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Introduction: Recent resting-state electroencephalogram (EEG) studies have

consistently reported an association between aberrant functional brain networks

(FBNs) and treatment-resistant traits in patients with major depressive disorder

(MDD). However, little is known about the changes in FBNs in response to

external stimuli in these patients. This study investigates whether changes in the

salience network (SN) could predict responsiveness to pharmacological

treatment in resting-state and external stimuli conditions.

Methods: Thirty-one drug-naïve patients with MDD (aged 46.61 ± 10.05, female

28) and twenty-one healthy controls (aged 43.86 ± 14.14, female 19) participated

in the study. After 8 weeks of pharmacological treatment, the patients were

divided into non-remitted MDD (nrMDD, n = 14) and remitted-MDD (rMDD, n =

17) groups. EEG data under three conditions (resting-state, standard, and deviant)

were analyzed. The SN was constructed with three cortical regions as nodes and

weighted phase-lag index as edges, across alpha, low-beta, high-beta, and

gamma bands. A repeated measures analysis of the variance model was used

to examine the group-by-condition interaction. Machine learning-based

classification analyses were also conducted between the nrMDD and

rMDD groups.

Results: A notable group-by-condition interaction was observed in the high-

beta band between nrMDD and rMDD. Specifically, patients with nrMDD

exhibited hypoconnectivity between the dorsal anterior cingulate cortex and

right insula (p = 0.030). The classification analysis yielded a maximum

classification accuracy of 80.65%.
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Conclusion: Our study suggests that abnormal condition-dependent changes in

the SN could serve as potential predictors of pharmacological treatment efficacy

in patients with MDD.
KEYWORDS

electroencephalography, major depressive disorder, salience network, prediction of
antidepressant responsiveness, condition-dependent functional network
1 Introduction

Major depressive disorder (MDD) is a prevalent yet heterogeneous

mental disorder. It is widely known that about 30% of patients do not

respond to antidepressant treatment even though it is one of the most

popular and neurobiologically validated therapies for MDD (1–3).

Predicting the efficacy of antidepressant treatment is a crucial issue for

personalized therapy, aiming to avoid ineffective treatment so that

minimize unwarranted side effects resulting from ineffective

medications (3, 4).

For the prediction of the treatment response in patients withMDD,

a variety of neuroimaging studies have focused on the identification of

reliable biomarkers. Recently, numerous studies have consistently

reported that patients who exhibit similar functional brain network

(FBN) patterns to healthy controls (HCs) tend to show a strong

response to antidepressant treatment (5, 6). Specifically, several

studies have suggested that aberrant resting-state functional

connectivity (FC) patterns could serve as effective predictors of

treatment outcomes in patients with MDD. In recent years, these FC

patterns have been utilized as features to train machine-learning

models, enhancing the performance in predicting treatment response.

Among various neuroimaging modalities, electroencephalography

(EEG) is advantageous for studying FBN due to its great temporal

resolution and cost-effectiveness (4, 7, 8). Some studies found distinct

resting-state FBN patterns in patients with medication treatment-

resistant MDD. For example, Whitton et al. (9) revealed that resting-

state theta-band functional connectivity between the rostral anterior

cingulate cortex and right anterior insula was associated with the

efficacy of the antidepressant. Using an unsupervised machine

learning (ML) model, Zhang et al. (6) successfully divided patients

with MDD and post-traumatic stress disorder (PTSD) into two

subtypes: drug responders and resistors. Relatively fewer EEG

studies identified distinct FBN patterns in these patients under

conditions involving external stimulation. For example, Sumner

et al. (10) reported that rapid antidepressant efficacy was associated

with dynamic forward connectivity in response to the unexpected

auditory stimuli between the right primary auditory cortex and the

right inferior temporal cortex. Overall, most EEG studies have

primarily concentrated on investigating a single paradigm FBN

pattern, particularly in the context of the resting-state condition.

Several up-to-date neuroimaging studies have investigated

various condition-dependent brain activities to explore
02
dysfunctional pathophysiological pathways (11–17). Among them,

recent studies have consistently suggested that our understanding of

neurobiology and various mental disorders could be broadened by

investigating condition-dependent FBN patterns, including stimuli-

based FBN patterns themselves and comparison of FBN patterns for

various conditions (e.g., resting vs. stimuli, target vs. non-target)

(11–14). However, it is yet to be investigated whether the condition-

dependent changes in EEG-FBN could predict the treatment

response in patients with MDD, despite their significant potential.

