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Multiple lines of evidence indicate that altered dopamine signaling may be involved

in neuropsychiatric disorders and common behavioral traits. Here we critically

review evidence collected during the past 40-plus years supporting the role of

dopamine dysfunction in attention deficit hyperactivity disorder (ADHD). We

recapitulate the basic components of dopaminergic signaling in the central

nervous system, focusing on core enzymes, transporters and receptors involved

in monoaminergic functions, particularly in striatal and cortical regions. We

summarize key human brain imaging and genetic studies reporting associations

between dopaminergic neurotransmission and behavioral traits, with an emphasis

on ADHD.We also consider ADHD in the context of animalmodels and single gene,

metabolic, and neurological disorders with established dysfunction of the

dopaminergic system. Examining the evidence in this way leads us to conclude

that there is evidence for the involvement of dopamine but limited evidence for a

hypo-dopaminergic state per se as a key component of ADHD. We propose a path

forward to increase our understanding of dopamine signaling in human behavioral

traits and disorders that should particularly focus on its role in clinical subgroups,

during brain development and how it interacts with other neurotransmitter systems.
KEYWORDS

dopamine, monoamines, attention deficit/hyperactivity disorder, stimulants, genetics,
neurometabolic disorders, psychopharmacology, neuropsychological disorders
Introduction

Dopamine (DA) was synthesized in 1910 (1) and during the 1950s it was reported to be

present in brain tissue (2). Following the discoveries that DA is a neurotransmitter (3) and

that DA receptors are drug targets (3), the role of the DA system has been explored in many

neuropsychiatric disorders. In particular, the observation of a reduced DA content in
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postmortem brain tissue from Parkinson’s disease patients (4)

spurred an intense interest in the role of DA in neurological and

psychiatric disorders and other conditions. However, in comparison

to the well-established role of DA deficiency in neurodegenerative

diseases of the basal ganglia and rare neurometabolic syndromes

affecting DA synthesis, transport or metabolism (5), research on

dopamine’s role in most other traits has been challenging and

subject to controversy.
Evidence linking the dopamine system and
attention deficit hyperactivity disorder

Attention deficit hyperactivity disorder (ADHD) is

characterized by dominant symptoms of inattention (e.g. being

sidetracked by external or unimportant stimuli) and/or

hyperactivity (e.g. squirming or fidgeting while seated) and

impulsiveness (e.g. difficulty waiting your turn). According to the

current version of the Diagnostic and Statistical Manual for Mental

Disorders (DSM-5), these symptoms need to persist for longer than

six months, be observed in at least two settings, and negatively

impact academic/social/occupational functioning to qualify for a

diagnosis of ADHD (in addition to other diagnostic criteria) (6). It

has long been speculated that ADHD symptoms may be related to

some alterations in monoaminergic and in particular dopaminergic

neurotransmission (7, 8). While it has been difficult to pinpoint

exactly how a postulated dysfunction of DA occurs in ADHD, this

hypothesis has gained much support in the scientific community

and not the least in popular media (9). According to some

“influencers”, popular books and other media intended for the lay

audience, ADHD patients lack DA in their brain (10). Despite this

widely held popular opinion, the scientific evidence supporting this

version of the DA hypothesis is not necessarily present. Indeed, a

simplistic portrayal of ADHD as a general DA deficiency syndrome

might be one of the most common misconceptions regarding

ADHD neurobiology. This is not the only misconception about

ADHD that is widely distributed in social media. In a quantitative

study of social media content quality, it was found that 52% of the

100 most popular videos on ADHD on TikTok were classified as

misleading (11).

Scientifically, the DA hypothesis of ADHD has been based on

several lines of evidence, including: 1) stimulant drugs target the

monoamine systems, including DA, 2) animal models genetically

engineered for altered DA homeostasis mimic some symptoms of

ADHD, 3) brain imaging studies implicate the DA system, and 4)

studies of genetic variants in the DA system in humans (9).

However, ever since the DA hypothesis was first proposed about

40 years ago some researchers have also been skeptical of it. For

example, when focusing on the effect of medications used for

ADHD, the 1987 review by Zametkin and Rapoport (12) found

evidence against the DA hypothesis when considering the limited

effects of DA agonists and antagonists. They instead reported

evidence primarily favoring the noradrenergic system.

Methylphenidate and amphetamines are stimulant drugs that

are first-line pharmacotherapies for ADHD (13). These drugs block

DA and norepinephrine (NE) transporters, inhibiting
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catecholamine reuptake into dopaminergic nerve terminals

(Figure 1), increasing their availability at dopamine receptors.

Stimulants can also interact with other target molecules and

transmitter systems, e.g. amphetamines can increase DA release

from synaptic vesicles, and inhibit monoamine metabolism,

particularly at high doses (14). Stimulants have effects on ADHD

symptoms, possibly by optimizing DA and NE modulated task-

related brain networks that increase perceived saliency, reducing

interference from the default mode network (15).

Although specific NE transporter inhibitors and alpha-2a

adrenergic agonists are also effective against ADHD symptoms

(16), recent meta-analyses show that psychostimulants also acting

on dopaminergic pathways, l ike methylphenidate and

amphetamines, have greater effect sizes for ADHD symptom

management compared to NE transporter inhibitors like

atomoxetine or the alpha-2a agonist guanfacine (13). Some

arguments against the mono-causal dopamine-deficit hypothesis

such as that by Gonon (17) have cited evidence that

psychostimulants improve behavior, including attention, in

healthy children as well as those with ADHD (18, 19), the rodent

models agreed to have the highest validity for ADHD (20) still

cannot closely fit the neuropharmacology of ADHD (see (17)), and

meta-analyses of brain imaging studies do not support the idea that

ADHD symptoms can be explained by hypo-function within a few

isolated brain regions (21). Some more recent skepticism of the

hypothesis comes from highlighting the shortcomings of the

dopamine-focused executive dysfunction theory in explaining

hyperactivity and motor problems in ADHD (22). Conversely,

recent meta-analyses continue to show that other dopamine-

related cognitive dysfunctions, such as impaired inhibitory

control, are robustly exhibited in ADHD [e.g. (23)].

Different versions of the DA hypothesis of ADHD have been

around for decades and reviews dating as far back as 1991 (24) have

collated studies arguing for and against the key role of DA in this

condition. Since then, the link between DA and ADHD has been

further investigated using a variety of approaches. By way of

illustration, a literature search using the PubMed database in

August 2024 retrieved 184,551 hits with the key word

“dopamine”, 51,665 with “ADHD”, 2,990 with the search terms

“dopamine”, “attention deficit hyperactivity disorder” and

“ADHD”, including 39 meta-analyses. The main focus of these

meta-analyses is on genetic studies, often exploring one or a few

genetic markers in a single candidate gene. Across this extensive

literature there is no clear consensus what the DA hypothesis of

ADHD specifically refers to – either that DA plays a key role, there

is a hypo-functioning DA system, there is a hypo-dopaminergic

state in specific brain regions like the prefrontal cortex (PFC), there

is a hypo-dopaminergic state throughout frontostriatal regions, or

specifically that extracellular DA concentration/DA signaling/DA

metabolism is lowered. For the purposes of this review, we refer to the

DA hypothesis as: reduced synthesis, content, metabolism and rate of

extracellular accumulation of the DA neurotransmitter within

frontostriatal regions in people with ADHD.

Considering the large number of studies published on the

connection between DA and ADHD, spanning >40 years of

research using a diversity of methods - including different types
frontiersin.org
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of brain imaging, pharmacology, neurochemistry and genetic

studies in ADHD patients, healthy humans and animal models -

it is practically impossible to systematically explore and extensively

review all the evidence collected during this period. The purpose of
Frontiers in Psychiatry 03
this review is rather to examine how far we have come in the past

