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Introduction: Major Depressive Disorder (MDD) leads to dysfunction and

impairment in neurological structures and cognitive functions. Despite

extensive research, the pathophysiological mechanisms and effects of MDD on

the brain remain unclear. This study aims to assess the impact of MDD on brain

activity using EEG power spectral analysis and asymmetry metrics.

Methods: EEG recordings were obtained from 48 patients with MDD and 78

healthy controls. The data were segmented into 2-second windows (1024 data

points) and analyzed using the Welch method, an advanced variant of the Fast

Fourier Transform (FFT). A Hanning time windowwith 50% overlap was applied to

compute the modified periodogram. Absolute and relative power, along with

asymmetry values in the theta, alpha, and beta frequency bands, were calculated.

Results: Patients with MDD exhibited significantly higher absolute and relative

power in the theta and beta bands and decreased power in the alpha band

compared to healthy controls. Asymmetry analysis revealed significant

differences between symmetric channels in the theta band (F7-F8, C3-C4, T3-

T4, T5-T6), alpha band (F7-F8, C3-C4, T3-T4, T5-T6, O1-O2), and beta band (C3-

C4, T3-T4, T5-T6, P3-P4).

Discussion: The findings suggest that MDD affects brain mechanisms and

cognitive functions, as evidenced by altered power values in the theta and

alpha bands. Additionally, asymmetry values in theta, alpha, and beta bands

may serve as potential biomarkers for MDD. This study highlights that beyond the

commonly used alpha asymmetry, theta and beta asymmetry can also provide

valuable insights into the neurophysiological effects of MDD, aligning with

previous neuroimaging studies that indicate impairments in memory, attention,

and neuroanatomical connectivity in MDD.
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Özçoban and Tan 10.3389/fpsyt.2024.1480228
1 Introduction

Major Depressive Disorder (MDD) is a neuropsychiatric

condition that adversely affects mental health and is characterized

by symptoms such as depressed mood, insomnia, loss of

concentration, and feelings of worthlessness (1). It is the leading

cause of illness-induced disability worldwide (2). MDD affects brain

function and is associated with structural and functional

abnormalities, as well as cognitive decline. Neuroimaging studies

have shown that MDD induces neuropathological changes in various

brain regions, with the hippocampus being the most extensively

studied. Notably, many studies indicate that MDD is linked to

hippocampal volume reduction (3–5). Similarly, volumetric

reductions have been detected in the frontal regions, particularly in

the orbitofrontal cortex (OFC) (6–8). The amygdala, a critical

structure in emotional processing and behavior, has also been

differentially examined in its left and right hemispheres (3, 4, 9).

Changes in amygdala volume have been reported to vary depending

on the severity of illness (5, 9, 10) and the patient’s gender (5, 11, 12).

MDD also impacts the basal ganglia, which includes structures such

as the caudate nucleus and globus pallidus, impairing their function

(3, 13). Additionally, abnormalities in the dorsolateral prefrontal

cortex (DLPFC) and anterior cingulate cortex (ACC) pathways have

been observed (14). These neuroanatomical alterations contribute to

the cognitive deficits experienced by patients with MDD (15). For

instance, hippocampal volume reduction is closely associated with

memory impairments (16–18). Furthermore, structural dysfunctions

in the anterior caudate nucleus, hippocampal gyrus, insula, and

cingulate cortex—regions involved in learning and emotional

regulation—have been demonstrated (19, 20). Early diagnosis of

MDD is crucial to prevent neural and cognitive impairments.

Currently, diagnosis and symptom severity assessments are

primarily based on questionnaires and clinical interviews,

underscoring the need for objective diagnostic criteria in

neuropsychiatric diseases. Bioelectrical signals provide valuable

insights into the mental, cognitive, and functional state of the

brain. Electroencephalography (EEG) is a cost-effective, accessible,

and portable tool that offers critical information about brain

physiology, neural activities, and the diagnosis of neuropsychiatric

disorders. Due to these advantages, electro-neurophysiological

biomarkers derived from EEG recordings are particularly suitable

for developing objective diagnostic criteria and understanding the

central nervous system’s biology in neuropsychiatric diseases (21).