For example, several EEG studies found that patients with drug-

resistant MDD exhibited malfunctioning salience network (SN)

connectivity patterns in the resting state, known for involvement of

the selective attention control by processing salient events (18–22).

Considering the role of SN, it is reasonable to hypothesize that those

patients would also show abnormal FBN patterns under the

condition with external salient stimulation. The malfunctioning

changes in stimuli-induced SN have been observed in patients with

treatment-resistant MDD in functional magnetic resonance

imaging (fMRI) studies (12, 14, 20, 23).

In this study, we investigated condition-dependent changes in

EEG-derived FBN in patients with MDD, using a dual-paradigm

consisting of resting state and passive auditory oddball paradigm,

generally known as the mismatch negativity (MMN) paradigms.

Specifically, the SN was explored between patients with non-

remitted MDD (nrMDD) and those with remitted MDD (rMDD)

after an 8-week pharmaceutical therapy. The study is based on the

hypothesis that the condition-dependent SN would show distinct

patterns between groups; particularly, patients with nrMDD would

exhibit more divergent patterns compared to demographically-

matched healthy controls (HCs), consistent with existing resting-

state FBN studies. To demonstrate the potential of the condition-

dependent changes in SN as predictors of antidepressant

responsiveness, we performed statistical analysis and ML-based

classification analysis.
2 Methods and materials

2.1 Participants

A total of 33 patients withMDD (aged 46.00 ± 10.04, male: 3) and

22 HCs (aged 44.36 ± 14.00, male: 3) participated in the study. Due to
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poor data quality, the data of two patients with MDD and one HC

were discarded in the subsequent analysis; hence, data analysis was

performed with 31 patients with MDD (aged 46.61 ± 10.05, male: 3)

and 21 healthy controls (aged 43.86 ± 14.14, male: 2).

Patients with MDD were recruited from the Department of

Psychiatry at the Inje University Ilsan Paik Hospital. The MDD was

diagnosed by board-certified psychiatrists, based on the Structured

Clinical Interview for the Diagnostic and Statistical Manual of

Mental Disorders, 5th edition (APA). The patients had no history

of neurological illness, intellectual disability, substance abuse, head

injury, or impaired hearing ability. Patients did not take any

medication for at least one month before the study. After data

acquisition, they received vortioxetine 10 mg po for the first week,

followed by 20 mg po for the second week. Subsequently, the dosage

was maintained flexibly ranging from 10 to 20 mg po, until the

conclusion of the treatment period (i.e., 8th week). Concerning the

depressive symptom severity at the conclusion, namely, Hamilton

Depression (Ham-D) Rating Scale score for the 8th week (Ham-D8)

(details in the following section) patients were finally divided into

two groups: (i) non-remitted MDD (nrMDD; Ham-D8 ≥ 8, n = 14),

and (ii) remitted MDD (rMDD; Ham-D8 < 8, n = 17).

HCs were recruited from the community using flyers and

posters. They also had no history of head injury or medications

with psychiatric disorders, and also have no family history of

psychiatric disorders. All the participants signed an informed

consent form approved by the Institutional Review Board at Inje

University Ilsan Paik Hospital before participation in the

experiment (IRB No. 2016-08-017).
2.2 Symptomatic and
psychological measures

The symptom severity of depression and anxiety were assessed

by the Hamilton Depression Rating Scale (Ham-D) (24), and

Hamilton Anxiety (Ham-A) (25) rating scales, respectively. The

Ham-D and Ham-A consisted of 17 and 14 items, respectively.

After 8 weeks of treatment, patients with a Ham-D score lower than

8 were classified as remitted MDD (rMDD), while the others were

categorized as non-remitted MDD (nrMDD). The Ham-D and

Ham-A were acquired at the 0th, 2nd, 4th, and 8th weeks

(Supplementary Table S1). Only Ham-D and Ham-A were

utilized from our previous study, as other measures were not of

interest in the current study.
2.3 Experimental conditions

All participants engaged in two experimental paradigms: (i)

resting-state (RS), and (ii) MMN paradigms. In the RS paradigm,

participants closed their eyes for 5 min without any stimulation.

