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Introduction: The number of insular gyri is elevated in patients with schizophrenia.

Thus, it has potential as a marker of early neurodevelopmental abnormalities.

However, currently it remains unclear whether patients with other neuropsychiatric

disorders, such as affective disorders, also have this gross brain anatomical feature.

Materials and methods: The macroscopic features of the insular cortex in 26

patients with bipolar disorder (BD), 56 with major depressive disorder (MDD), and

control subjects for each clinical group (24 for BD and 33 for MDD) were

assessed using magnetic resonance imaging.

Results: The number of short insular gyri was higher in BD patients than in

matched controls bilaterally with well-developed accessory and middle short

gyri. Furthermore, the left middle short gyrus was more developed in MDD

patients than in matched controls, and was weakly associated with the severity of

depressive symptoms.

Discussion: The present results indicate that changes in the gross morphology of

the insular cortex in BD andMDD is a potential vulnerability factor associated with

their neurodevelopmental pathologies, and may also contribute to the severity of

symptoms in MDD.
KEYWORDS

magnetic resonance imaging, insular cortex, neurodevelopment, major depressive
disorder, bipolar disorder
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Introduction

The insula, particularly its anterior portion (i.e., the short

insula), plays a crucial role in socio-emotional processing within

the context of the limbic integrating cortex (1, 2), and changes in its

structure (3, 4) and function (5, 6) are thought to contribute to the

pathophysiological processes underlying affective disorders. Large

inter-individual variability has been reported in gyrification

patterns in the insula, which potentially reflect cytoarchitectonic

development during gestation (7–9). The accessory gyrus (AG) and

middle short gyrus (MSG) in the short insula are often undeveloped

or absent in human brains (up to 50-70%), while the posterior long

gyrus (PLG) in the posterior subdivision (i.e., long insula) is missing

in approximately 10-20% (10–12). It has not yet been established

whether these macroscopic features of the insular cortex affect brain

function, whereas deviations in gross brain characteristics,

particularly gyrification patterns, have been suggested to reflect

the neurodevelopmental pathologies associated with various

neuropsychiatric disorders (13).

We previously demonstrated, using magnetic resonance

imaging (MRI), that the number of insular gyri was elevated in

patients with schizophrenia regardless of the illness stage, indicating

its potential as a neurodevelopmental marker (14–16); however, the

disease specificity of this finding remains unknown. Although the

neurological basis of affective disorders has not yet been elucidated

in detail, developmentally mediated neurobiological changes related

to socio-emotional neural circuits may contribute to their

pathophysiologies, particularly that of bipolar disorder (BD)

(17, 18). Major depressive disorder (MDD) is a phenotypically

heterogeneous disorder that is caused by a combination of

biological and environmental factors (19, 20), while embryonic

neurodevelopmental abnormalities have also been suggested to

contribute to the later development of MDD (21, 22). We

previously revealed similar changes in the brain surface

morphologies of schizophrenia (23), BD (24), and MDD (25),

indicating a partial overlap in their neurodevelopmental

pathologies (26). Despite the potential role of insular

abnormalities in affective disorders (27, 28), the gross anatomy of

the insular cortex has not yet been investigated in detail in BD

and MDD.

Therefore, in the present study, MRI was performed on

patients with BD, those with MDD, and matched control

subjects to examine the macroscopic features of the insular

cortex (i.e., the number of gyri and degree of development of

each gyrus). Due to the potential contribution of insular

abnormalities to emotional dysregulation in affective disorders

(27, 28) and neurobiological overlap with schizophrenia in terms

of gross brain anatomy (26), we hypothesized that the number of

insular gyri with well-developed gyri may be higher in patients

with affective disorders (particularly BD) than in healthy controls.

Furthermore, we investigated the relationship between the

anatomy of the insular cortex and the clinical features of these

patients (e.g., symptoms and medication).
Frontiers in Psychiatry 02
Materials and methods

Participants

Twenty-six patients with BD, 56 with MDD, and 57 healthy

controls who were right-handed and had no previous history of

serious head trauma, neurological illness, substance misuse, or other

serious physical diseases were enrolled in the present study

(Table 1). The sample characteristics of these participants and

inclusion/exclusion criteria were reported in detail in previous

studies (24, 25, 29, 30).