>40 years by evaluating different lines of evidence for the DA

hypothesis. We take a multidisciplinary approach and extend our

focus beyond genetics to also examine the DA hypothesis from a
FIGURE 1

Dopamine metabolism and signaling. Panel (A) shows the major dopaminergic pathways in the human brain originating from the substantia nigra
(SN) pars compacta for the nigrostriatal pathway and the ventral tegmental area (VTA) for the mesolimbic and mesocortical pathways. For simplicity,
the panel shows only one of the output pathways (the direct pathway) from the striatal medium spiny neurons (of the D1R-type) to the SN pars
reticulata (or globus pallidus internal). The modulation of cortical input to the striatum by dopamine (black square) is further illustrated at the
synaptic and molecular level in panel (B), as a simplification, and in more detail in panel (C). The regulation of neuroplasticity by dopamine is shown
for a cortico-striatal synapse under influence by a nearby dopaminergic varicose release site. Some of the relevant cyclic nucleotides [cAMP (cA),
cGMP (cG)] and calcium signal interactions are shown for both the presynaptic cortical glutamatergic neuron and a postsynaptic GABAergic medium
spiny neuron. For the dopaminergic terminal (upper right), synthesis and metabolism of dopamine are shown as well as a simplified regulation of TH
activity through cAMP/PKA signaling, which is inhibited by D2 autoreceptors. The change in neuroplasticity is mediated by different target proteins
(TPs; pTPs – phosphorylated TPs) of cAMP-dependent protein kinase (PKA) and calcium/calmodulin dependent protein kinase II (CaMKII). Examples
of such TPs are CREB (cAMP-response element binding), STEP (striatal-enriched protein tyrosine phosphatase), proteins involved in cytoskeletal
restructuring, AMPA receptors, etc. AMPA, a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor; AC, adenylate cyclase; Ado,
adenosine; ADR, adenosine receptor; ARPP-16, cAMP-regulated phospho-protein 16; CaM, calmodulin; D1R, dopamine receptor type 1; D2R,
dopamine receptor type 2; DA, dopamine; DAT, dopamine transporter; DARPP-32, dopamine and cAMP-regulated phospho-protein 32; DDC, dopa
decarboxylase; Dopa, 3,4-dihydroxyphenylalanine; DOPAC, 3,4-dihydroxyphenylacetic acid; Glu, glutamate; HCN, hyperpolarization-activated cyclic
nucleotide-gated ion channels; HVA, homovanillic acid; NMDA, N-methyl-D-aspartate receptor; NO, nitric oxide; NOS, nitric oxide synthase; MAO,
monoamine oxidase; mGlu, metabotropic glutamate receptor; PDEx, phosphodiesterase type x; PPx, protein phosphatase type x; PKG, cGMP-
dependent protein kinase; sGC, soluble guanylate cyclase; TH, tyrosine hydroxylase; Tyr, tyrosine; VMAT, vesicular monoamine transporter. Black
arrows mean direct synthesis or transport, black lines with circled end mean direct positive (+) or negative (-) influence or degradation, dotted
arrows mean indirect positive (+) or negative (-) influence. Panel (A) was created in BioRender.com and the rest of the figure with
Microsoft PowerPoint.
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neurophysiological, neuropsychological, and neurometabolic

perspective, attempting to cite representative and/or recent

developments in these areas using publications entered into the

PubMed database before September 2024 as the primary source of

information. Major reviews and controversial reports have been

discussed among the author group before being included. In this

way we aim to provide an updated overview of the main aspects of

the DA hypothesis in ADHD. Although we have strived to present a

balanced and representative overview, we did not aim to include

every possible perspective or all published reports in these fields.

Inevitably, some aspects and data will unintentionally be

overlooked or underrepresented in such a large and rapidly

evolving research field.

We start by providing a brief overview of the dopaminergic

system covering DA synthesis, receptors and downstream signaling

mechanisms, while highlighting some points of complexity that

may help to explain why the DA hypothesis is still so hotly debated.
An overview of the
dopaminergic system

DA is a neurotransmitter/neuromodulator that plays crucial

roles in several physiological processes in the brain and peripheral

tissues. The brain functions include motor control, cognition,

learning, food intake and reward (25, 26). Peripheral DA is

impl icated in the immune system, hormone release ,

gastrointestinal motility, regulation of blood pressure and sodium

balance and probably other functions (27). The main components

of the dopaminergic system include the biosynthetic machinery

involved in DA synthesis and release, pre- and postsynaptic DA

receptors, as well as downstream signaling mechanisms and

enzymes and transporters involved in DA metabolism (25)

(Figure 1). DA is synthesized from the amino acid tyrosine

through two enzymatic reactions involving hydroxylation and

decarboxylation of this precursor amino acid into a monoamine.

Tyrosine hydroxylase (TH) catalyzes the first rate-limiting step in

this process (28, 29) and dopa decarboxylase (aromatic amino acid

decarboxylase, DDC) catalyzes the second step. Once synthesized,

DA is stored in vesicles within the dopaminergic neurons. Upon

neuronal activation, DA is released into the synaptic cleft or

extrasynaptically (volume transmission) where it interacts with

receptors on target cells.
Dopamine homeostasis

Although neuronal communication is highly dynamic on a

temporal scale, the concept of neurotransmitter homeostasis is

still used. For rapidly acting transmitters this refers more to the

signaling capability or the transmission process rather than the

synaptic transmitter levels themselves. For more slowly acting

neurotransmitters, like the neuromodulator DA, it makes more

sense to also talk about the extracellular transmitter homeostasis –

particularly for the volume transmission. Thus, neurotransmitter

homeostasis is a result of transport processes between different
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compartments such as release, diffusion and reuptake, but also relies

on the biosynthetic and metabolic fluxes acting locally in the region

of interest. Presynaptic regulation is key to understanding these

processes. However, the postsynaptic signaling responses are of

course important for the neurotransmission homeostasis as a whole.

Both signaling systems will be briefly discussed here.

Dopaminergic neurons of the central nervous system (CNS)

have anatomically highly complex axons with extensive

arborizations in their target areas of the brain – extending from

their nuclear localization (substantia nigra pars compacta and

ventral tegmental area) to large areas of the brain (30). There

they form two general types of contacts; varicosities, which are

enlargements of the axon that contain secretory vesicles and

mediate diffuse modulatory stimuli on the surrounding neurons,

and more defined synaptic contacts. For volume secretion from

diffuse varicosities, reuptake is expected to be of little importance

for temporal changes in the cytoplasmic dopamine levels as

extracellular diffusion of dopamine is expected to be rapid (30).

The frequency of release does not directly reflect the depolarization

dynamics of the axon. These neurons are known to operate in

different firing modes: low frequency tonic mode (~5 Hz) and

transient phasic high frequency or bursting (< 30 Hz). The amount

of DA released is much higher during phasic firing and is further

modulated by local signaling inputs such as glutamine, gamma-

aminobutyric acid (GABA), and acetylcholine. DA release and its

temporal concentration profile has been extensively studied and

measured quantitatively in many brain regions. Terminal release is

modulated by DA-autoreceptors, which modulate the amount of

DA released during depolarization. Somatodendritic release of DA

modulates the activity of the neuron itself (31).

There are considerable differences between different brain

regions in their turnover and reuptake of DA. High levels of the

dopamine transporter (DAT) are found in the terminal regions of

the nigrostriatal and mesolimbic pathways, whereas low levels are

found in somatodendritic regions and the PFC (32). The different

reuptake activities have a considerable impact on the volume to

which DA spreads and the temporal profile of the transmission.
Dopamine receptors

DA exerts its effects by binding to specific G protein-coupled

receptors (GPCRs) (Figure 1). There are five known human DA

receptor subtypes: D1, D2, D3, D4, and D5 (33, 34). D1-like

receptors (D1 and D5) activate adenylyl cyclase, leading to

increased cyclic AMP (cAMP) levels. D2-like receptors (D2, D3,

and D4) inhibit adenylyl cyclase and modulate cAMP levels (34).

These receptors are widely expressed in both the CNS and

peripheral tissues. In addition to regulating levels of cAMP, DA

receptors can activate other signaling pathways, including the Gq/

11 mediated activation of phospholipase C (PLC) (35), b-arrestin 2

induced activation of Akt, and transactivation of tyrosine receptor

kinases such as TrkB (36).

Dopamine receptors (DRs) are found presynaptically on DA

neurons and postsynaptically on different target cells (33)

(Figure 1). DA signaling complexity is further increased by
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formation of oligomeric complexes between different types of DRs,

as well as complexes with other GPCRs and other receptor

molecules. Reported DR heteromers include D1/D2, D1/D3, D2/

D4, D2/D3 and D2/D5 DR heterodimers, as well as D1/D2/D3 +

adenosine A1 or A2 receptors, D2 + somatostatin SST5 receptors,

D2 + 5HT2A receptors, D1 + metabotropic glutamate receptors

(Glu5), D1 + Histamine H3 receptors, D2 + Histamine H3

receptors, D2 or D3 + glutamate NMDA receptors (NR2B) (37–

39). Some of the heteromeric receptor complexes have been

characterized, showing that their DA binding and effector

coupling profiles are distinct from the respective homodimers or

monomers (39). Still, the evidence for the in vivo formation and

physiological relevance of most of the reported oligomeric

complexes between DRs is limited and even considered

controversial (38, 40).