Clinical EEG studies have long contributed to the understanding of

neuropsychiatric and neurological disorders, offering important

insights into their dysfunctional effects. Several studies have

identified EEG biomarkers associated with anxiety disorders,

revealing reduced power in the prefrontal cortex (22). Absolute and

relative power, as well as asymmetry values across different frequency

bands, provide crucial information about the brain’s regional

mechanisms underlying mood disorders. Elevated absolute (23–25)

and relative alpha power (26) have been reported, especially in the

parietal, frontal, and occipital regions (25, 27, 28) though some

studies have not found significant differences in the alpha band (29,

30). Additionally, increased beta power has been observed in some
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cases (21). Interhemispheric asymmetry values, derived from power

measurements, yield important information about brain activity

and physiology.

The majority of studies on MDD focus on frontal alpha

asymmetry, with some associating these values with neural

systems and others interpreting them as diagnostic biomarkers.

Resting-state EEG analysis suggests that individuals with MDD

exhibit relatively increased right frontal activity (31) which

correlates with symptom severity (32). Even in remitted MDD

patients, reduced left frontal activity has been reported, indicating

that these patterns can serve as biomarkers for MDD (33). Davidson

et al. associated frontal alpha asymmetry with approach-avoidance

mechanism (34).

The aim of this study was to explore the effects of MDD on brain

wave activity across various frequency bands. Resting-state EEG

recordings were obtained from both patients with MDD and healthy

volunteers, and their results were compared. Statistical analyses were

conducted to evaluate EEG parameters between the groups, aiming to

uncover potential associations. We hypothesized that patients with

MDD would demonstrate inattention symptoms, which would be

reflected in qEEG changes, particularly in beta and low gamma bands.

Therefore, the objectives of this study were to clarify whether

inattention symptoms could be represented by qEEG band power

and to explore the influence of anxiety and depressive symptom

severity on inattention and qEEG power in patients with MDD.
2 Materials and methods

2.1 Data acquisition

EEG data were collected from age-matched healthy individuals and

patients at the Üsküdar University Neuropsychiatry Health Practice

and Research Center. Patients diagnosed with Major Depressive

Disorder (MDD) were assessed using the Structured Clinical

Interview for DSM-5 (SCID-5) at the Uskudar University Outpatient

Clinic in Istanbul, Turkey. All patients were medication-free for at least

two weeks prior to EEG acquisition. Each participant provided

informed consent, and the study was conducted in accordance with

the principles of the Declaration of Helsinki. The research protocol

received approval from the university’s ethics committee.

The healthy control group consisted of individuals with no

history of stroke, neurological, or neuropsychiatric disorders, and

they were not taking any medication. Additionally, patients had

never received psychiatric therapy at the clinic center. The EEG data

group included 48 MDD patients (24 males and 24 females) and 78

healthy volunteers (39 males and 39 females). Additional

demographic information is presented in Table 1.

The Beck Depression Inventory (BDI) and Beck Anxiety Inventory

(BAI) are 21-item questionnaires designed from clinical observations of

attitudes and symptoms commonly seen in depressed patients. The BDI

is used to assess the severity of depressive symptoms, whereas the BAI

evaluates anxiety symptom severity (35, 36).

EEG data were recorded over 7 minutes at a sampling rate of 512Hz

in a resting-state condition with participants’ eyes closed. Nineteen
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electrodes (Fp1, Fp2, F3, F4, F7, F8, C3, C4, T3, T4, P3, P4, T5, T6, O1,

O2, Fz, Cz, and Pz) were positioned on the scalp based on the

international 10-20 electrode placement system. The impedance for all

electrodes was maintained below 5 kΩ. Artifacts caused by muscle

movements or eye blinks, including electrooculogram (EOG) signals,

were removed by a neurophysiology expert, with an amplitude threshold

of 50 μV peak-to-peak. A band-pass filter (0.5-70 Hz) and a notch filter

(50 Hz) were applied to the data using Scan Edit 4.3 software.