Briefly, we recruited BD patients from the Mood Disorders Unit

at the Prince of Wales Hospital, Sydney, Australia. They had been

diagnosed with bipolar I disorder according to the Structured

Clinical Interview for DSM-IV patient version (SCID-IV-P) by

research psychiatrists (31). We also performed a detailed case note

review of the clinical characteristics of these patients, including the

lifetime number of affective episodes and their medication status. A

history of psychotic symptoms (i.e. , delusions and/or

hallucinations) during previous affective episodes was noted in 16

BD patients and a family history of affective disorders in 10. At the

time of scanning, all patients were in a euthymic condition (i.e., not

currently experiencing a manic/hypomanic or depressive episode of

SCID). All patients had previously been administered

antipsychotics, but not within 1 year of participating in the

present study. At the time of the present study, 19 patients were

being treated with mood stabilizers, including lithium (Li) (N = 12)

and/or valproate (VPA) (N = 12).

Patients with MDD were enrolled from outpatient psychiatric

clinics or an advertisement in the local media in Melbourne,

Australia. They had been diagnosed with MDD according to the

SCID-IV-P by experienced research psychologists at Orygen

Youth Health, Melbourne (31), and had also been assessed using

the Beck Depression Inventory (BDI) (32), Positive Affect and

Negative Affect Scale (PANAS) (33), and Mood and Anxiety

Symptom Questionnaire (MASQ) (34). The case history,

medication status, and comorbid anxiety disorders of these

patients were also examined through a direct interview and

chart review. At the time of scanning, there were 27 patients in

remission (remitted MDD subgroup) and 29 who fulfilled the

DSM criteria for MDD (currently depressed subgroup). MDD was

comorbid with anxiety disorders in 22 (4 remitted and 18

currently depressed) patients.

Healthy controls matched on age and sex were recruited in

Sydney (N = 24, matched for BD) and Melbourne (N = 33, matched

for MDD) through a local advertisement. They also underwent

screening using the SCID-IV non-patient version (31) and none

had a personal or family history of psychiatric diseases. The

Melbourne Health Mental Health Research & Ethics Committee

approved the present study (MHREC2009.607). Based on the tenets

of the Declaration of Helsinki, all participants provided their

written informed consent after receiving a complete description

of the study protocol.
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MRI procedure

Details of the MRI procedures performed on the Sydney BD and

Melbourne MDD cohorts have been described in previous studies

(24, 25, 29). Briefly, fast-spoiled gradient echo MR imaging using

the 1.5-T GE Signa scanner at Royal Prince Alfred Hospital in

Sydney was performed to create T1-weighted consecutive coronal

images with a voxel size of 0.98 × 0.98 × 1.6 mm for the BD cohort

and their matched controls. The 1.5T Siemens scanner (Magnetom

Avanto) at Saint Vincent’s Hospital Melbourne was used to obtain

T1-weighted 1-mm iso-voxel images in the axial orientation for the

MDD cohort and their controls.

MR images, including information on diagnoses, were fully

anonymized and were reconstructed into 0.98-mm (BD)- or 1-mm

(MDD)-thick entire contiguous coronal images perpendicular to

the anterior commissure-posterior commissure line using Dr. View

software (Infocom, Tokyo, Japan).
Insular gross anatomy assessment

As described in detail in previous studies (14–16), AG, MSG,

and PLG developmental patterns, which have substantial inter-

individual anatomical variations (10–12), were evaluated by one

rater (TT) (Figure 1). The classifications for AG and MSG were as

follows: fully developed, underdeveloped, or absent, while that for
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PLG was present or absent because its hypoplasia is rarely observed

in human brains (12). Only well-developed gyri were counted when

assessing the number of anterior and posterior insular gyri.

A validity sample of 15 randomly selected brains (30 hemispheres)

confirmed that intra-rater (TT) and inter-rater (TT andDS) reliabilities

for the gyral number (intraclass correlation coefficients) and

developmental pattern (Cronbach’s a) were both > 0.91.
Statistical analysis

Demographic and clinical differences between groups were

assessed using a one-way analysis of variance (ANOVA) or the

c2 test.
The c2 test or Fisher’s exact test, when more than 20% of cells

had expected counts < 5, was performed to examine group

differences in AG, MSG, and PLG developmental patterns, where

Benjamini-Hochberg procedure was used to decrease the false

discovery rate. Since short and long insular gyri showed a non-

normal distribution (Kolmogorov-Smirnov tests), their number was

log-transformed and then compared between groups using an

ANOVA, with the between-subject variables of diagnosis and sex

and the within-subject factor of hemisphere. Post-hoc Scheffé’s test

and Bonferroni correction were then conducted.