Most D1 and D2 receptors are expressed on non-dopaminergic

neurons and are involved in a diversity of brain functions, including

learning, cognition, motivation and motor functions. D1-like

receptors exert these functions partially by modulating ion

channels, such as voltage gated sodium, potassium and calcium

channels, as well as G-protein coupled inwardly rectifying

potassium channels (GIRKs) (41, 42). D2-like receptors are

coupled to Gi/o proteins and thereby inhibit GIRKs. Presynaptic

D2 autoreceptors modulate DA functions via activation of

potassium conductance, as well as by downregulating the activity

of the plasma DA transporter and the activity of TH (43, 44)

(Figure 1). As D2 receptors are the primary targets of antipsychotic

drugs, the physiology and pharmacology of D2 subtype receptors

have been extensively studied. However, due to the strong structural

and functional interconnectivity of the dopaminergic system and

other neurotransmitter systems, in particular other monoamines, it

is virtually impossible to completely disentangle the “true”

dopaminergic neurotransmission from other transmitter

systems (37).
Dopamine during brain development

DA production starts early during embryonic brain

development, even before synapses are formed and DA exerts its

functions at critical periods during development (45). For example,

D2 receptors are involved in long term depression (LTD) and

synaptic pruning during development of the rat anterior cingulate

cortex (46). The hyperactive anterior cingulate cortex observed in

Drd2+/- rats is believed to drive anxiety-like behaviors and perhaps

also other behavioral symptoms (46, 47). Although different DRs

are expressed during embryonic development, their patterns of

expression are shifting during fetal and postnatal development,

reaching a stable level at adulthood (45). This delayed maturation of

DRs during development implies that the DA system also is subject

to multiple genetic and environmental factors. Altered DA

functions during neurogenesis have been linked to several

neuropsychiatric/neurodevelopmental disorders including autism,

schizophrenia and ADHD (45).
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Dopamine transporters

DAT is responsible for reuptake of DA from the extracellular

space back into presynaptic neurons or other cell types. Together

with the related monoamine transmitter transporters, such as the

norepinephrine transporter (NET) and serotonin transporter

(SERT), human DAT belongs to the family of neurotransmitter

sodium symporter family of transporters, which are part of a large

family of solute carrier 6 (SLC6) transporters (Figure 1). The human

DAT, NET and SERT proteins are encoded by SLC6A3, SLC6A2

and SLC6A4, respectively (48). Inhibition of DAT by stimulant

drugs like cocaine and amphetamines increases extracellular DA

levels. Many natural monoamines and synthetic drugs bind with

variable affinity to all these transporters, which can be predicted by

their strong amino acid sequence conservation (49).

While DAT is responsible for transporting DA across the

plasma membrane, another class of transporters, the vesicular

monoamine transporters (VMATs) are responsible for the

accumulation of DA and other monoamines (e.g. serotonin, NE

and histamine) in synaptic vesicles (50) (Figure 1). VMAT2

(encoded by SLC18A2 in humans) is the major vesicular

monoamine transporter for DA in the adult brain, while VMAT1

is mainly expressed during embryonic development and in

peripheral tissues. Mice lacking VMAT2 die soon after birth,

while heterozygotes develop normally, but have increased

sensitivity to amphetamine (51).
Dopamine metabolism

The enzymes monoamine oxidase (MAO) A and B and

catechol-O-methyltransferase (COMT) metabolize DA and

similar monoamine substrates. MAOs are found in the outer

membrane of mitochondria in most cell types (Figure 1). In

contrast, COMT acts both intracellularly and extracellularly, as

the membrane bound form of this enzyme is oriented with its C-

terminal catalytic domain facing the extracellular space (52).
Presynaptic regulation

TH is the key regulatory enzyme in DA biosynthesis and its

activity is under regulation by several mechanisms (28). Thus,

availability of its substrates (tyrosine (Tyr), tetrahydrobiopterin

(BH4) and oxygen), feedback inhibition by catecholamines,

active-site iron redox-state, serine (Ser)-phosphorylation, protein-

protein interactions, protein localization, turnover and expression

all regulate TH activity in the different neuronal compartments (53,

54). Tyr availability is governed by transport across the blood brain

barrier and is influenced by the level of other amino acids that

compete for the same transport mechanism (55). TH is also

characterized by extensive substrate inhibition of Tyr, which

could compromise its activity in conditions with significantly

elevated Tyr levels (56). The activity of TH is shut down via
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feedback inhibition from high affinity binding of catecholamines to

the active site iron, but the enzyme can be reactivated by

phosphorylation at Ser40 (57). The cAMP dependent protein

kinase (PKA) is a prominent TH-Ser40 kinase in the brain that is

further regulated by D2 autoreceptors (57). There are several

signaling pathways that regulate TH phosphorylation on Ser19,

31 and 40, locally in the striatum and likely in other brain regions

(57–59). Ser19 phosphorylation enables binding of TH to the 14-3-3

proteins, which regulate activity, secondary protein interactions and

multi-site phosphorylation of the enzyme (57, 60). Much less is

known about the regulation of other proteins in the DA synthesis

pathway. However, there are reports of phosphorylation-mediated

regulation of DDC, VMAT2 and DAT (61, 62).
Regulation of dopamine signaling

The cyclic nucleotide signaling pathways are central to DA

signaling. The activation or inhibition of cAMP signaling is affected

by receptor configurations and the expression and protein

regulation of downstream components. The adenylate cyclases

and guanylate cyclases that synthesize cyclic nucleotides and the

phosphodiesterases (PDEs) that degrade the cyclic nucleotide

second messengers, are important in shaping downstream DA

signaling. PDEs in particular are well explored drug targets (63,

64). The mammalian PDEs comprise a superfamily of 11 members,

originating from 21 different genes that give rise to > 100 different

isoforms (65). These are differentially expressed in different tissues

and have diverse substrate selectivity (towards cAMP and cGMP),

regulation, and cellular localization. Brain regional differences in

PDE isoform expression have been reported for several of the PDE

genes. For example, the dual specificity PDEs PDE1B1 and PDE10A

are highly expressed in striatal medium spiny neurons (MSN) (63,

64). Knock out mice of the Ca2+/calmodulin stimulated PDE1B

show increased locomotor activity and amphetamine sensitivity.

The opposite has been reported for inhibition of PDE10A (66). The

PDE10A has high affinity for cAMP and has been shown to be

important for maintaining baseline cAMP levels and PKA activity

in striatal MSN (67). The cGMP activated PDE2A has been found to

be mainly located in the axonal and terminal compartments of

pyramidal neurons in the cortex and hippocampus, striatal MSN,

and in the medial habenula. The terminal location was confirmed

by high immunoreactivity in the globus pallidus, substantia nigra

pars reticulata, and interpeduncular nucleus (68). The presence of

this PDE in the terminal compartment would contribute to nitric

oxide mediated inhibition of presynaptic activity as cGMP will

stimulate PDE2A and decrease the cAMP levels. For the

dopaminergic terminals, less is known about the key PDEs that

control PKA activation and thus TH Ser40 phosphorylation. So far,

only members of the PDE4 family have been put forward, based on

inhibitor studies (69). More research is needed to understand the

key players in DA signaling at the cellular detail of different

brain regions.

Together these examples illustrate some of the extensive

signaling diversity that can be generated even in a simple

signaling pathway such as cAMP signaling. There are many
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additional layers of complexity as illustrated in Figure 1.

The involvement of these signaling modules across multiple

pathways and biological functions also implies that it is virtually

impossible to define a single “DA-specific” biological system.
Genetic perspective

Animal models

Widely studied animal models of ADHD include spontaneously

hypertensive rats (SHR), DAT knockout (KO) mice and Coloboma

mice. The latter model has a mutation in the SNAP-25 gene,

affecting synaptic vesicle release and resulting in hyperactivity and

attention deficits (70). As SNAP-25 has multiple functions and

affects many transmitters and ion channels, the superficial

phenotypic resemblance of Coloboma mice to ADHD can hardly

be attributed only to the DA system. SHRs exhibit many metabolic

alterations, hypertension, hyperactivity, impulsivity, attention

deficits, and altered monoamine levels, but the exact origin of this

complex phenotype is still being debated. Several of the known

proteins and genes involved in DA signaling have been studied in

rodents, zebrafish and fruit fly models, which have partially

confirmed their role in ADHD-like behaviors. A recent review

listed 111 different genetically modified mouse strains implicating

103 different causal genes that show “exclusively ADHD-related

behaviors” (70). Many of these genes have also been implicated in

trans-synaptic signaling and forebrain development, including but

not limited to dopaminergic synapses. Genetic variants in

transcription factors (e.g. FOXP1, FOXP2 and MEFC2) are

among the most robustly associated genetic findings in ADHD,

autism and other neurodevelopmental disorders (see below) (71,

72). The forkhead box (fox) transcription factors FOXP1/FOXP2

regulate expression of many downstream proteins involved in

neurogenesis, synaptic development and functions and are highly

expressed in neurons involved in striatal dopaminergic signaling

(73). Loss of Foxp1 and Foxp2 results in impaired motor and social

behavior in mice, possibly by altering potassium channel functions

(Figure 1) (73). This example illustrates the complexity of the

dopamine system, how different animal models can be used to

explore various aspects of these functions and how they relate to

human genetic findings. However, it has also been shown that

different animal models with different genetic backgrounds can give

conflicting results (70), which demonstrate the complexity of

animal (and human) behavior and the inherent limitations of

animal models. For a summary of animal studies exploring

monoamine functions in ADHD models, see Viggiano et al. (74).