Spectral analyses and asymmetry calculations were conducted

using MATLAB. Data underwent further filtering with a second-

order high-pass zero-phase Butterworth filter at a cutoff frequency of

0.5 Hz to eliminate unwanted signals and direct current

(DC) components. Additionally, a notch filter was applied to

eliminate 50-Hz power-line interference. Independent Component

Analysis (ICA) was also utilized to process and remove any

remaining artifacts.
2.2 Welch method

A crucial method in signal processing, power spectrum

estimation (PSE) shows how an energy of signal is distributed

among its many frequency components. By using a smoothing

function to lessen unpredictability, the Welch method—an

enhanced version of the traditional periodogram—improves the

estimation of power spectral density (37).

The method is applied in several steps. First, the time-series

signal was obtained from EEG data, is divided into overlapping

parts of equal length, with a 50% overlap to minimize edge effects

that could distort the spectrum. Each part, known as a window, is

examined independently. In Figure 1, application of the Welch

method is modelled (38).

Artifact-free continuous EEG data were split into 2-second

epochs (1024 data points per window) for this investigation. Each

segment’s power spectrum was calculated using a Hanning window,

which trims each segment’s edges to minimize distortions. By

lowering noise and spectrum leakage, this overlap and tapering

increase the results’ dependability. The Hanning window is applied

to obtain the modified periodogram of each segment of the signal.

In Figure 2, the effect of the Hanning window is illustrated (38). In

the Welch method, L represents the number of data segments of a

given length. The parameter M is calculated based on these L data

segments, and U is a normalization factor used to adjust the

periodogram (37).
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U =  
1
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Welch power spectral density PWE (f):

PWE =
1
Lo

L−1
0 Pj(f ) (2)

In this method, a sliding window with a predefined length and

overlap is applied to the signal, dividing it into successive time

blocks, with a periodogram created for each block. In the Welch

method, power spectral density is computed by first dividing the

time-series data into segments. A periodogram is then constructed

for each segment, and finally, these periodograms are averaged over

time to estimate the overall power spectral density.
2.3 Inter-hemispheric asymmetry

Inter hemispheric asymmetry scores were computed separately

for each EEG channel and frequency band. Inıtially, the relative

EEG signal power for the left (WLmn) and the right (WRmn)

hemispheric symmetric channels (indexed as L and R) were

calculated for each EEG frequency band as shown in Equations

1–3 (30).
TABLE 1 The demographic information and clinical characteristics of
the patient and healthy groups.

Patients Healthy Control

Participants 48 78

Age (mean ± SD) 31 ± 9 years 32 ± 10 years

Gender (M/F) 24/24 39/39

BDI (mean ± SD) 22.5 ± 8 –

BAI (mean ± SD) 16 ± 8 –
FIGURE 1

Application of the Welch Method on the EEG data (38).
FIGURE 2

Effect of the Hanning Window (38).
frontiersin.org

https://doi.org/10.3389/fpsyt.2024.1480228
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
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0
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0
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  SRmn   =  o45Hz
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Amn(f1, f2) =  
W

0
Lmn −W

0
Rmn

W
0
Lmn +W

0
Rmn

x100 (5)

Higher asymmetry scores indicate greater relative activation of

the left hemisphere. The asymmetry analysis was conducted on

symmetric EEG channel pairs: Fp1-Fp2, F7-F8, F3-F4, C3-C4, T3-

T4, T5-T6, P3-P4, and O1–O2.
2.4 Statistical analysis

All statistical analyses were performed using SPSS statistical

software, version 22.0 (SPSS Institute, Inc., Chicago, IL, USA).

Absolute power values, relative power values, and interhemispheric

asymmetry values were analyzed. Results were evaluated for each

channel and frequency band to compare the depression and healthy

control groups. Depending on the dataset distribution, either an

independent sample t-test or Mann-Whitney U test was applied.

MATLAB (2023b) and its related toolboxes were used for all data
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analyses and visualizations. Data analysis, visualization, and design

were performed in this manuscript did not make use of any

generative AI technologies.
3 Results

3.1 Absolute power analysis results

In the study, absolute power values of theta frequency band

signals were computed for all electrodes. The analysis was

conducted for both healthy and patients. The results of the

analysis were then compared and are presented in Figure 3.

The power values of the patient and healthy groups were

statistically analyzed. The results indicated that patients exhibited

higher power values in the Fp1, Fp2, F3, F4, Fz, C3, C4, Cz, P3, P4,

Pz, O1, T3, T4, T5, T6 and T6 channels. The detailed statistical

analysis results are provided in Table 2.