Two long insular gyri with a well-developed PLG were observed

in the majority of the brains analyzed; therefore, the relationship
TABLE 1 Characteristics of study participants.

BD cohort MDD cohort

Patients (N = 26) Controls (N = 24) Patients (N = 56) Controls (N = 33)

Age (years) 38.4 ± 10.9 38.7 ± 11.1 33.8 ± 9.1 34.0 ± 9.9

Male/female 8/18 7/17 16/40 12/21

Current IQ 113.8 ± 7.1 115.1 ± 9.6 108.0 ± 9.8 111.1 ± 10.9

Onset age (years) 24.9 ± 8.4 – 23.5 ± 9.0 –

Duration of illness (years) 13.5 ± 10.1 – 10.3 ± 8.1 –

Number of depressive episodes 11.1 ± 10.8 – 3.4 ± 3.0 –

Number of manic episodes 8.8 ± 10.2 – – –

Beck Depression Inventory – – 23.4 ± 15.8 3.6 ± 4.1

PANAS positive affect – – 25.0 ± 8.0 32.9 ± 7.3

PANAS negative affect – – 17.8 ± 7.7 11.2 ± 1.6

MASQ general distress – – 45.8 ± 10.3 27.9 ± 8.3

MASQ general depression – – 41.5 ± 12.0 19.5 ± 7.2

MASQ general anxiety – – 28.7 ± 9.0 16.4 ± 6.4

MASQ anxious arousal – – 36.1 ± 12.2 22.0 ± 4.4

MASQ high positive affect – – 53.5 ± 16.8 81.1 ± 14.3

MASQ loss of interest – – 27.8 ± 7.7 14.7 ± 5.0

Medication at scanning [N (%)] 21/26 (80.8%) – 33/56 (58.9%) –
Values represent means ± SD unless otherwise stated. BD, bipolar disorder; MASQ, Mood and Anxiety Symptom Questionnaire; MDD, major depressive disorder; PANAS, Positive and Negative
Affect Schedule.
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between the gross anatomy of the insula and the clinical

characteristics of patients was examined only for the short insular

cortex. Spearman’s correlation analysis with the Bonferroni

correction was employed to assess whether the number of short

insular gyri was associated with clinical variables [IQ, onset age,

illness duration, number of episodes, and symptom ratings

(separately investigated for currently depressed and remitted

MDD subgroups)]. The potential effects of the AG and MSG

patterns (developed vs. underdeveloped or absent) on the clinical

variables described above were also assessed using the Mann-

Whitney U test because of the skewed distribution of most of

these variables.

The relationship between the number of short insular gyri and

clinical subgroups (currently depressed or remitted MDD

subgroups, with or without comorbid anxiety disorders in the

MDD group, with or without a history of psychosis or a family

history of affective disorders in the BD group, and medication

status) was investigated using the non-parametric Mann-Whitney

U test.

Since we previously measured insular gray matter volumes in

the Sydney BD (3) and Melbourne MDD (4) cohorts, Spearman’s

correlation between the number of gyri and gray matter volume of

the short insular cortex was examined in each hemisphere. The

relationship between the AG and MSG patterns (developed vs.

underdeveloped or absent) and gray matter volumes were also

assessed using the Mann-Whitney U test. A p value < 0.05

indicated a significant difference.
Frontiers in Psychiatry 04
Results

Demographic and clinical data

No significant differences were observed in age, sex, or IQ

between BD and MDD patients and their controls (Table 1).

Furthermore, these demographic variables did not significantly

differ between the remitted and currently depressed MDD

subgroups; however, depressive and anxiety symptoms were less

severe and medication rates were lower in the remitted group than

in the currently depressed group (25, 29).
Variations in insular gross anatomy

The number of bilateral short insular gyri was higher in BD

patients than in controls matched to this group even after the

Bonferroni correction [p < 0.0125 (0.05/4); BD/MDD groups by

short/long gyri], with the bipolar group having a more well-

developed AG (well-developed vs. underdeveloped or absent: left,

c2 = 7.49, p = 0.006; right, c2 = 7.49, p = 0.006) and MSG (well-

developed vs. underdeveloped or absent: left, c2 = 8.79, p = 0.003;