Although many genetic ADHD models with altered DA signaling

have been examined, there is probably not a single animal model

that can adequately recapitulate all clinically relevant aspects of this

complex human phenotype (70).

Animal models, particularly DAT, NET and SERT KO mice,

have also been used to elucidate the molecular targets of ADHD

medications. Mice lacking DAT were reported to show

hyperlocomotion and indifference to cocaine and amphetamine

(75), but self-administration of cocaine persisted in these DAT-KO
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mice, possibly indicating involvement of multiple targets (e.g. NET

and SERT) and compensatory mechanism in such animal models

(76). A recent study compared the behavioral effects of monoamine

transporter drugs on DAT-KO and NET-KO mice (77). The NET

blocker desipramine increased PFC DA and NE levels in DAT-KO

but not in NET-KO mice. Furthermore, desipramine or the

dopamine beta-hydroxylase (DBH) inhibitor nepicastat reduced

hyperactivity in DAT-KO mice. DBH catalyzes the conversion of

DA to NE so inhibition of DBH depletes the brain of NE, while

increasing levels of DA. Based on these observations, the researchers

concluded that increased PFC levels of DA rather than NE was the

common mechanism explaining the ‘paradoxical’ calming effects of

psychostimulants. However, these animal models also show

developmental compensatory effects, such as alterations in striatal

D2 receptors in DAT KO mice, that could contribute to the

phenotype (78).
Human studies

Although twin studies have shown that ADHD in children and

adults has a high heritability (79), it is considered a polygenic

disorder, and it has been difficult to find consistent genetic markers

for this trait (80). Since the 1980s linkage, candidate gene, genome

wide association (GWA), whole exome sequencing and whole

genome sequencing studies have been used to study the molecular

genetics of ADHD (80–82). As stimulants target DATs and other

monoamine transporters, like SERT, NET and VMAT2, the genes

encoding these transporters, as well as the five human DRs (DRD1-

5), have been intensively explored in candidate gene studies (83–

87). Genetic variants of DRD4 have been investigated particularly

intensively in connection with ADHD (88, 89). In 1993 it was

reported that the DRD4 gene has a hypervariable segment (VNTR)

encoding an intracellular domain of the DA receptor (90). The

frequency of the different 4R, 7R, and 2R alleles varies widely across

ethnic groups. For instance, the prevalence of the 7R allele was

reported to be <2% in Asian populations and ∼48% in native

Americans. It was suggested that these differences could be due to

positive selection (91), but later studies have not confirmed a

positive selection favoring the 7-repeat allele of VNTR in the

DRD4 gene. Instead, the increased population frequencies of the

DRD4 7R allele in African and European populations can be

explained by random genetic drift (92, 93). Although recent

meta-analyses and original studies in various populations show

possible associations with DRD4 variants in clinical subgroups of

ADHD, no unifying or generally accepted hypothesis for the role of

DRD4 in ADHD has been presented (94, 95).

Early candidate gene studies also suggested associations

between various genetic markers in the other DRDs, DAT1

(SLC6A3), COMT, and DBH, but later meta-analyses have given

mixed results (88, 89, 96–98). In a comprehensive meta-analysis,

Gizer et al. reported significant associations for DAT1, DRD4,

DRD5, 5HTT, HTR1B, and SNAP25, but also significant

heterogeneity for the associations between ADHD and DAT1,

DRD4, DRD5, DBH, ADRA2A, 5HTT, TPH2, MAOA, and

SNAP25 (88). Many subsequent studies have since investigated
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associations in clinical subgroups with different genetic markers in

some of the genes (94, 99). Compared to recent GWA studies (see

below), these studies were all based on small clinical samples

(hundreds of individuals) with variable reporting practices and

borderline significant results, compared to tens of thousands of

individuals, harmonized genotyping platforms and protocols and

stringent significance levels used in recent GWA studies. In the

absence of sufficiently powered and replicated studies, e.g., on the

DAT1 or DRD4 VNTRs, there is still some uncertainty regarding

the robustness of these findings and the role of individual genetic

variants in core DA related genes in ADHD.

Unlike candidate gene studies that have a limited focus, GWA

studies aim to investigate common genetic markers across the entire

genome. Due to the polygenic nature of ADHD, early GWA studies

did not provide any genome wide significant findings. However,

using a sample of >20 000 ADHD cases and >35 000 controls, the

first 12 genome wide significant hits were published in 2019 (71).

When this sample was expanded to >38 691 cases and 187 843

controls, 27 significantly associated signals were obtained, many of

which could be linked to credible functional variants and risk genes

(72). None of the previously nominated candidate genes, including

DA related genes or known drug targets for ADHD, appeared

among the top ranked risk genes (100). Among the core DA related

genes, DRD2 appeared promising, but not at the genome wide

significance level. Human DRD2 is found in a gene rich region on

chromosome 11. Some of the most studied DRD2 variants are found

in neighboring genes, such as the common variant rs1800497,

which is located downstream of DRD2 within the ankyrin repeat

of ANKK1 that encodes a Ser/Thr protein kinase. The rs1800497

variant correlates with expression levels of DRD2 and has been

associated with multiple psychiatric and somatic disorders and

common traits. The rs1800497 and many other common variants

in proximity to the DRD2 locus are significantly associated (p< 10-8

in GWA studies) with smoking (101), alcohol consumption (102),

risk tolerance (103), schizophrenia (104), depression (105), suicide

attempts (106), neuroticism (107), educational attainment (108), as

well as cross-disorder (103) psychiatric disorders (8 diagnoses)

(109). However, it is not clear whether these phenotypes are

mediated by the DRD2 protein or by other neighboring genes or

regulatory DNA sequences. In comparison to these well-established

associations, the connection of psychiatric disorders and behavioral

traits with other DR genes are much less consistent, although there

are some GWA studies showing that DRD1 is associated with

educational attainment (108) and DRD3 with neuroticism (110).

As the DRD2 receptor protein is expressed at higher levels than

other DRs in the human brain (Human Protein Atlas) and has

important autoregulatory functions (Figure 1), it is not surprising

that DRD2 variants also show the strongest associations with

human disease and behavioral traits. However, in comparison to

the cited associations with other traits, the largest GWA study of

ADHD did not show genome significant associations with DRD2

variants or any other core DA related genes (72).

The failure to replicate candidate gene studies, e.g. the DAT1 or

DRD4 VNTRs, in large GWA studies of ADHD could be due to the

poor tagging of such variants (i.e. not being in linkage
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disequilibrium) with SNPs typically included in GWAS.

Other explanations could be that the patient and control samples

included in the early reports were different from more recent and

larger GWA studies or due to publication bias where some early

positive studies have dominated the literature. Furthermore, the

lack of genome wide significant associations (p <10-8) with core

DA-related genes could still be a statistical power issue, as the

ADHD sample sizes are still relatively small compared to those used

for some other complex traits. Although modest associations were

found for the core DA genes, pathway analyses showed enrichment

in dopaminergic gene transcripts (72). Overall, it seems clear that

genetic alterations in DA-related genes are found across several

behavioral traits but that ADHD does not currently stand out as one

disease uniquely or predominantly associated with such

genetic variants.

Early candidate studies in ADHD and other traits often

prioritized coding variants with functional effects. In contrast,

GWA studies typically explore common, noncoding variants with

unclear functional effects of their own. A study comparing rare and

common variants in early and late diagnosed ADHD found that

childhood ADHD had stronger genetic overlap with hyperactivity

and autism compared with late-diagnosed ADHD and the highest

burden of rare protein-truncating variants in evolutionarily

constrained genes (111). As more whole exome sequencing and

whole genome sequencing data become available, we expect that a

clearer picture of phenotypic correlates of different human genes

and variants will emerge across the full spectrum of common and

rare genetic variants.

In addition to analyzing single genetic variants, it is possible to

collapse multiple variants into a single gene or analyze many related

genetic variants and genes together, e.g. multiple genes in the

dopaminergic pathway, using MAGMA or similar software tools

(112, 113). In a review from 2003 it was concluded that “SLC6A3

and DRD4 genes in ADHD appears to be one of the most replicated

in psychiatric genetics and strongly suggests the involvement of the

brain DA system in the pathogenesis of ADHD” (114). However, as

detailed above, not all subsequent data have supported this

conclusion. Such early gene set analyses were limited by small

sample sizes and the low number of genetic variants available for

testing. With access to GWA data it has been possible to perform

gene set and pathway analyses more systematically and at a

larger scale.

