment

for MDD. However, at least 30% of the patients are resistant to

treatment (treatment-resistant depression; TRD) owing to unknown

neurobiological mechanisms. Considering the severity of the disease,

this limitation makes it necessary to develop effective treatments for

TRD. Combining distinct therapies and the development of novel

treatments such as ketamine, psychodynamic drugs, or transcranial

magnetic stimulation have provided hopeful results (50, 51).

Stem cell therapy might address neurobiological deficits in TRD

(52); however, most data are largely derived from preclinical animal

studies (53). Treatment with umbilical cord stem cells (54) or

adipose-derived mesenchymal stem cells (55) has revealed positive

results in mouse models of depression-like behavior. Studies devoted

to improving cardiac ischemia using umbilical cord stem cells have

shown that this treatment ameliorated depression-like behavior

caused by ischemia (56). In these studies, the effects of cell therapy

were associated with the immunomodulatory and anti-inflammatory

properties of stem cells (57). A complementary beneficial effect

proposed for stem cell therapy is the stimulation of endogenous

neurogenesis and neuroplasticity (58–60) or the protection of

neurons from induced apoptosis (61). Implantation of encapsulated

mesenchymal stem cells into the lateral ventricle of rats ameliorated

depression-like behavior, promoting neurogenesis in the

subventricular zone and dentate gyrus of the hippocampus (60).

Remarkably, the trophic influence of stem cells may be substituted

with exosomes obtained from cultured bone marrow mesenchymal

stem cells (61). In humans, a preliminary pilot study in 16 female TRD

patients subjected to 4 intravenous injections of umbilical cord stem

cells (250x106 cells and1-week intervals) showedanameliorative effect

on cognitive impairment, and helped overcome resistance to

conventional treatment (62). Together, those findings suggest that

new treatments combining stem cells and drugs with active

neuroplastic activity, such as ketamine (63), may provide more

efficient therapies for TRD (50). However, the use of stem cell

therapy in humans still requires further animal testing (64). It must

be evaluated if cell infusion is enough to induce beneficial effects, or if

treatments require neural engraftment. It is also required to know if

anti-depressantdrugsmodify the therapeutic efficiencyof stemcells, or

the importance of the stage of differentiation of the stem cells. At the

present, I have identified three active clinical assays registered in the

platform Clintrial.gov designed to evaluating the safety, efficacy and

tolerability of stem cells and exosomes for the treatment of depression

(NCT02675556: Phase I trial that investigates the administration of

allogeneic MSCs in TDR patients that lack posted results;

NCT03522545: Phase I trial, at recruiting stage, that evaluates the

safety and efficacy of allogeneic bone marrow-derived MSCs in BD

patients; NCT03265808: Phase I/II trial, lacking posted results, that

investigates the administration of allogeneic MSCs in patients with

alcohol use disorder and major depression).
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2.3 Schizophrenia

SCZ is a severe and prevalent chronic behavioral and cognitive

disorder characterized bybroad andheterogeneous clinical symptoms,

including hallucinations, delusions, cognitive impairment, and social

withdrawal. Its pathophysiology is complex and involves critical

interactions between genetic and environmental factors (65). SCZ is

highly heritable (66), and dozens of genomic loci have been associated

with this disorder (67). Current treatment options include

psychosocial interventions and antipsychotic drugs that often cause

undesired side effects; most importantly, these treatments remain

largely ineffective in almost one-third of patients (68).

The characterization of pathogenic alterations in neural

progenitors from SCZ patients is currently an intense area of

research (19, 69–71). Organoid, and other in vitro technologies,

have provided substantial advances in our knowledge of the

molecular basis of SCZ (72). According to these studies, a core

physio-pathogenic feature of SCZ is an unbalanced specification of

excitatory and inhibitory neurons together with mitochondrial

alterations that increase oxidative stress (73). Dysregulation of

neuronal differentiation may be secondary to deficiencies in Wnt

signaling (72), which, as mentioned above, is also a feature shared

by BD (34). Remarkably, it has been detected a dysregulation of

circulating stem cells displaying neural lineage markers in SCZ

patients experiencing their first psychotic episode that might serve

as a biological marker of SCZ (74).

Currently, monoamine-based antipsychotic drugs are the

conventional pharmacological treatments for SCZ; however, they

have several adverse effects and limited effectiveness on negative

and cognitive symptoms (75). Hence, developing innovative

therapeutic approaches in modern psychiatry is challenging.

Advances in regenerative medicine have promoted growing

interest in stem cells as a potential novel treatment for SCZ (76).