Same analysis were performed also for alpha power values and

the results are presented in Figure 4.

According to statistical analysis, a significantly higher difference

was found in the healthy group. The detailed results are provided

in Table 3.

Beta band values were also included in the study due to

significant differences found in the Fp1, F3, F4, Fz, C3, Cz, P3,

P4, Pz, O1, O2, F7, F8, T3, and T6 channels. The patient group

exhibited higher absolute power values across most bands, as

illustrated in Figure 5.

The statistical analysis results of absolute beta power values are

provided in Table 4.
3.2 Relative power analysis results

After completing the analyses of absolute power values, relative

power analyses—another crucial parameter in neurophysiological

research—were calculated for the theta, alpha, and beta bands. A

significant difference was found across all channels for the theta

band, as shown in Figure 6.

The statistical analysis results for the theta band are presented

in Table 5. The results indicate a significant difference between

patient and healthy groups across most channels.

Relative alpha power values were computed for both the patient

and healthy groups. The power values in the alpha frequency band

were higher in MDD patients compared to healthy controls. The

analysis results are illustrated in Figure 7.

The statistical analysis revealed a significant difference between

the groups, with detailed results provided in Table 6.

Relative beta power values were computed for both the patient

and healthy groups. The power values in the beta frequency band

were higher in MDD patients compared to healthy controls. The

analysis results are presented in Figure 8.

Detailed statistical analysis results comparing the beta band values

between the patient and healthy groups are provided in Table 7.
TABLE 2 Statistical analysis results of theta absolute power values of
patient and healthy volunteers.

Channel Patients Control. p value

Fp1 7.752 ± 4.240 2.818 ± 2.566 <.00001

Fp2 7.477 ± 4.070 2.841 ± 2.619 <.00001

F3 4.244 ± 2.047 2.913 ± 2.088 <.00001

F4 4.295 ± 1.943 2.746 ± 2.153 <.00001

Fz 3.401 ± 1.757 3.305 ± 2.311 <.00001

C3 3.362 ± 1.622 1.910 ± 1.297 <.00001

C4 3.437 ± 2.438 1.898 ± 1.359 <.00001

Cz 3.349 ± 2.172 2.815 ± 1.763 <.00001

P3 2.514 ± 2.020 1.457 ± 1.199 <.00001

P4 2.278 ± 1.692 1.436 ± 1.096 <.00001

Pz 3.653 ± 2.093 1.719 ± 1.706 <.00001

O1 3.685 ± 2.353 1.525 ± 1.519 <.00001

O2 1.788 ± 0.954 1.467 ± 1.279 NS

F7 1.887 ± 1.213 2.209 ± 1.780 NS

F8 2.370 ± 1.678 3.020 ± 3.452 NS

T3 2.685 ± 1.885 1.452 ± 1.012 <.001

T4 4.403 ± 1.972 1.540 ± 1.395 <.00001

T5 4.126 ± 2.109 1.399 ± 1.621 <.00001

T6 3.618 ± 2.542 1.454 ± 1.515 <.00001
“NS” indicates non-significant results (p ≥ 0.05).
Bold values in the tables indicate statistically significant results (p < 0.05).
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3.3 Asymmetry analysis results

Interhemispheric asymmetry values provide crucial information

about an individual’s mental state and can serve as biomarkers. While

alpha asymmetry is commonly used in the literature, we also

computed theta and beta asymmetry values. Significant differences

were found across the theta, alpha, and beta bands. The analysis

results are presented in Tables 8–10.
Frontiers in Psychiatry 05
4 Discussion

The main objective of this study was to explore the impact of

Major Depressive Disorder (MDD) on brain power spectral density.

To achieve this, we computed absolute and relative power spectral

values using the Welch method. The results revealed an increase in

absolute power in all channels except O2, F7, and F8. For relative

power, an increase was observed in all channels except C4, Cz, P3,
FIGURE 4

Comparative analysis of absolute alpha power values showing statistically significant differences between patients and healthy volunteers.
FIGURE 3

Comparative analysis of absolute theta power values showing statistically significant differences between patients and healthy volunteers.
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and P4. Analyses were conducted for the theta, alpha, and beta

frequency bands, as these regions provide crucial insights into

MDD. In the beta band, a statistically significant power increase

was observed across all channels in the patient group. Conversely,

for the alpha band, a statistically significant decrease in power was

detected in almost all channels for MDD patients.