In 2022 Cabana-Domıńguez et al. published a gene set analysis

using publicly available GWAS data and manual curation to explore

combined genetic signals from DA and serotonin (DA core with 12

genes, and SERT core with 23 genes) (115). The analysis contained

the wel l -known dopaminergic or serotonergic genes

(neurotransmitter receptors: DRD1-5, 5-hydroxytryptamine

receptor (HTR)1A-B, HTR1D- F, HTR2A-C, HTR3A-E, HTR4,

HTR5A, HTR6, HTR7; transporters: DAT1/SLC6A3, 5HTT/

SLC6A4 (serotonin transporter gene); and related enzymes DDC,

TH, tryptophan hydroxylase (TPH)1, TPH2, DBH, COMT, MAOA,

MAOB). Using the MAGMA software for gene-based analyses, no

significant multiple testing corrected association was observed with

either the DA or SERT gene sets and ADHD, but the SERT genes

were weakly nominally associated with ADHD. However, when an
Frontiers in Psychiatry 08
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Ontology and KEGG pathway databases (as updated in 2016) was

tested, they found significant associations for ADHD and autism

spectrum disorder (115). Notably, a major caveat of such studies is

that few of the included genes or genetic variants are uniquely

associated with dopaminergic neurotransmission. For example, the

genes and proteins involved in DA synthesis, storage, release, and

degradat ion are a lso involved in synthes is of other

neurotransmitters such as NE, serotonin, and nitric oxide. As

detailed above, even the DA receptors are known to interact with

multiple transmitters. Cabana-Domıńguez et al. noted that 20% of

the genes in the DA set were also present in the SERT set and 32%

the other way round, but this estimate may be too low (115).
Gene-environment interactions

Low birth weight, preterm birth and perinatal asphyxia are

among the best documented environmental risk factors of ADHD

(116, 117). Fetal hypoxia can result in neuronal death, white matter

damage and reduce the growth of neural processes (118). Perinatal

hypoxia and exposure to neurotoxins such as 6-hydroxydopamine

and MPTP (1-methyl-4-phenyl-1,2,3,5-tetrahydropyridine) have

also been shown to reduce brain DA syntheses in animal models

(119, 120). As human TH is also very sensitive to reduced oxygen

tension, it is likely that DA synthesis is also reduced in the human

brain under hypoxic conditions (54).

The generation and maintenance of dopaminergic neurons also

requires a precise transcriptional cascade at specific time points

during brain development. For instance, Fox1a, Foxa2 and Nurr

promote a dopaminergic phenotype in the mouse brain (121).

However, most of these transcription factors are also expressed in

other cell types and transmitter systems. The DA neuron specifying

transcription factors could be promising risk genes for psychiatric

disorders that should be more systematically explored. As many risk

genes for neuropsychiatric disorders are mainly expressed during

embryonic development, it is possible that any putative altered

dopaminergic functions in ADHD patients could be present before

birth, but not necessarily in children or adults. Furthermore, it

might be possible that the causative genes are not among core

dopaminergic genes, but rather in other developmental or

regulatory factors.

As mentioned above, alterations in the DA system can be

secondary to other genetic or environmental changes in

transcr ip t ion fac tors or other prote ins invo lved in

neurodevelopment. Linkage studies in large multigenerational

families in Colombia led to the discovery of the latrophilin 3 gene

LPHN3 (ADGRL3) as a risk gene in ADHD (122, 123). Latrophilins

1-3 are postsynaptic adhesion G protein-coupled receptors that

have been implicated in brain development and synaptic

maturation (124) and linked to developmental behavior

abnormalities in rodents and humans (125). Animal studies have

shown that Latrophilin 1 or 3 haploinsuffiency (ADGRL1 or

ADGRL3 knockouts) lead to developmental abnormalities and

altered dopamine signaling (126). Similarly, the Wnt/mTOR

(wingless-related integration site/mammalian target of rapamycin)
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pathway has been implicated in ADHD based on genetic and

pharmacological evidence (127). The Wnt-signaling pathway is

involved in cellular proliferation and differentiation and mTOR

has been implicated in neurodevelopment, dopamine signaling and

synaptic plasticity (128). Interestingly, exposure to manganese in

neonatal rats results in attention deficits, dysregulation of mTOR

signaling and downregulation of DA synthesis in brain prefrontal

cortex (129). These examples show that alterations in brain DA

functions may be due to a primary genetic predisposition,

environmental exposures such as pharmacological agents, or

specific interactions between genes and the environment (130).

Concluding remarks: Many different animal models, including

some models with altered DA function, show phenotypic

resemblance to ADHD, including hyperactivity and inattention.

However, it is unclear whether these behaviors are specific and

how they can be used to trace the biological origins of human

ADHD. Although the DA-system is indirectly implicated in several

of the most robustly associated ADHD risk genes, associations with

the core set of genes involved in DA synthesis, DA receptors or

transporters are less consistent. There is also a need for larger and

more diverse human samples, as well as for integrative approaches

that combine genetic and environmental data in order to provide a

more comprehensive perspective on ADHD neurobiology.
Neurometabolic perspective

Recent genetic advances have revealed risk genes for hundreds

of different diseases and traits, including genetic causes of recessive

lethality (131). Nearly 5000 human genes are known to exist as

homozygous complete knockouts in the human population (131).

Phenotypic characterization of such genetic variation constitutes a

rich source of information that is highly relevant for studying

normal gene function, rare genetic syndromes, as well as

common, polygenic and complex human disorders, such as

ADHD. Thus, rare monogenic syndromes may reveal novel

biological functions of the affected gene(s) and also shed light on

the role of these genes in common complex disorders (132).

Disrupted brain metabolism as a potential causative element to

the ADHD phenotype is worth exploring from this perspective.

Inborn errors of metabolism constitute a subgroup of “genetic”

diseases that typically affect enzymes, transmembrane signaling

proteins or co-factor synthesis relevant to the function of key

enzymes (133). The International Classification of Inherited

Metabolic Disorders (134) currently recognizes over 1,450

conditions, hundreds of which belong to the heterogeneous and

expanding group of inherited neurometabolic disorders (NMDs;//

www.omim.org/) that affect metabolic processes relevant to brain

function. The immediate molecular consequence of such enzyme

deficiencies – whether they are present within the CNS or occur

peripherally – may present as a decrease/absence of critical

metabolites and/or the accumulation of toxic intermediates. Such

metabolic defects typically interfere with cellular processes involved

in neuronal signaling or produce tissue damage, potentially

affecting multiple organs. Human Mendelian “model” diseases

have been characterized for virtually every known gene and
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protein involved in monoamine functions. Some of these genes

and conditions are briefly reviewed here. As for animal models,

interpretation of the phenotypic consequences of genetic variants,

including complete loss of function (LOF) variants, must consider

early (prenatal) developmental effects, as well as redundant,

overlapping and compensatory mechanisms of different genes.

Human variants of DAT1 SLC6A3 are of particular interest in

the context of ADHD. Infants with early onset SLC6A3-related DA

transporter deficiency syndrome typically manifest nonspecific

findings with irritability, feeding difficulties and hypotonia and

delayed motor development, but not typical ADHD symptoms. In

contrast, these children typically show a “neurological” type of

hyperkinetic movement disorder with chorea, dystonia, ballismus

and orolingual dyskinesia and later also show typical neurological

symptoms (135).

Similar observations have been made for children and adults

with severe defects in DA synthesis. LOF mutations in DDC - the

gene encoding the enzyme immediately responsible for DA

synthesis - have been associated with severe neurodevelopmental

delay, hypotonia, oculogyric crises, and a complex movement

disorder with autonomic features, but again not typical ADHD

symptoms (132, 136). Since DDC has a broad range of substrates

and is involved in the synthesis of other monoamines (histamine,

serotonin, NE), such symptoms are not necessarily related to altered

dopaminergic functions and could also be due to early prenatal

neurodevelopmental alterations. As the enzyme TH is a specific

marker of catecholaminergic neurons and the rate limiting enzyme

in DA synthesis, it has also been explored in the context of ADHD.

Central TH deficiency, resulting in mild-to-severe DA deficiency,

has been associated primarily with movement symptoms - or in

severe cases, progressive encephalopathy with mental retardation –

but apparently no reports of ADHD symptoms (5). For

comparison, as Parkinson’s disease is characterized by very low

levels and dysregulated TH, it has been termed a TH deficiency

syndrome (28). LOF mutations of DBH typically present with very

low levels of NE and severe orthostatic hypotension and eyelid

ptosis, but normal intellectual development and no record of

ADHD symptoms (137). Animal studies show that total lack of

DA or NE is incompatible with life, but less severe missense variants

in DBH may be beneficial as they are protective against age related

arterial hypertension (138).