Then, a duration-variant auditory oddball paradigm was conducted.

The probability of deviant stimulus occurrence was set to 10% in a

total of 750 trials. Participants were required to watch a silent movie

during the auditory stimulus presentation and instructed not to

focus on the auditory stimuli.
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In the passive oddball experiment, the auditory stimuli were

delivered binaurally with noise-canceling MDR-D777 headphones

(Sony, Tokyo, Japan). The loudness and the pitch of all stimuli were

set to 85 dB and 1000 Hz, respectively. The duration of the

stimulation was set to 50 ms for the standard stimuli (Std) but

100 ms for the deviant stimuli (Dev), with 10 ms of rising and falling

edges. The interstimulus interval was fixed at 600 ms.
2.4 Signal acquisition and pre-processing

The participants were asked to sit comfortably in a chair.

Biosignal data were acquired using Neuroscan SynAmps2

(Compumedics USA, El Paso, TX, USA). For the EEG, a total of

64 Ag-AgCl electrodes mounted on a Quik-Cap were placed

following the extended 10-20 system. For the electrooculogram

(EOG), four electrodes were placed above and below the left eye and

on the outer canthi of both eyes. Throughout signal acquisition, the

impedance of all the electrodes was below 5 kW. The signals were

recorded at 1,000 Hz of sampling rate and then bandpass filtered

between 0.1 - 100 Hz.

The acquired signals were pre-processed using the EEGLAB

toolbox (26) implemented in MATLAB R2019b (MathWorks,

Natick, MA, USA). For the elimination of physiological artifacts,

independent component analysis was performed. The components

containing artifacts including EOG, electromyogram, and

electrocardiogram were manually rejected. The EEG signals were

then band-pass filtered between 0.1 – 50 Hz using a 6th-order

Butterworth filter. After manual inspection, the EEG signals were

segmented into 700 ms. For the auditory oddball data, the epochs

ranged from 100 ms of a pre-stimulus interval to 600 ms of a post-

stimulus interval (i.e., -100 – 600 ms). The segmented data were

detrended and then baseline corrected using the pre-stimulus

interval data. For the resting-state data, the epochs were

segmented using the same length of time window (i.e., 700 ms)

without any overlap. Regardless of experimental paradigms, all

epochs with absolute maximum values exceeding 75 mV were

excluded from the analysis. Among the noise-free segments, 250,

300, and 45 epochs were randomly selected for the RS, Std, and Dev

conditions, respectively, from each participant.
2.5 Construction of salience network

For the construction of the SN, source localization was performed

using the Brainstorm toolbox (27). The source activities were

calculated with a depth-weighted L2-norm estimator from the

randomly segmented EEG signals. Excluding mastoid electrodes,

we selected all 62 EEG electrodes for source localization. The

Colin27 MRI brain template with 15,002 voxels was employed for

the estimation of the cortical activities. For the construction of the

lead field matrix, a three-layer boundary element model was

implemented from the OpenMEEG project software (28).

Three regions of interest (ROIs) were selected as the

representative nodes of the SN according to the previous fMRI

studies: (i) dorsal anterior cingulate cortex (dACC); (ii) left insula
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(lIns); (iii) right insula (rIns) (Supplementary Materials). The

Montreal Neurological Institute (MNI) coordinates of the ROI

seeds were determined as centers of gravity of the provided

coordinates (Supplementary Table S2), with manual verification

of the coordinates. From the seed coordinates, the voxels within a 5

mm Euclidean distance were selected as representative ones. Finally,

the representative source signal of the ROIs was obtained by the first

component of the principal component analysis, using source

signals acquired from the neighboring voxels.

The weighted phase-lag index (wPLI) (29) was calculated for

evaluation of the edge between a pair of nodes (i.e., FC) for 4

frequency bands: (i) alpha (8 – 12 Hz); (ii) low beta (12 – 18 Hz);

(iii) high beta (18 – 30 Hz); (iv) gamma (30 – 50 Hz). For each 0.7 s

epoch, a pair of the representative source signals from the ROIs

were bandpass filtered according to the frequency band.