The analysis of the theta, alpha, and beta frequency bands offers

vital neuroanatomical and neurophysiological information about

the central nervous system. Several studies have demonstrated a

relationship between theta and alpha waves and memory function.

For example, Buzsaki, Jansen, and Lisman et al. detected theta

oscillations during information encoding and spatial navigation (39,

40). Additionally, neurophysiological research suggests that theta

waves are generated in the amygdala and hippocampal CA1 region

during emotional events (41, 42). Higher theta band asymmetry in

frontal and temporal regions may indicate disruptions in

interhemispheric networks. Theta activity is closely associated

with connectivity, memory processing, attention, and emotional

regulation. Therefore, the theta asymmetry values observed in this

research may reflect the impact of MDD on these critical brain

functions. Neuroimaging studies in individuals with MDD have

shown reductions in hippocampal volume and dysfunctions in the

orbitofrontal cortex, anterior cingulate cortex (43), dorsolateral

prefrontal cortex (44), amygdala (45). Furthermore, these studies

indicate that MDD impairs cognitive functions such as memory

(46), executive functioning and attention (47). The beta band

provides important insights into neural mechanisms, including

cortical activation and deficits in sustaining attentional processes

(48) Additionally, abnormal beta band power has been associated

with heightened arousal levels (49).
FIGURE 5

Comparative analysis of absolute beta power values showing statistically significant differences between patients and healthy volunteers.
TABLE 3 Statistical analysis results of absolute alpha power values of
patient and healthy volunteers.

Channel Patients Control p value

Fp1 3.626 ± 3.868 5.462 ± 5.515 <.001

Fp2 3.807 ± 4.311 7.719 ± 21.348 NS

F3 3.386 ± 4.084 5.549 ± 5.339 <.001

F4 3.411 ± 4.234 5.408 ± 5.174 <.001

Fz 3.095 ± 4.213 6.088 ± 5.921 <.001

C3 2.943 ± 3.898 4.190 ± 4.101 <.001

C4 3.034 ± 3.985 3.933 ± 3.707 NS

Cz 2.813 ± 3.235 5.118 ± 4.578 <.00001

P3 1.980 ± 2.136 4.570 ± 5.032 <.00001

P4 1.874 ± 2.087 5.121 ± 6.149 <.00001

Pz 2.111 ± 2.453 4.736 ± 4.814 <.00001

O1 2.279 ± 3.200 8.710 ± 10.635 <.00001

O2 1.364 ± 1.887 9.621 ± 10.391 <.00001

F7 1.386 ± 2.033 4.431 ± 4.724 <.00001

F8 1.857 ± 2.232 5.126 ± 6.724 <.0001

T3 1.851 ± 1.901 2.894 ± 2.298 <.001

T4 3.970 ± 4.699 2.599 ± 1.934 NS

T5 3.587 ± 4.447 5.095 ± 6.483 NS

T6 3.464 ± 4.978 7.000 ± 8.793 <.001
“NS” indicates non-significant results (p ≥ 0.05).
Bold values in the tables indicate statistically significant results (p < 0.05).
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Alpha waves have also been linked to memory processes and

cortical activity. Specifically, higher alpha activity is associated

with enhanced memory performance (50, 51). There is strong

evidence that alpha power increases during working memory

tasks (52) and attention processes (53). As EEG power is a

biomarker indicating the activity and performance of cortical

processing, it is significantly correlated with cognitive and

memory performance. Strong alpha activity generally reflects

good memory performance, while lower theta power may

indicate poor memory performance (50). Previous researches

reported that frontal asymmetry can be used as a risk index for

emotion related disorder including MDD (54). Alpha asymmetry

values were associated with emotional regulations and depressive

symptom severity in individuals (55). Beta asymmetry values

were also used as a biomarker of MDD and especially left

hemispheric hyper activity was found in MDD (56).

Our findings align with these observations and add

robust statistical evidence to the literature. When considering

neuroimaging studies on the effects of MDD and EEG band power

investigations together, our results provide strong support for

existing research.