Phenylalanine, tyrosine, and tryptophan are aromatic amino

acid (AAA) precursors to the production of monoamine

neurotransmitters such as DA, NE, adrenaline, serotonin, and

melatonin. Deficiencies in the enzymes governing the conversion

and breakdown of AAA precursors result in various metabolic

disorders categorized as aminoacidopathies. Associations have been

observed between aminoacidopathies, which purportedly result in

low prefrontal DA levels, and neuropsychiatric disorders, including

ADHD (139). Specifically, tyrosinemia type 1 (TYRSN1) and

phenylketonuria (PKU) have been linked to core symptoms of

ADHD, mainly presenting as impaired executive functioning in

affected patients (140, 141). Shared pathophysiological mechanisms

have been suggested (139, 140), partly supported by the

improvement of cognitive symptoms in response to amphetamine

treatment (142). However, in treated TYRSN1 there is debate over
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whether elevated tyrosine levels lead to increased or attenuated DA

synthesis (140, 143). Furthermore, not all patients respond

positively to stimulants, and the general response in healthy

adults to these drugs is rather similar (see above).

The synthesis of DA and other transmitter molecules also

depends on an adequate supply of enzyme cofactors, i.e.

tetrahydrobiopterin (BH4) for TH, pyridoxal phosphate (vitamin

B6) for DDC and ascorbate (vitamin C) for DBH (132). A lack of

tetrahydrobiopterin is the most common and best-established

genetic cause of DA deficiency in humans. LOF mutations in

genes encoding the BH4 synthetic enzymes are found in the

autosomal recessive neurological disorder DOPA responsive

dystonia (Segawa syndrome) (144). This condition is clinically

similar to TH deficiency and characterized by low levels of

homovanillic acid and 5-hydroxyindoleacetic acid in CSF,

microcephaly, early onset neurological symptoms, but not typical

ADHD or other psychiatric symptoms or disorders (145). Although

BH4 is also an essential cofactor for synthesis of serotonin, nitric

oxide and other metabolites, the clinical picture is dominated by

hyperphenylalaninemia and DA deficiency (145). As the cofactor

for DDC (pyridoxal phosphate, a derivative of pyridoxamine,

vitamin B6) is needed for hundreds of different enzymes and

metabolic pathways (146), vitamin B6 deficiency has multiple

manifestations from different organ systems and has been

associated with increased risk of diabetes, heart disease, and

cancer (147). Although again, ADHD is not among the defining

symptoms in these conditions of DA deficiency. Similarly, severe

ascorbate deficiency interferes with NE synthesis via DBH and

causes scurvy, which is a syndrome primarily affecting connective

tissue but apparently with less consequences for brain

function (148).

Concluding remarks: Hundreds of patients with different

monogenic diseases that lead to abnormally low DA levels in the

brain have been characterized. The clinical features reported for

these patients are dominated by motor neurological symptoms, not

by ADHD or other psychiatric disorders. Although these

observations do not directly implicate low DA levels as the

defining feature in ADHD, partially overlapping cognitive

deficiencies with aminoacidopathies and related conditions

suggest that aspects of disrupted monoaminergic brain

metabolism could contribute to the broader clinical picture

of ADHD.
Neurophysiological perspective

Positron emission tomography (PET) and single photon

emission computerized tomography (SPECT) can measure

neuronal activity indirectly through measurements of metabolism,

blood flow, and ligand–receptor interactions. Studies using these

methods are therefore worthwhile examining in more detail as they

can visualize neurotransmission in vivo and provide relatively

strong support for/against the DA hypothesis.

One of the earliest ADHD PET studies suggesting decreased

extracellular DA levels was a 1999 preliminary study with children

by Ernst and colleagues (149). Extracellular DA was decreased in
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the midbrain but not the striatum or frontal regions. Despite the

high citation count, the authors acknowledged that the main finding

of decreased extracellular DA in the right substantia nigra/ventral

tegmental area compared to healthy controls did not survive

Bonferroni correction. In theory, a higher [18F]DOPA uptake

reflects elevated presynaptic AADC activity (i.e. increased DA

synthesis). The authors reasoned that increased synthesis occurs

in response to a disruption of DA neurotransmission leading to

abnormally low extracellular levels, as has been shown for the effect

of L-DOPA on the dorsal striatum in Parkinson’s disease (150, 151).

Presynaptic DA autoreceptor stimulation is thought to play a role in

this inverse effect on synthesis/tracer influx (152). The finding of

decreased extracellular DA in ADHD has since been replicated

through increased prefrontal [18F]DOPA influx (153) and increased

striatal DAT binding (154–157).

There have, however, been several PET/SPECT studies over the

years which have reported findings which either fail to support or

are contradictory to the hypo-dopaminergic hypothesis. Studies

have found no differences in endogenous DA between ADHD and

healthy controls within striatal (158–161) and midbrain regions

(160). Of particular interest, a 1998 study be Ernst et al. (162)

reported lower [18F]DOPA uptake in ADHD as opposed to the

nonsignificant higher uptake in their 1999 study, by extension

implying increased extracellular DA in prefrontal regions.

Similarly, increased extracellular DA (i.e. lower [18F]DOPA

influx/DAT binding/receptor binding) has been reported in the

striatum (153, 163, 164) and midbrain (153, 158, 165) of ADHD

patients relative to controls. This collection of studies would

therefore suggest a generalized hyperdopaminergic state in

ADHD. For a recent comprehensive meta-analysis of the

inconsistent PET and SPECT findings for adult and adolescent

ADHD see (166). It may be possible to reconcile the hyper- vs.

hypo-dopaminergic findings by considering dynamic versus

generalized DA activity. For example, in a task-based study,

Badgaiyan and colleagues reported decreased tonic but enhanced

phasic release of DA in the right caudate of people with

ADHD (167).

In addition to contradictory experimental findings, result

interpretations also differ between studies. For example, some

authors interpret lower DA synthesis and lower DAT density as

evidence of reduced DA signaling and therefore a hypo-functioning

dopaminergic system (165), as opposed to the interpretation by

Ernst and colleagues in 1999. This discrepancy between

interpretations is somewhat unsurprising as translating DA

metabolism findings into functional changes in dopaminergic

networks can be difficult, given that DA can have both facilitatory

and inhibitory effects depending on the dominant local DA receptor

population. Nevertheless, the opposing directions for changes in

PET/SPECT measures demonstrate incongruent links between

ADHD and DA. Possible reasons for these discrepancies include

small sample sizes, level of psychostimulant exposure, focus on

several kinds of existing ligands, and a questionable validity of the

diagnosis through a lack of biological diagnostic criteria (168). The

review by Yamamoto and Inada (168) suggests that whether

alterations of monoamine function may be involved in the

pathophysiological mechanism of adult ADHD remains to be
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clarified. Indeed, other recent reviews (169) have concluded that

there seems to be a greater consensus on other potential disease

mechanisms e.g. prefrontal hypo-connectivity and prefrontal

glucose hypo-metabolism.
A role for neurovascular coupling?

As mentioned, all clinically approved stimulant drugs for

ADHD either directly or indirectly affect multiple transmitter

systems in addition to DA, most notably NE and serotonin

neurotransmission. Ultrastructural investigation of DA and NE

innervation of cortical structures has revealed a similar

morphology of their terminals. Of note, some clinically effective

non-stimulant drugs specifically target NE neurotransmission,

apparently without directly affecting DA transmission (170). NE

is an important modulator of local blood flow in the brain. The

clinical efficacy of these medications may imply that the effect of

some ADHD medications is not mediated directly on neurons, but

rather indirectly via effects on blood flow. However, as clinical

studies indicate that stimulant drugs that also block the dopamine

transporter are more effective than non-stimulant drugs in ADHD,

an involvement of DA in their mode of action still seems plausible

(13). Nevertheless, such a symptomatic effect of dopaminergic

drugs doesn’t necessarily imply that there is an a priori defect in

the dopamine system.

Neurovascular perfusion is tightly regulated to accommodate

changes in neuronal activity and metabolic demand. This

neurovascular coupling occurs at the level of the microvasculature

– the neurovascular unit – and at larger arteries of the vascular tree.