Preclinical studies have demonstrated the beneficial effects of a

single intravascular infusion of human umbilical cord stem cells on

SCZ-related behaviors induced by amphetamine administration in

mice (77). Considering that the blood–brain barrier prevents cells

from reaching the neuronal centers and the regulation of IL-10, this

effect was explained by the immunomodulatory influence of stem

cells. This interpretation is supported by recent experiments

demonstrating the alleviation of neuroinflammation and synaptic

damage repair by regulating the activity of microglia in a maternal

immune activation rodent model (78). Moreover, stem cells may

also confer beneficial effects via local neuroprotective mechanisms,

as shown in both intracranial transplantation of mesenchymal stem

cells (MSCs) and intranasal delivery of MSC-derived extracellular

vesicles, which alleviated behavioral and biochemical deficits in

mouse models of drug-induced SCZ (79, 80). Human studies are

still limited to a pilot study, without control patients, designed to

assess the safety of the procedure and to analyze cortical activity in a

cohort of 15 patients with SCZ (F20.6 in the International

Classification of Diseases-10) who received 4 intravenous

injections of umbilical cord blood cells (250 × 106 at 2-week

intervals). Of note, three months after the last injection, fMRI

analysis showed increased cerebral cortical activity in both the
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loop, which was interpreted as due to induced neuronal

plasticity (76).
2.4 Autism spectrum disorder

ASD is a heterogeneous neurodevelopmental condition that

manifests in early childhood and persists throughout life. Symptoms

of ASD include social and communication impairments along with

repetitive, stereotyped behaviors that are frequently associated with

other neuropsychiatric and non-psychiatric diseases (81). Genetic and

environmental factors are implicated in the development of ASD.

Genetic risk factors are complex and involve variants ranging from

pointmutations to large copy number variants that are either inherited

or spontaneous (82). Dysregulation of the gut microbiota has been

proposed as an environmental factor in the disease (83). Causal

heterogeneity, together with variability in clinical phenotypes,

prevents the establishment of a precise basis for the disorder (84),

but its pathogenesis includes immune dysregulation, mitochondrial

dysfunction, and increased oxidative stress (85).

Despite intense efforts devoted to basic and clinical research

(86–90), the design of effective pharmacological treatments for the

core symptoms of ASD remains elusive (91). Considering that

neuroinflammation, neuronal cell damage, and oxidative stress

area central events in ASD, cell therapies using stem cells of

different origins have been explored. Many preclinical studies in

animal models (92, 93) and human clinical trials (94, 95) have been

conducted over the last decade. Except for the absence of

therapeutic efficacy reported by Dawson et al. (96) that might be

explained by the therapeutic protocol employed in the trial (97), the

administration of umbilical cord blood cells (98–102), or

autologous bone marrow stem cells (94, 103), using distinct

protocols (intrathecal/intravenous) improved autism symptoms

without major adverse events. In some studies, clinical

improvement was considered low (104); however, in other trials,

the treatment modified the spectral characteristics of the

electroencephalogram (99) and improved the structural brain

connectivity detectable by white matter tractography (101, 105).

Overall, the positive findings described above are largely explained

by the immunoregulatory properties of stem cells (101, 105); however,

whether this is the only mode of action has been questioned (85).
3 Conclusions and
ethical considerations

The stem cell technology, via in vitromodeling, is an active area of

research that, in spite of some limitations (16), is providing great

advances in the understanding the pathophysiology of

neuropsychiatric disorders (14). Here, I have summarized the efforts

of researchers to add mental disorders to the list of pathologies that

could benefit from stem cell therapy. In theory, stem cell therapy may

benefit psychiatricdisordersby twodifferentmechanisms:firstly,being

integrated into the target neural regions to substitutedeficientneurons;
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and, secondly, employing the cells as source of factors that ameliorate

the structural deficits observed in the mental disorders (Figure 1). The

first approach, requires the grafting of progenitors into the target

neural tissues. This approach is still at initial preclinical stage. The

infusion of stem cells with therapeutic purpose is at a more advanced

stage of research. A number of published pilot studies evaluated the

effectiveness of stem cell therapy to ameliorate symptomatology in

MDD, SCZ, and ASD, and all of them concluded that, as observed in

other pathologies, the methodology is safe, and devoid of serious

adverse events. A critical aspect for the use of stem cell treatments in

psychiatry is the importance of providing adequate information on

risks/benefits to obtain adequate consent from the patient or their legal

guardians, especially, in patients who lack decision-making capacity.

Based on the reported observations, most studies conclude that

the effects of stem cell therapy have to do with immune regulation,

protecting astroglia and microglia from neuroinflammatory

damage, which in turn improves neuronal functions.

Additionally, there is a yet uncharacterized trophic effect that

promotes neuronal plasticity. Importantly, some reports suggest

that cell therapy could be replaced with exosomes derived from

stem cells (9, 106). To date, we do not have viable protocols as to

determining the most appropriate cell type to use or the method of

administration but the data reviewed here are encouraging and

suggest that the regenerative treatments alone or in cooperation

with other therapeutic approaches could offer solutions in the

coming decades to resolve neuropsychiatric pathologies for which

we currently have no effective therapies.
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17. Flores-Ramos M, Ramıŕez-Rodrıǵuez GB, Guiza-Zayas R, Solares-Bravo M,
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