right, c2 = 6.87, p = 0.009) (Table 2, Figure 2). The result of left MSG

described above remained significant even after applying Benjamini-

Hochberg procedure [p < 0.0042 (0.05/12); BD/MDD groups by left/

right by AG/MSG/PLG]. No significant difference was noted in the

gross insular anatomy of the long insular cortex between the groups.
FIGURE 1

Sample sagittal MR images of different gross insular patterns. The developmental pattern of each gyrus was assessed predominantly using
consecutive sagittal slices, with also coronal and axial views simultaneously being referred to. Dotted lines indicate the location of the central insular
sulcus that subdivides the insula into the anterior (short) and posterior (long) cortices. The ASG, PSG, and ALG were well-developed in all participants
in this study, while the PLS was sometimes deficient panel (A). The AG and MSG in the short insula had a large inter-individual variation, where the
gyrus was absent panel (A), underdeveloped [marked with asterisks in panels (B, C)], or well-developed panel (D). AG, accessory gyrus; ALG, anterior
long gyrus; ASG, anterior short gyrus; MSG, middle short gyrus, PLS, posterior long gyrus; PSG, posterior short gyrus.
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Although the number of insular gyri did not significantly differ

between MDD patients and their matched controls (Table 2), when

the two classifications were compared (well-developed vs.

underdeveloped or absent), the patients had a more well-

developed left MSG (c2 = 5.53, p = 0.019).

The number and degree of development of the insular gyri did

not significantly differ between the control groups (24 subjects for

BD and 33 for MDD).
Insular gross anatomy and clinical features

The insular gross anatomy in BD and MDD patients was

not associated with IQ, age of onset, the duration of illness, the

previous number of affective episodes, or medication at scanning

[medicated (N = 33) vs. non-medicated (N = 23) MDD patients,

VPA treated (N = 12) vs. non-VPA treated (N = 14) BD patients,

and Li treated (N = 12) vs. non-Li treated (N = 14) BD patients]

(Supplementary Tables 1, 2). Furthermore, the insular gross

anatomy was not associated with the MDD subgroups (currently

depressed or remitted), psychotic symptoms, or a family history of
Frontiers in Psychiatry 05
affective disorders in BD patients, while the rate of comorbid

anxiety disorders was higher in MDD patients with a well-

developed left AG than in those without (c2 = 4.55, p = 0.033).

The number of left short insular gyri was higher in MDD

patients with anxiety disorders (mean = 3.18 ± 0.73; U = 477.0,

p = 0.033) compared to those without (mean = 2.76 ± 0.66)

(Supplementary Table 2).

In the currently depressed MDD subgroup, patients with a well-

developed left MSG had a higher BDI score (mean = 39.6 ± 8.9; U =

44.0, p = 0.030) and lower MASQ high positive affect score (mean =

41.0 ± 14.3; U=39.5, p = 0.039) than in those without (BDI score =

30.8 ± 8.7, MASQ high positive affect score = 50.0 ± 8.9).

In the Melbourne healthy control group, subjects with a left

well-developed AG had lower MASQ distress (mean = 23.7 ± 8.2; U

= 36.5, p = 0.025) and depression (mean = 15.0 ± 4.9; U = 43.0, p =

0.043) scores than those without (MASQ distress = mean = 29.1 ±

8.1, MASQ depression = 20.7 ± 7.4).

However, these results of the relationship between the insular

gross anatomy and clinical features, including the subgroup

analyses, did not survive the Bonferroni correction for

multiple comparisons.
TABLE 2 Gross anatomy of the insular cortex in study participants.

BD cohort MDD cohort

Patients
(N = 26)

Controls
(N = 24)

Group
differences

Patients
(N = 56)

Controls
(N = 33)

Group
differences

Number of
short gyri

F (1, 46) = 19.97,
p < 0.001a)

F (1, 85) = 0.01,
p = 0.912a)

Left 3.42 ± 0.64 2.71 ± 0.69 2.91 ± 0.72 2.73 ± 0.67

Right 3.46 ± 0.76 2.79 ± 0.72 2.75 ± 0.69 2.82 ± 0.68

Number of long gyri F (1,46) = 2.37,
p = 0.131a)

F (1,85) = 1.02,
p = 0.315 a)

Left 1.92 ± 0.27 1.79 ± 0.41 1.89 ± 0.31 1.88 ± 0.33

Right 1.88 ± 0.33 1.83 ± 0.38 1.91 ± 0.29 1.85 ± 0.36

AG (developed/underdeveloped/absent)