The larger blood vessels are regulated by peripheral innervation,

with NE post-ganglionic orthosympathetic fibers and cholinergic

parasympathetic fibers. Within the brain parenchyma, precapillary

arterioles and capillaries are innervated by NE fibers originating

from the locus coeruleus (LC). The brain microvascular

compartment is almost completely covered by end-feet

projections from nearby astrocytes, leaving a space between the

pericyte or smooth muscle layer and the astrocyte end-feet. This

space contains the basal matrix of the vasculature and circulating

cerebrospinal fluid and is part of the glymphatic system. Most NE

varicose release sites target the microvasculature via the astrocyte

end-feet. Astrocytes have a rich expression of adrenergic receptors,

but little is known about expression of specific receptor subtypes.

The underlying signaling mechanisms of neurovascular

coupling are still under discussion and the modulatory effect of

NE on the functional hyperemia could be context dependent and

differ between brain regions. Thus, both vasoconstriction and

vasorelaxation have been reported for LC derived NE (171, 172)

and a suggested role of NE has been to optimize local blood flow

allowing for a focused neurovascular coupling response (171). Very

little is known about the neurovascular unit, alterations in

neurovascular coupling, and glymphatic flow in ADHD. However,

some very recent studies suggest that there could be differences in

neurovascular coupling (173) and the glymphatic system (174)

in ADHD.
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Concluding remarks: Recent PET/SPECT studies do not show

predominant evidence supporting a hypo-dopaminergic state in

ADHD, but rather conflicting results that imply both increased and

decreased extracellular DA levels within frontostriatal regions. The

interpretation of PET/SPECT findings are inherently difficult given

the level of complexity in dopamine metabolism and signaling as

discussed previously, which these modalities struggle to capture

with a single ligand-based measure. Functional neuroimaging

should be used to further investigate the promising role of

neurovascular coupling in ADHD.
Neuropsychological perspective

To assess the traditional DA theory of ADHD, it is helpful to

compare ADHD findings to another neuropsychological condition

with a robust and reliable link to deficient DA levels – Parkinson’s

disease (PD). Although seemingly on opposite ends of the aging

spectrum as a neurodevelopment and neurodegenerative condition,

both ADHD and PD are heterogeneous disorders which involve

cortico-basal ganglia disturbances that impact the control of motor

and cognitive behavior. The root cause of PD symptoms is the

degeneration of dopaminergic neurons in the substantia nigra pars

compacta (SNpc) which project to the dorsal striatum (Figure 1). As

such, PD can serve as a useful neurophysiological-behavioral model

to reveal the effects of insufficient DA levels in the brain.

The pathological process that underlies PD relentlessly

progresses over several years and through specific degenerative

stages to the full-blown clinical syndrome (175). PD is classified

as a motor disorder and the cardinal symptoms include a pill-rolling

tremor at rest, muscular rigidity, bradykinesia and often gait

disturbance. The default state of the motor system is analogous to

driving with the brakes on. The braking occurs via GABAergic

input from the basal ganglia (BG) onto thalamocortical neurons

(176). Movement initiation is therefore an active process requiring a

phasic pause in the tonic inhibition of the thalamus. This is

achieved by recruiting the ‘direct’ facilitatory pathway connecting

primarily cortical motor areas (i.e. primary motor cortex,

supplementary motor area, premotor cortex) straight to the BG

output nuclei via striatal MSN expressing predominantly D1

receptors. Conversely, recruiting the inhibitory ‘indirect’ pathway

originating from striatal neurons expressing predominantly D2

receptors leads to a net increase in thalamic inhibition, and

subsequently a decrease in thalamocortical drive. The balance of

neuronal output from the BG pathways is usually maintained

through nigrostriatal dopaminergic projections. DA binding to

DRD1 facilitates the direct pathway, whereas DA binding at

DRD2 suppresses the indirect pathway (177, 178). The presence

of DA therefore modulates movement control by reinforcing any

cortically initiated activation of BG-thalamocortical networks (179).

Consequently, decreased nigrostriatal DA results in maladaptive

modulation of thalamocortical neurons and a sustained thalamic

inhibition (180). This sustained inhibition ultimately presents as a

hypo-kinetic state and the paucity of movement common across

most cardinal symptoms of PD.
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The hypo-active state in PD highlights the apparent

contradiction in ADHD that low levels of DA cause motor

hyperactivity. However, it may be worth first considering pure

motor control in ADHD separately from the motor behaviors

resulting from impaired inhibitory control. One could argue that

examining pure motor control reveals the influence of nigrostriatal

connections in relative isolation. Impaired motor control presents

in around 30-50% of children with ADHD (181) but appears to

improve with age (182, 183). While reduced frontostriatal activity

has repeatedly been found in ADHD including during motor

control tasks (184, 185), the source of this dysfunction seems to

relate specifically to inhibitory control rather than motor control

per se (184). Theories of hypo-functioning nigrostriatal connections

have been proposed for ADHD (186) which would be expected to

produce PD-type motor behaviors. Although some decreases in

gross and simple fine motor speed have been reported for

individuals with ADHD (183), a similar number of studies have

found no differences in fine motor speed, but rather increased

variability and reduced movement accuracy (187, 188). Of note,

variability and accuracy deficits match those consistently and

reliably linked to cerebellar function. Reduced cerebellar volume

and activity (189, 190) as well as altered cerebellar neurochemistry

(191) have been reported in ADHD. Furthermore, Pitcher et al.

(192) found the fine motor control deficits in children with ADHD

showed a strong correlation with those in children with dyspraxia.

Cerebellar dysfunction could be impacting frontostriatal activity

through cortico-cerebellar-thalamo-cortical pathways, specifically

the interaction with BG circuitry via dentate nucleus output to the

striatum (193). The involvement of dysfunctional cerebellar-

prefrontal circuitry is not a new idea [e.g (189)]. Although it is

worth noting, the consensus is shifting to acknowledge the

cerebellum’s role also in non-motor functions. Through cortico-

cerebellar-thalamo-prefrontal cortex circuits the cerebellum may

play a role in cognitive functions including directed attention (194).

Overall, the basic problems of motor control present in ADHD

seem very distinct from the slowness of movement caused by

deficient nigrostriatal DA in PD and may be due to discrete

underlying neural mechanisms.

Abnormal dopaminergic mesocorticolimbic (MCL) pathways

are implicated in impaired inhibitory control for both PD (195–

197) and ADHD (186, 198, 199). Unlike ADHD, difficulty

inhibiting inappropriate motor activity is not a diagnostic

criterion for PD but has been found experimentally. It is worth

acknowledging that some researchers argue that deficits of

inhibitory function in ADHD reflect impairments in basic

information processing rather than impulse control (200–202).

Nevertheless, both conditions can exhibit impulsive behavior, but

again, the underlying mechanisms seem distinct. In early PD, DA

concentrations are decreased within the striatum, yet paradoxically

DA concentration is increased in the PFC (203). This

counterintuitive increase in PFC DA could reflect compensation

within the MCL network (204, 205), or/and it could be resulting

from reduced striatal DA levels, given the well-studied inverse

relationship between MCL and nigrostriatal dopaminergic
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systems (195, 206–208). Furthermore, the hyperdopaminergic

state of the MCL system is believed to be exacerbated by DA

medication in some people - especially by DA agonists targeting

D2/D3 receptors (209, 210) and lead to full-blown impulse control

disorders. Conversely, motor impulsivity/hyperactivity in ADHD is

linked to a hypo-dopaminergic (211) and hypo-functional state [for

meta-analyses see (212–214)] in the PFC. The hyper- versus hypo-

dopaminergic findings between conditions may seem incongruous

but could fit with the inverted-U relationship (215) between PFC

functions like inhibitory control and DA levels (216, 217) - for a

review see Brennan and Arnsten (218). According to this

framework, PFC DA concentrations above or below optimal

levels will lead to deficits in function. However, the inverted-U is

a simplified framework and the relationship between frontostriatal

DA and functional performance is of course more complex and

includes several contributing factors. Of most relevance to this

review, one of the factors thought to influence a person’s position

on the inverted-U curve for inhibitory control is DA-related genes

(216, 217, 219). Genetic variability will likely have the greatest

influence on behavior when DA neurotransmission deviates from

close-to-optimal levels (i.e., DA dysregulation). For example, at

either extreme end of the inverted-U relationship.

Concluding remarks: Comparing cognitive-motor behaviours

resulting from known DA deficiency in PD to those in ADHD

reveals several key distinctions, including discrete underlying

neural mechanisms.
Conclusions and future directions

As described in this review, the DA hypothesis of ADHD has

been around for several decades and has been formulated in

different ways . The current narrat ive review took a

multidisciplinary approach to consider the neuropsychiatric

condition in the context of other single gene disorders, metabolic

disorders, and neurological disorders with established dysfunction

of the dopaminergic system. In this way, the disorders served as

models to assess against the different aspects of the DA hypothesis

for ADHD. Table 1 summarizes the main arguments for and against

the DA hypothesis from each perspective. Examining the DA

hypothesis in this way has produced the following conclusions:
1. Core DA-related genes are not among the major risk genes

for ADHD in GWA studies. Compared to GWA studies,

candidate gene studies focusing on DA-related gene

variants have suffered from low power and inconsistent

results. However, an enrichment of ADHD risk variants has

been found in genes expressed in excitatory and inhibitory

neurons and in midbrain dopaminergic neurons.