Subsequently, the Hilbert transform-based instantaneous phase

was calculated. Finally, the absolute value of the temporal

expectation of the instantaneous phase difference between the

ROIs was divided by the temporal expectation of the absolute

phase difference, as follows (30):

wPLI =
E( sinDf(t))j j
E( sinDf(t)j j)

where the Df(t) denotes the difference in instantaneous phase as a
function of time, t, |.| denotes the absolute operator, and the E(.)

denotes the expectation operator across the time. Herein, the phase

differences of the intervals for the initial and end 0.1 s were excluded

from the calculation of the expectation values to eliminate edge effects

caused by the filtering and Hilbert transform, as well as discard the

baseline interval data in the oddball paradigm. The wPLI values can

vary from 0 (entirely out-of-phase) to 1 (entirely phase-locked). It

should be noted that the wPLI values were calculated for each band

(i.e., n = 4), pair of nodes (n = 3), and epoch (n = 250, 300, and 45 for

RS, Std, and Dev, respectively), and subsequently averaged across

epochs. Finally, the FCs were defined as these averaged wPLI values.

In addition, the global strength of the SN was evaluated as the sum of

all pairs of the wPLI values (i.e., 3 wPLI values).
2.6 Statistical analysis

For verification of the assumption of data normality, skewness

and kurtosis of the data distribution were examined. All absolute

values of the skewness and kurtosis were less than 2 and 7,

respectively (31); hence, all the data distributions were assumed

to follow a normal distribution. For comparison of the demographic

differences between 3 groups (i.e., nrMDD, rMDD, and HC), an

analysis of variance (ANOVA) was used for age and education,

while the chi-squared test was used for the sex ratio.

For evaluation of the group-by-condition interaction in the

MDD groups, repeated-measures ANOVA (rmANOVA) was

performed for three experimental conditions (i.e., RS, Std, Dev) as

within-subject factors and the group (nrMDD vs. rMDD) as the
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between-subject factors, for each frequency band. We initially tested

global strength and subsequently tested the three pairs of wPLIs if

notable group-related effects were observed. Regarding rmANOVA,

Mauchly’s sphericity assumption was used given that the data

distribution met the condition; otherwise, Greenhouse-Geisser

correction was alternatively used. When significant group-related

interaction was observed, post-hoc analyses were performed as

follows. First, rmANOVA was performed for each group. Second,

an independent t-test was performed. To avoid multiple correction

issues, the bootstrap resampling technique (n = 5,000) was

performed (32).
2.7 Feature ext

To demonstrate the potential of condition-dependent changes

in SN patterns to predict pharmacological treatment response in

patients with MDD, a further ML-based classification analysis was

conducted. Consequently, classification between the MDD groups

(nrMDD vs. rMDD) was performed using EEG features.

2.7.1 Feature extraction
From the SN-related measures, two types of condition-

dependent FCs were determined as feature candidates. First, three

pairs of FCs in the Dev-condition were selected. Second, three pairs

of FC differences were selected, by subtracting FC values in the Std

condition from FC values in the Dev condition, similar to the

traditional MMN amplitude.

Some conventional measures were also included as feature

candidates to enhance the classification performance. From the

RS condition, absolute band power was calculated over the six

cortical regions: bilateral frontal, central, and parieto-occipital

areas. In addition, MMN amplitude was obtained from the

frontocentral cortical regions. To obtain the MMN amplitude for

each participant, the difference ERP curve was acquired by

subtracting the Std-ERP curve from the Dev-ERP curve. Both

ERP curves were obtained by averaging epochs for each

condition, with bandpass filtered at 0.1 – 30 Hz using the 6th-

order Butterworth filter. The potential values lasting from 130 ms to

280 ms were averaged and then defined as MMN amplitude. For

more detail, please refer to our previous study (33).

2.7.2 Cross-validation and feature selection
To assess the performance of the classifiers, leave-one-out cross-

validation (LOOCV) was conducted. Subsequently, the optimal

feature subset was determined from the training dataset using the

Fisher score (34). The number of selected features ranged from 1 to

15, the Fisher scores of which were the highest, to prevent the

dimensionality-related overfitting issue. The selected features were

then normalized to z-score to eliminate the inter-feature biases. It is

noted that the statistics used for normalization (i.e., mean and

standard deviation) were extracted from the training datasets to

prevent information leakage.
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2.7.3 Classification analysis
For the classification analysis, four ML-based classifiers were

utilized to differentiate between nrMDD and rMDD: linear

discriminant analysis (LDA), support vector machine (SVM), k-

nearest neighbors (KNN), and naive-Bayes (NB). To evaluate the

classification performance, three indices were computed: (i)

classification accuracy, (ii) sensitivity, and (iii) specificity.