Left 14/7/5 4/13/7 Chi-squared = 7.62,
p = 0.022

12/29/15 7/18/8 Chi-squared = 0.08,
p = 0.960

Right 14/8/4 4/14/6 Chi-squared = 7.52,
p = 0.023

10/31/15 5/20/8 Chi-squared = 0.24,
p = 0.886

MSG (developed/underdeveloped/absent)

Left 23/2/1 12/8/4 Fisher’s exact test,
p = 0.010

38/11/7 14/11/8 Chi-squared = 5.57,
p = 0.062

Right 22/3/1 12/7/5 Fisher’s exact test,
p = 0.035

31/14/11 20/8/5 Chi-squared = 0.34,
p = 0.845

PLG (developed/absent)

Left 24/2 19/5 Fisher’s exact test,
p = 0.239

50/6 29/4 Fisher’s exact test,
p = 1.000

Right 23/3 20/4 Fisher’s exact test,
p = 1.000

51/5 28/5 Chi-squared = 0.81,
p = 0.369
Values represent means ± SD unless otherwise stated. AG, accessory gyrus; BD, bipolar disorder; MSG, middle short gyrus; MDD, major depressive disorder; PLG, posterior long gyrus. Statistical
results with significant group differences of AG and MSG based on “well-developed vs. underdeveloped or absent” comparison were shown in the main text.
a)No sex or hemisphere main effects or their interactions were found.
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Insular gross anatomy and gray
matter volume

In the Melbourne healthy control group (N = 33), the gyral

number in the left short insula positively correlated with its gray

matter volume (rho = 0.419, p = 0.015); however, this relationship

was no longer significant after Bonferroni corrections. The gray

matter volume of the left short insula in the Melbourne healthy

control group was larger in those with a well-developed left MSG (N

= 14, mean = 5858 ± 822 mm3) than in those without (N = 19, mean

= 5200 ± 836 mm3) (U = 189.0, p = 0.042).

A relationship was not observed between the insular gross

anatomy and gray matter volumes in the MDD, BD (Supplementary

Table 1), or Sydney healthy control groups.
Discussion

We believe this to be the first report of a more well-developed

short insular gyri in BD and MDD patients than in their matched

healthy controls using MRI. This gross anatomical feature of

affective disorders was more evident in the BD group, but

contributed to the severity of anxiety and depressive symptoms in

the MDD group. However, the insular gross morphology was not

associated with the illness duration or medication status of these

patients, supporting its potential role as a stable vulnerability

marker of affective disorders.

Gross anatomical variations in the insular cortex, which is

predominantly formed during 17 and 35 weeks of gestation along

with neural development (7, 9, 35), have also been reported in healthy

subjects (10–12); however, their functional significance remains

largely unknown. On the other hand, Heschl’s gyrus (HG)

duplication, another normal anatomical variation, has been
Frontiers in Psychiatry 06
associated with regional brain dysfunction and cognitive deficits

(e.g., learning disabilities) in healthy subjects (36, 37). We

previously demonstrated that HG duplication increased in various

neuropsychiatric disorders, such as schizophrenia spectrum (38–40)

and affective (30) disorders, and appeared to be associated with the

clinical characteristics (e.g., symptom severity, cognitive deficits) of

patients. Collectively, these findings and the present results appear to

support the general role of neurodevelopmental abnormalities

associated with gyral formation during the embryonic period (8, 9),

which may lead to brain dysconnectivity (13), in neuropsychiatric

disorders. The regional specificity of brain gyrification patterns in the

context of the pathophysiology of neuropsychiatric disorders as well

as the specific role of the insular gross morphology need to be

examined in multimodal studies on brain function/connectivity.