2. Humans with rare metabolic diseases with documented DA

deficiency have motor neurological symptoms but do not

show typical symptoms of ADHD. However, some

metabolic diseases that indirectly interfere with DA

metabolism show ADHD-like symptoms.
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3. There is no consistent neurophysiological support for a lack

of frontostriatal DA in ADHD. Evidence exists for a

decrease, increase, and no change in extracellular DA in

ADHD relative to healthy controls.

4. Parkinson’s disease – as a neurological disorder with well-

documented degeneration of DA tracts and a DA deficit –

causes a subset of symptoms which overlap somewhat

with ADHD. However, the neural mechanisms

underlying these behaviors are clearly distinct between

the two conditions.
The updated overview therefore points to the fact that there is

ample evidence for some involvement of DA but limited evidence

that reduced levels of the DA neurotransmitter per se is a defining

feature of ADHD. Based on the variable findings from clinical,

genetic, imaging and neurophysiological studies, it is possible that

the multiple underlying pathophysiological mechanisms in ADHD

are differently involved and that the putative alterations in DA
tiers in Psychiatry 13
functions are only present in a subset of ADHD patients.

Identification of such alterations may be essential to tailor

individualized treatments. Although early pharmacogenetic studies

on monoaminergic candidate genes have given mixed results (220),

this field is rapidly evolving, and pharmacogenomics may be used to

optimize treatment selection (i.e. genome guided “precision

medicine”) (221).

It appears that important aspects for future work includes

dopamine’s role during perinatal brain development and how DA

interacts with other monoamines (e.g. NE) and/or neurotransmitters

[e.g. GABA (222)]. Considering the close interactions between DA,

NE and serotonin neurotransmission, it is difficult to study these

systems in isolation. Impaired DA synthesis will always be

accompanied by decreased NE production. Pharmacological or

genetic blocking of DA related enzymes or receptors results in

secondary and compensatory alterations in receptor densities and

other signaling components in these and other transmitter systems.

Although not the focus of this review, there is also emerging evidence
TABLE 1 A brief summary of arguments for and against the dopamine hypothesis for ADHD as detailed from each perspective.

Perspective Arguments in favor of low dopamine levels as
key in ADHD

Arguments against low dopamine levels as key
in ADHD

Genetic:
Animal models

Many animal models with alterations in DA related genes show
some ADHD-like behaviors, including hyperactivity and
inattention (70, 74).

The phenotypic resemblance of Coloboma mice, SHRs or many
other animal models to ADHD cannot be solely attributed to the
DA system (17, 70).

Genetic:
Human molecular
genetic studies

Early candidate gene studies for ADHD found altered frequencies
of polymorphisms in key genes involved in DA signaling, in
particular DRD4 and DAT1 (SLC6A3) (83–89).

Larger replication studies on variants from early candidate gene
studies have given inconsistent results (96–98).
Recently, large GWA studies have revealed many genes and
mechanisms in ADHD, but “core” DA genes are not among the top
genes (71, 72, 100).

Neurometabolic:
Rare Mendelian human
diseases with impaired
synthesis of brain DA

People with low DA levels in the brain can present with a subset
of features that overlap with broader ADHD symptoms, like
motor dysfunction and irritability (135, 139).

People with low DA levels exhibit primarily motor neurological
symptoms, not cardinal ADHD symptoms (5, 28, 132, 136, 137).

Other metabolic disorders:
Aminoacidopathies PKU
and TYRSN1

There is an increased prevalence of ADHD in patients with
metabolic disorders that affect DA production (139–141).

Such neurometabolic disorders can affect multiple biological
pathways, not only DA signaling (145–147).
Some conditions may manifest without prominent alterations to
brain function (148).

Neurophysiological:
PET and SPECT studies in
people with and
without ADHD

People with ADHD have higher midbrain and frontal [18F]
DOPA intake and increased striatal DAT binding, indicating
lower extracellular DA tone (149, 153–157).

People with ADHD have lower [18F]DOPA intake, decreased DAT
binding and decreased D2/3 receptor binding, implying increased
extracellular DA tone (153, 158, 162–165).
Several studies have found no differences in endogenous DA
between ADHD and healthy controls within striatal and midbrain
regions, failing to replicate early findings (158–161).

Neuropsychological:
Using Parkinson’s disease as a
model for dysfunctional
dopaminergic connections

People with both ADHD and PD exhibit problems with impulse
control and changes to motor control (175, 176, 181–183).

Motor deficits are distinct between the conditions with a hypo-
active state in PD versus a hyper-active state in ADHD.
Opposing mechanisms underly impaired impulse control in ADHD
vs PD as a hypo- versus hyper-dopaminergic state in the PFC,
respectively (203, 209–214, 218).

Additional evidence discussed

Pharmacology of stimulant
drugs used to treat ADHD

Amphetamines and similar stimulants drugs block monoamine
transporters and transiently increase synaptic levels of DA (and
NE).
Amphetamine treatment may result in cognitive improvements
in certain patients with known metabolic syndromes affecting DA
synthesis (14, 139–141).

Simulants also affect other neurotransmitter systems.
Non-stimulant drugs primarily affecting NE transmission are also
effective in ADHD (13).
Stimulants have similar effects in most people, irrespective of
whether they have ADHD or not (16, 17).
For more detailed arguments see the main text.
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that ADHD is associated with white matter disruptions to multiple

cortical pathways (223).

It is perhaps unsurprising that ADHD as an umbrella term

encompassing a range of complex behavioral changes should also be

underpinned by intricate neurophysiological changes unable to be

adequately explained by any single neurotransmitter. Indeed, the

2021 international consensus statement from the World Federation

of ADHD who curated findings with a strong evidence base to

generate 208 empirically supported statements about ADHD, did

not specifically single-out DA as a key neurotransmitter for the

condition (224). Part of their conclusion was that: “There are

multiple genetic and environmental risk factors that accumulate

in various combinations to cause ADHD. These risk factors lead to

subtle changes in multiple brain networks and in the cognitive,

motivational, and emotional processes they control.”

The extent of conflicting findings in human neuroimaging

studies is somewhat surprising. There are clearly advantages to

being able to probe dopaminergic function in vivo with PET and

SPECT. However, there are also practical and theoretical limitations

to these neuroimaging techniques that should be considered when

interpreting the body of literature. Practically, there are always

potential problems with artifacts during attenuation correction

which can cause inaccurate estimations of radiotracer uptake and/

or incorrect positioning of uptake sites (225). Theoretically, as

mentioned, the interpretation of PET/SPECT findings are

inherently difficult given the level of complexity in dopamine

metabolism alluded to in this review, which is impossible to

capture with a single radiotracer-based measure. Translating DA

metabolism findings into functional changes in dopaminergic

networks is challenging, given that DA can have both facilitatory

and inhibitory effects depending on the dominant local DA receptor

population. Therefore, using PET/SPECT as one piece of a

multidisciplinary puzzle might be required to tease apart the

variability in neuroimaging findings and reveal a consistent

dopaminergic state in ADHD.
Emerging perspectives

The aim of the current review was to assess ADHD from a

multidisciplinary perspective. However, we are of course unable to

consider the condition from all perspectives, and our review of the

literature has also been limited to established fields with larger

bodies of research into ADHD. As multi-omics, imaging and

computational studies are making fast progress, there are other

emerging avenues of investigation which will contribute to the

developing picture of dopaminergic (dys)function in ADHD as

presented in this review. For example, neurocomputational

modeling of impaired presynaptic DA regulation (226) allows the

simulation of decreased tonic and simultaneously increased phasic
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frontostriatal dopaminergic activity. Such methods could perhaps

help to reconcile the hyper- vs. hypo-dopaminergic findings from

neuroimaging studies. As briefly discussed, the role of

neurovascular coupling in ADHD also appears to be an emerging

idea that warrants further investigation utilizing the accelerating

capabilities of functional neuroimaging methods. Increasing

evidence also supports a role for the gut microbiome in human

health and behavior, including ADHD (227). Therefore, the gut

microbiome will be an important part of future multi-omics

investigations. Overall, the diversity of promising research areas

highlights the potential for integrative explorations into ADHD

from an even more comprehensive multidisciplinary perspective,

which will most likely be needed to truly understand the complex

neurobiology of this condition.
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