Specifically, sensitivity and specificity were determined using

nrMDD as the reference group. For instance, sensitivity was

defined as the proportion of patients with nrMDD who were

correctly classified. Finally, the receiver operating characteristic

(ROC) curve was generated by using various decision thresholds,

for the best-performing classifier. From the ROC curve, the area

under the curve (AUC) was calculated for the evaluation of the

performance of the classifier.
3 Results

3.1 Demographic and
psychological measures

No significant demographic differences between the nrMDD,

rMDD, and HC groups (p > 0.1 for all variables; Table 1).

Furthermore, no significant differences were found in terms of

baseline symptom severity (i.e., Ham-D and Ham-A; p > 0.1).
3.2 Comparison of the condition-
dependent changes in SN patterns

In qualitative terms, patients with nrMDD exhibited aberrant

patterns of condition-dependent changes in the high-beta band SN,

demonstrating an opposite trend compared to HC. More
Frontiers in Psychiatry 05
specifically, while transitioning from RS- to Std- and Dev-

condition, HC showed an increasing tendency in SN strength,

whereas patients with nrMDD showed a decreasing tendency

(Figure 1). Unlike patients with nrMDD, those with rMDD

showed relatively similar condition-dependent changing patterns

compared to HC.

In terms of SN strength, there was a notable group-by-condition

interaction between nrMDD and rMDD in the high-beta band;

however, it did not reach the significant level (p = 0.066; Figure 1).

However, there was no other significant group-related effect.

In the FC analysis, there was a significant group-by-condition

interaction between nrMDD and rMDD in the high-beta band (p =

0.026; Figure 2). A post-hoc analysis revealed that nrMDD showed

lower FC than rMDD under the Dev-condition (p = 0.030; 95%CI

-0.055 ~ -0.005). However, there was no other significant group-

related effect.
TABLE 1 Demography, symptom severity, and socio-cognitive function.

nrMDD
(n = 14)

rMDD
(n = 17)

HC
(n = 21)

p-value

Age 43.14 ± 11.07 48.35 ± 9.00 43.86 ± 14.14 0.159

Sex (M/F) 1/13 2/15 2/19 0.764

Education 13.86 ± 2.98 13.53 ± 3.43 13.24 ± 4.16 0.778

Ham-D

Week 0 30.00 ± 5.57 26.24 ± 6.81 0.108

Week 8 17.14 ± 8.05 4.41± 1.77 < 0.001

Ham-A

Week 0 27.07 ± 6.73 24.76 ± 6.57 0.344

Week 8 16.43 ± 7.36 4.06 ± 2.73 < 0.001
fro
FIGURE 1

The global strength of the high-beta band salience network for each group under three different conditions. (A) Structure of the salience network,
consisting of 3 regions of interest. (B) Global strength. The error-bars indicate the standard errors. dACC, dorsal anterior cingulate cortex; lIns, left
insula; rIns, right insula; nrMDD (n = 14), non-remitted MDD; rMDD (n = 17), remitted MDD; HC (n = 21), healthy control. The brain image was
obtained from the Brainstorm toolbox.
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3.3 Classification analysis

In the ML-based classification analysis, the best performance

was yielded using an LDA classifier with 13 selected features

(Table 2). The classification accuracy, sensitivity, and specificity

values of the model were 80.65%, 78.57%, and 82.35%, respectively

(Figure 3A). In addition, the AUC of the model was 0.8277

(Figure 3B). The model incorporated a variety of features,

including FC under Dev-condition and conventional features (i.e.,

MMN and resting-state band power).
Frontiers in Psychiatry 06
4 Discussion

In this study, we investigated the condition-dependent changes

in SN in patients with drug-naive nrMDD and rMDD using EEG.