A previous study investigating treatment effectiveness in deep

brain stimulation surgery employed the FFT method. In contrast, the

Welch method, as used in our study, segments data rather than

analyzing the entire dataset at once, providing smoother results.

Additionally, we computed asymmetry values for both lower and

upper frequency bands, comparing them between healthy individuals

and patients. While alpha and, to some extent, theta asymmetry

values are commonly used as biomarkers in the literature, our study

also found significant results for beta asymmetry values.
TABLE 4 Statistical analysis results of absolute beta power values of
patient and healthy volunteers.

Channel Patients Control. p value

FP1 2.322 ± 1.996 0.745 ± 0.730 <.00001

FP2 2.397 ± 2.094 1.027 ± 2.500 <.00001

F3 2.581 ± 2.099 0.716 ± 0.468 <.00001

F4 2.657 ± 2.226 0.609 ± 0.367 <.00001

FZ 3.075 ± 2.630 0.629 ± 0.392 <.00001

C3 2.912 ± 2.617 0.534 ± 0.388 <.00001

C4 4.894 ± 4.164 0.538 ± 0.337 <.00001

CZ 5.465 ± 5.268 0.598 ± 0.383 <.00001

P3 4.027 ± 4.309 0.483 ± 0.377 <.00001

P4 3.889 ± 3.745 0.471 ± 0.321 <.00001

PZ 1.509 ± 1.315 0.442 ± 0.337 <.00001

O1 1.510 ± 1.564 0.647 ± 0.479 <.00001

O2 1,.078 ± 1.384 0.636 ± 0.480 <.00001

F7 1.189 ± 1.716 0.603 ± 0.580 <.00001

F8 3.385 ± 3.662 0.972 ± 1.621 <.00001

T3 3.329 ± 3.143 0.759 ± 1.091 <.00001

T4 3.204 ± 2.689 0.749 ± 0.885 <.00001

T5 3.700 ± 3.116 0.564 ± 0.566 <.00001

T6 4.904 ± 4.583 0.604 ± 0.622 <.00001
Bold values in the tables indicate statistically significant results (p < 0.05).
FIGURE 6

Comparative analysis of relative theta power values showing statistically significant differences between patients and healthy volunteers.
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Knott et al. computed absolute, relative power, and asymmetry

values using the conventional FFT method and identified

differences in relative beta power and alpha power asymmetry

indices (57). However, they did not report significant findings for

other frequency bands. Tas et al. examined differences in power,

cordance, and coherence between unipolar and bipolar depression

but did not find any significant differences in power values (58).

Roh et al., investigating attentional impairments in MDD patients

using the FFT method, found a negative correlation between

inattention scores and power values (59).

This study employed the Welch method to investigate MDD

and its impact on EEG power spectra. As an advanced version of the

classical FFT method, the Welch approach provides smoother

power estimates. To our knowledge, this is the first study to apply

the Welch method in MDD research. Both absolute and relative

power analyses were conducted separately and our findings

corroborate neuroimaging studies that report hippocampal

volume reduction and memory and attentional disorders in

MDD. Additionally, our results show that MDD is associated

with dysfunction in the orbitofrontal and dorsolateral prefrontal

cortices, as well as the amygdala. Furthermore, significant

differences in theta, alpha, and beta asymmetry values between

patients and healthy controls were observed, suggesting that these

asymmetry values may serve as potential biomarkers for the early

diagnosis of depression.

Disruptions in the default mode network (DMN), which is

linked to self-referential cognition and emotional regulation, may

be the cause of abnormal theta and alpha power in MDD patients.

Prior research has shown that ruminative thought processes and

cognitive deficits in MD are linked to DMN connectivity (60). In
TABLE 5 Statistical analysis results of relative theta power values of
patient and healthy volunteers.