The present result showing an increased number of short gyri

bilaterally in BD patients is consistent with the hypothesis that

developmentally mediated neurobiological changes related to socio-

emotional neural circuits, including the insular cortex (1, 2), may

contribute to the pathophysiology of BD (17, 18). The results

obtained herein also suggest a shared macroscopic feature of the

insular cortex (i.e., well-developed AG and MSG) between

schizophrenia (14–16) and BD. This appears to, at least partially,

support the notion of the common neurodevelopmental pathology

between these disorders (13, 41), which has been suggested by broad

similarities in neurocognitive (42, 43), neuroimaging (44, 45), and

genetic (46–48) findings. However, a family history of affective

disorders, which implies strong genetic/biological factors, and the

comorbid psychotic symptoms of BD patients were not associated

with the insular gross anatomy, suggesting its complex contribution

to the pathophysiology of BD. Furthermore, the present results and

our previous MRI findings (3) indicate that the gross gyral pattern

and gray matter reduction in the insular cortex are independent and

may reflect the different pathological processes of BD.
FIGURE 2

Developmental patterns of the accessory gyrus (AG), middle short gyrus (MSG), and posterior long gyrus (PLG) in the bipolar disorder (BD) group
(N = 26), major depressive disorder (MDD) group (N = 56), and marched control groups for each patient group (24 subjects for BD and 33 for MDD).
Variations in gyral development were not observed for other insular gyri (i.e., anterior short, posterior short, and anterior long gyri).
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Similar to the results observed in BD patients in the present

study, MDD patients exhibited a more developed short insular gyri

than their matched controls. This result is consistent with previous

neuroimaging evidence of shared structural (25) and functional (26)

abnormalities in the insular cortex between BD and MDD,

supporting aberrant cortical development potentially serving as a

vulnerability marker of MDD (49). However, the degree of the

change in the insular gyral pattern was less pronounced in the MDD

group than in the BD group, which may reflect a less prominent

neurodevelopmental pathology and the strong impact of acquired

environmental factors in the etiology of MDD (19). We also

demonstrated that the well-developed AG and MSG in MDD

patients might correlate with comorbid anxiety disorders and the

severity of depressive symptoms during active depressive episodes.

Therefore, the potential impact of early neurodevelopmental

processes during embryonic insular gyral formation on the

phenomenology of MDD in later life may involve interactions

with environmental factors in epigenetic mechanisms (20, 21). On

the other hand, the well-developed AG in healthy control subjects

was related to ‘lower’ distress and depression scores, suggesting

different mechanisms in the insular structure-function relationship

between the pathological status and non-clinical population.

There are several limitations that need to be addressed. First, MRI

scans on BD and MDD patients used different settings, which limited

the comparability of the results obtained. Therefore, control groups

matched for MR settings and the demographic backgrounds of the

BD and MDD groups were used in this study. Furthermore, the

macroscopic features of the insular cortex did not significantly differ

between these independent control groups, supporting the

consistency of our methodology. Nevertheless, future studies with

complete consistency of MRI settings would enhance the reliability of

our findings. Second, the number of participants, especially in the BD

group (N = 26), was relatively small. Left MSG development

significantly differed between MDD patients and healthy controls;

however, the present results indicated that the development of both

the MSG and AG contributed to anxiety and depressive symptoms in

these patients. Therefore, a replication study with a larger MDD

cohort may have the capacity to identify differences in the AG

developmental pattern from that in controls. In addition, the

present study on BD patients in remission enabled us to investigate

the potential contribution of the insular gross anatomy to the severity

of their symptoms. Thus, a larger sample size with more detailed

clinical data (e.g., illness stages, types of depression, and treatment

responses) could improve the reliability and generalizability of our

findings, particularly in relation to the clinical diversity within

affective disorders. Third, while the insular anatomy was related to

cognitive function in schizophrenia (16), the present study did not

assess cognitive impairment in BD or MDD patients. Our study also

did not include direct functional measures such as functional MRI or

studies related to functional connectivity. Including such measures

could help better understand how the insular structural changes

translate into cognitive and emotional dysfunctions in affective

disorders. Finally, the structural/functional abnormalities of the
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insular cortex have also been reported in other neuropsychiatric

disorders, such as borderline personality (50, 51) and autism

spectrum (52, 53) disorders. Therefore, future research could focus

on investigating the specificity of these changes in the context of

affective disorders, which would help identify unique anatomical

features of BD and MDD.

In summary, our results show that BD patients share the gross brain

anatomical feature of an increased number of insular gyri with patients

diagnosed with schizophrenia, which may partly underlie the overlap in

phenomenology and neurobiology between BD and schizophrenia.

Moreover, embryonic neurodevelopmental processes related to gyral

formation may have an impact on the severity of symptoms during a

later depressive episode in MDD patients. Future multimodal imaging

studies on brain function and connectivity are needed to further clarify

the potential functional significance and pathological role of the gross

anatomy of the insula in neuropsychiatric disorders.
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