Our findings point to the high-beta band SN as a key condition-

dependent network for predicting the efficacy of pharmacological

treatments in patients with MDD. Specifically, the strength of SN

displayed a contrasting condition-dependent tendency in patients

with nrMDD compared to that of the HC group. In the deviant-

stimulus condition, high-beta band FC between dACC and rIns

exhibited an abnormal decrease in patients with nrMDD compared

to those with rMDD. The ability of these condition-dependent SN-

related features to serve as potential biomarkers for predicting

responsiveness to antidepressants was further demonstrated

through a machine learning (ML)-based classification analysis.

Our findings indicate that EEG-derived condition-dependent

changes in FBN patterns could be reliable measures to predict the

efficacy of pharmacological treatment. To the best of our knowledge,

this is the first study to explore the pharmacological treatment

response in patients with MDD using condition-dependent changes

in FBN. To date, most EEG-derived FBN studies aiming for the

prediction of treatment effects have been interested in resting-state

FBN. It appears that patients withMDD showing similar resting-state

FBN patterns to HC are more receptive to the pharmacological

treatment effect (5, 6), than other neuroimaging modality-derived

FBN studies (20, 35). However, despite their potential, little is known

about the association between stimuli-related FBN patterns and

treatment responsiveness. Recent neuroimaging studies have shown

that the integration of stimuli-related and resting-state neural activity

could facilitate a more comprehensive understanding of various

psychiatric disorders (11–14). Specifically, our findings show that

stimuli-related FBN patterns in patients with rMDD are relatively

similar to those in HC, consistent with the resting-state FBN patterns.

Therefore, stimuli-related FBN patterns might be interpreted as

similar to the resting-state FBN patterns, underpinning

their reliability.
FIGURE 2

Functional connectivity (FC) between the dorsal anterior cingulate cortex (dACC) and right insula (rIns). (A) Structure of the dACC and rIns. (B) FC.
The error-bars indicate the standard errors. *p < 0.05. dACC, dorsal anterior cingulate cortex; rIns, right insula; nrMDD (n = 14), non-remitted MDD;
rMDD (n = 17), remitted MDD; HC (n = 21), healthy control. The brain image was obtained from the Brainstorm toolbox.
TABLE 2 The feature subset with the best performance (i.e., n = 13).

Feature Frequency

MMN 31

FCdiff_rIns_dACC 31

FCdev_rIns_dACC 31

BPb2_LF 31

BPg_LC 31

BPg_LPO 31

FCdiff_lIns_dACC 30

BPg_RPO 30

BPb2_RF 28

BPg_RF 28

BPb2_RPO 27

BPg_LF 22

FCdev_lIns_rIns 14
MMN, mismatch negativity; FC, functional connectivity; FCdev, FC under the deviant
condition; FCdiff, the difference between FCdev and FCstd; BP, band power; BPb2, high-
beta BP; BPg, gamma BP; lIns, left insula; rIns, right insula; dACC, dorsal anterior cingulate
cortex; L, left; R, right; F, frontal; C, central; PO, parieto-occipital.
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Our results indicate that high-beta band SN is a key FBN exhibiting

different condition-dependent FBN patterns between nrMDD and

rMDD under the resting state and MMN paradigms. This is

consistent with the previous MDD studies. Several FBN studies

reported hyperconnectivity in the resting-state high-beta band for

MDD (36, 37). Furthermore, several studies revealed that magnetic

seizure therapy could help the hyperactive beta band be reduced to

become normalized in patients with MDD (38, 39). Our findings

indicate that the observed phenomena are more likely attributable to

patients with treatment-resistant MDD. We also found significant

group (nrMDD and rMDD)-by-interaction in the total-beta band (12 –

30 Hz; Supplementary Material), underpinning the suggestion.

Furthermore, our findings bolster the view that a hyperactive resting-

state SN in the high-beta band could lead to inefficient condition-

dependent reconfiguration. It is worth mentioning that, despite its

potential significance, theta band was excluded in the current study (9).

This decision was made due to the limited time window resulting from

the short inter-stimulus interval (0.6 s), which allows for at most 2.4

cycles of the 4-Hz oscillation, generally the lower limit of the theta

band. Therefore, further studies are needed to investigate whether the

theta-band SN could serve as a biomarker to predict antidepressant

responsiveness in patients with MDD.