Channel Patients Control p value

Fp1 2.691 ± 1.026 1.420 ± 0.5919 < 0.00001

Fp2 2.603 ± 0.927 1.449 ± 0.681 < 0.00001

F3 2.015 ± 0.605 1.568 ± 0.671 < 0.00001

F4 2.015 ± 0.641 1.627 ± 0.699 < 0.00001

FZ 1.680 ± 0.613 1.879 ± 0.747 NS

C3 1.713 ± 0.615 1.542 ± 0.576 NS

C4 1.272 ± 0.653 1.536 ± 0.595 NS

Cz 1.251 ± 0.619 1.878 ± 0.689 NS

P3 1.191 ± 0.566 1.296 ± 0.536 NS

P4 1.180 ± 0.488 1.260 ± 0.605 NS

Pz 2.321 ± 0.623 1.422 ± 0.607 <.00001

O1 2.272 ± 0.798 0.948 ± 0.468 <.00001

O2 2.321 ± 0.623 0.923 ± 0.506 <.0001

F7 2.272 ± 0.798 1.223 ± 0.449 <.00001

F8 1.896 ± 0.538 1.249 ± 0.469 <.00001

T3 1.858 ± 0.608 1.189 ± 0.520 <.00001

T4 1.325 ± 0.610 1.169 ± 0.440 <.00001

T5 1.416 ± 0.618 1.101 ± 0.483 <.00001

T6 1.890 ± 0.637 1.022 ± 0.552 <.00001
“NS” indicates non-significant results (p ≥ 0.05).
Bold values in the tables indicate statistically significant results (p < 0.05).
FIGURE 7

Comparative analysis of relative alpha power values showing statistically significant differences between patients and healthy volunteers.
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TABLE 6 Statistical analysis results of relative alpha power values of patient and healthy volunteers.

Channel Patients Control p value

Fp1 1.097 ± 0.727 2.677 ± 1.658 <.00001

Fp2 1.155 ± 0.895 2.617 ± 1.595 <.00001

F3 1.315 ± 0.870 2.730 ± 1.596 <.00001

F4 1.279 ± 0.879 2.739 ± 1.627 <.00001

FZ 1.181 ± 0.945 2.880 ± 1.601 <.00001

C3 1.183 ± 0.926 2.882 ± 1.541 <.00001

C4 0.996 ± 1.131 2.798 ± 1.469 <.00001

Cz 0.971 ± 1.133 2.834 ± 1.479 <.00001

P3 0.891 ± 0.822 3.321 ± 1.619 <.00001

P4 0.976 ± 1.163 3.517 ± 1.704 <.00001

Pz 1.152 ± 0.742 3.340 ± 1.665 <.00001

O1 1.115 ± 0.656 3.937 ± 1.898 <.00001

O2 1.145 ± 0.782 4.183 ± 2.043 <.00001

F7 1.148 ± 0.886 2.225 ± 1.462 <.00001

F8 0.984 ± 1.126 2.319 ± 1.530 <.00001

T3 0.965 ± 1.005 2.278 ± 1.352 <.00001

T4 1.330 ± 0.949 2.103 ± 1.213 <.00001

T5 1.196 ± 0.894 3.432 ± 1.738 <.00001

T6 1.065 ± 1.067 3.883 ± 1.897 <.00001
F
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Bold values in the tables indicate statistically significant results (p < 0.05).
FIGURE 8

Comparative analysis of relative beta power values showing statistically significant differences between patients and healthy volunteers.
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addition to this functional connectivity measure in DMNwas found

positively related to MDD severity (61). Abnormalities in emotional

regulation are a key characteristic of MDD (62). Several studies in

the literature have explored the relationship between theta and

alpha bands and emotional processes. It has been suggested that
Frontiers in Psychiatry 10
altered theta synchronization may be associated with disruptions in

emotional regulation (63).

It is crucial to understand that additional research is necessary to

evaluate the possible marker’s usefulness at the individual or case level,

even if this study focuses on statistical significance at the group level. In

order to guarantee the marker’s applicability in clinical or real-world

settings, future research will attempt to investigate case-specific

analyses, such as sensitivity, specificity, and effect sizes. This will

lessen the possibility that, when used outside of group comparisons,

the marker’s significance may be overestimated. While this study

focused on comparing EEG power and asymmetry values between

patients with MDD and healthy controls, future research will aim to

explore how demographic and clinical factors, effect EEG results. For

example, understanding the relationship between symptom severity

and EEG power values may provide deeper insights into the

neurophysiological mechanisms underlying MDD. Additionally,

effects of gender differences on EEG power asymmetry, which have

been noted in some prior studies, warrant further investigation to

clarify their role in MDD.
TABLE 10 Statistical analysis results of beta asymmetry values
of patients.

Channel Patients Control p value

Fp1-Fp2 -1.234 ± 10.300 -0.391 ± 14.248 NS

F7-F8 -7.752 ± 12.737 -6.527 ± 17.770 NS

F3-F4 0.108 ± 4.928 2.667 ± 19.700 NS

C3-C4 10.110 ± 9.364 -2.275 ± 8.735 <.00001

T3-T4 16.736 ± 17.949 -2.025 ± 19.439 <.00001

T5-T6 13.741 ± 12.557 5.007 ± 15.882 <.005

P3-P4 -2.056 ± 6.831 2.221 ± 6.764 <.005

O1-O2 0.214 ± 6.764 3.726 ± 6.764 NS
“NS” indicates non-significant results (p ≥ 0.05).
Bold values in the tables indicate statistically significant results (p < 0.05).
TABLE 7 Statistical analysis results of relative beta power values of
patient and healthy volunteers.

Channel Patients Control p value

Fp1 0.709 ± 0.425 0.381 ± 0.159 <.00001

Fp2 0.725 ± 0.428 0.386 ± 0.171 <.00001

F3 1.039 ± 0.415 0.412 ± 0.179 <.00001

F4 1.040 ± 0.442 0.385 ± 0.168 <.00001

FZ 1.248 ± 0.462 0.376 ± 0.151 <.00001

C3 1.222 ± 0.461 0.442 ± 0.176 <.00001

C4 1.518 ± 0.555 0.461 ± 0.179 <.00001

Cz 1.531 ± 0.560 0.409 ± 0.172 <.00001

P3 1.485 ± 0.570 0.444 ± 0.178 <.00001

P4 1.505 ± 0.545 0.426 ± 0.175 <.00001

Pz 0.829 ± 0.379 0.390 ± 0.164 <.00001

O1 0.832 ± 0.391 0.438 ± 0.200 <.00001

O2 0.829 ± 0.379 0.407 ± 0.195 <.00001

F7 0.832 ± 0.391 0.332 ± 0.152 <.00001

F8 0.934 ± 0.360 0.391 ± 0.197 <.00001

T3 0.991 ± 0.404 0.495 ± 0.229 <.00001

T4 1.420 ± 0.541 0.518 ± 0.228 <.00001

T5 1.424 ± 0.523 0.480 ± 0.199 <.00001

T6 1.116 ± 0.469 0.452 ± 0.223 <.00001
Bold values in the tables indicate statistically significant results (p < 0.05).
TABLE 8 Statistical analysis results of theta asymmetry values
of patients.

Channel Patients Control p value

Fp1-Fp2 1.442 ± 5.688 0.355 ± 10.385 NS

F7-F8 7.856 ± 12.077 1.555 ± 15.286 <.00001

F3-F4 0.494 ± 5.970 1.157 ± 17.183 NS

C3-C4 16.460 ± 14.140 0.440 ± 7.593 <.00001

T3-T4 17.754 ± 18.006 0.784 ± 16.808 <.00001

T5-T6 12.862 ± 24.491 5.727 ± 16.509 <.00001

P3-P4 -0.710 ± 13.522 2.717 ± 8.877 NS

O1-O2 -2.420 ± 10.832 3.034 ± 14.757 NS
“NS” indicates non-significant results (p ≥ 0.05).
Bold values in the tables indicate statistically significant results (p < 0.05).
TABLE 9 Statistical analysis results of alpha asymmetry values
of patients.

Channel Patients Control p value

Fp1-Fp2 -0.607 ± 6.261 0.802 ± 14.729 NS

F7-F8 13.919 ± 18.757 0.512 ± 17.335 <.00001

F3-F4 1.707 ± 3.467 1.376 ± 18.166 NS

C3-C4 15.425 ± 13.306 1.275 ± 9.873 <.00001

T3-T4 20.987 ± 18.724 2.890 ± 18.024 <.00001

T5-T6 10.552 ± 20.933 5.836 ± 16.305 <.00001

P3-P4 0.680 ± 12.134 2.885 ± 9.765 NS

O1-O2 -0.642 ± 10.205 2.864 ± 12.262 <.05
“NS” indicates non-significant results (p ≥ 0.05).
Bold values in the tables indicate statistically significant results (p < 0.05).
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