Our study suggests that patients with nrMDD are characterized by

more dysfunctioning condition-dependent changes in SN. This finding

is in line with the previous neuroimaging studies. Recent fMRI studies

have consistently reported inefficient information transfer within the

SN among patients with treatment-refractory MDD (20, 21). Such

patients may experience a reduced quality of life due to diminished

affective functions (40, 41), a key role of the SN. It is worth noting that

our study also suggests that SN is readily reconfigured by the neutral-

valence stimuli, demonstrated by condition-dependent changes in SN

for HCs: strength of the high-beta band increased but that of the alpha

band decreased under the stimulus condition, particularly for the

deviant stimulation (Supplementary Figure S1). Beta-band phase

synchronization is generally believed to be associated with attentional

control and short-term working memory, by interacting with relatively

distant regions (42, 43), providing support for our hypothesis.
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Within the high-beta band SN, patients with nrMDD showed

decreased FC between the dACC and rIns, compared to those with

rMDD, which serves as a potential biomarker for predicting

antidepressant response. Furthermore, sensitive condition-dependent

change in FC between them was associated with the early period

antidepressant responsiveness (Supplementary Figure S2). Both regions

are well known to play essential roles in condition-dependent FBN

reconfiguration. The rIns plays a role in selective attention by switching

the attentional focus between the default mode network and the central

executive network, according to the salient external stimulation (19,

44). dACC is a crucial hub for flexible FBN reconfiguration, the

malfunctioning of which has been repetitively reported in MDD

studies (45, 46). In conclusion, the hypoconnectivity between the

dACC and rIns under the Dev condition in patients with nrMDD

could be linked to the dysfunctions of the dynamic FBN flexibility,

hindering efficient selective attention.

Based on the machine learning models, we showed the potential

that the condition-dependent FBN characteristics identified in our

study could serve as informative biomarkers to predict

pharmacological treatment responsiveness. The optimal feature

subset included various condition-dependent FBN patterns (i.e.,

strength and FCs) as well as various conventional measures (i.e.,

MMN and band powers). Our findings suggest that neurobiologically

meaningful measures, derived from conventional experimental

paradigms, can reflect condition-dependent changes in SN and have

the potential to enhance the performance of machine learning

classifiers as predictors. Notably, we acquired similar levels of

sensitivity and specificity across various classifiers (Supplementary

Table S2), including the best-performing classifier (Figure 3),

rendering our results more reliable.

Our study has several limitations. Firstly, more replications are

needed for our results to be generalizable, due to our small sample

size and the lack of performance evaluation with an external dataset.

Secondly, this study only considered an 8-week remission period for

patients, without addressing other prognostic factors such as

potential relapse. Thirdly, our study design did not include a

placebo control group. Fourth, the majority of participants in the
FIGURE 3

Results of the machine learning-based classification analysis. (A) The classification performance represented as a function of the number of features.
The LDA model achieved optimal performance when 13 features were selected, as denoted by the pentagonal star symbol in the graph.
Classification accuracy, sensitivity, and specificity are represented in black, red, and blue respectively. (B) The ROC curve for the best-performing
classifier. The AUC is also provided within the graph. The chosen threshold on the ROC curve is marked by a pentagonal star symbol. LDA, linear
discriminant analysis; ROC, receiver operating characteristic; AUC, area under the curve, Feature #, the number of features.
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study were female, which may limit generalizability. This gender

imbalance could be attributed to the higher prevalence of MDD in

females and the lower participation rate of male patients in research

studies. Finally, as individual brain MRI scans were not available in

this study, a common template was used for estimating source

estimation, which may have reduced the accuracy of estimating

cortical electrophysiological activity. Future research will benefit

from replicating these findings with a larger sample size and an

external cohort to enhance generalizability. Additionally, examining

an effective brain network or constructing a whole-brain network

could provide meaningful insights into the underlying brain

mechanisms in patients with non-remitted MDD.

Our study investigated the potential of condition-dependent

changes in the EEG-derived salience network to predict

antidepressant responsiveness in patients with MDD, assessed

through both resting state and MMN paradigms. Patients with non-

remitted MDD exhibited hyperconnectivity in the resting state but

hypoconnectivity in response to salient stimuli (i.e., deviant condition)

in the high-beta band SN, particularly for the FC between the dACC

and rIns. In conclusion, understanding these condition-dependent

connectivity patterns may contribute to the development of more

targeted and effective treatments forMDD patients. It is hoped that our

study pioneers research into condition-dependent changes in FBN.
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